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Abstract

In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic
Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener
type constant for nonharmonic series given by Duffin and Schaefer in [6] and used recently in some
applications (see [3]). In the case of an orthonormal basis our estimate reduces to Kadec’ optimal 1/4
result. The second application proves that a phenomenon discovered by Daubechies and Tchamitchian
[4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property under small changes
of the translation parameter) actually holds for a large class of wavelet Riesz bases.
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1 Introduction and Statement of the Results

Let H be a separable Hilbert space and I a countable index set. A set of vectors F = {fi}i∈I in H is
called a (Hilbert) frame if there are two positive constants 0 < A ≤ B < ∞ such that for all x ∈ H we
have:

A ‖ x‖2 ≤
∑
i∈I

| < x, fi > |2 ≤ B ‖ x‖2

If A = B we call the frame tight. The constants A and B are called frame bounds. A set of vectors
F = {fi}i∈I in H is called Bessel set (if I = N, it is called Bessel sequence) if there exists a positive
constant B > 0 such that for any x ∈ H we have:∑

i∈I

| < x, fi > |2 ≤ B ‖ x‖2

If the set F is a (Schauder) basis as well as a frame in H then F is called Riesz basis.
The following result is the stability theorem for Hilbert frames:
Stability Theorem for Hilbert Frames [Paley-Wiener-Kato-Christensen] Suppose H a sep-

arable complex Hilbert space, I a countable index set and F = {fi}i∈I a frame in H with bounds A, B.
Consider G = {gi}i∈I a family of vectors in H. If one of the following two conditions is fulfilled:

(Type 1) (
∑
i∈I

| < x, fi − gi > |2)1/2 ≤ λ(
∑
i∈I

| < x, fi > |2)1/2 + µ‖x‖ , ∀x ∈ H (1)

or:
(Type 2) ‖

∑
n∈IN

ci(fi − gi)‖ ≤ λ‖
∑

n∈IN

cifi‖ + µ(
∑

n∈IN

|ci|2)1/2 , ∀n ≥ 0, ci ∈ C (2)

where (In)n≥0 is an increasing sequence of finite subsets of I: I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ I such that
limn→∞ In = I, and λ + µ√

A
< 1; then {gi}i∈I is also a frame in H with bounds A(1 − λ − µ√

A
)2,

B(1 + λ + µ√
B

)2. Moreover, if F is a Riesz basis then G is also a Riesz basis. �

This result was first stated by Paley and Wiener in their celebrated paper [11]. They considered
only the stability of Riesz basis and the type 2 condition. Later on, in a different context, Kato ([9])
proved a perturbation theorem which basically incorporates the above theorem. Recently, Christensen
and Heil ([1], [2]) established the link between Kato’s perturbation theorem and frames in both Hilbert
and Banach contexts. We are going to use this result in studying the stability of two particular frames
under parametric perturbations.

Consider γ > 0 and L2[−γ, γ] with the usual scalar product inherited from L2. Consider a sequence
{λn}n∈Z of complex numbers and construct the sequence of functions F = {fn}n∈Z by fn : [−γ, γ] → C,
fn(x) = 1√

2γ
eiλnx. We call {λn}n∈Z a frame sequence if F is a frame for L2[−γ, γ], in which case F is

called a Fourier frame. Our problem is the following: given a frame sequence of real numbers {λn}n∈Z

with bounds A, B, find a positive constant L such that any sequence of real numbers {µn}n∈Z with
|µn − λn| ≤ δ < L is also a frame sequence. An extension of this problem will take into account the
complex case.

In the context of an orthonormal Fourier basis (λn = n, γ = π) this problem was first considered by
Paley and Wiener. By using their stability result, they obtained a first value for L, L1 = 1

π2 . Later on,
Duffin and Eachus in [5] improved this constant to L2 = ln 2

π = 0.22.... Finally, Kadec in [8] proved that
the optimal value of this constant (called the Paley-Wiener constant) is LK = 1

4 (earlier, Levinson in [10]
proved that for δ = 1

4 one can perturb the orthonormal Fourier basis to a noncomplete set).
The stability question of Fourier frames was considered by Duffin and Schaeffer in their seminal paper

[6]. They used a type (1) inequality with µ = 0 and they obtained LDS = 1
γ ln[1 +

√
A
B ] (see proof of
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Theorem 13, §4.8 in [12]). This value has been used recently by [3] in a quantization error analysis of
Weyl-Heisenberg frame expansions. For γ = π and A = B one can obtain LDS = ln 2

π which is less than
Kadec’ estimate. A better estimate for L is given in Theorem 1:

THEOREM 1 Suppose {λn}n∈Z a frame sequence of real numbers for L2[−γ, γ] with bounds A, B. Set:

L(γ) =
π

4γ
− 1

γ
arcsin(

1√
2
(1 −

√
A

B
)) (3)

Consider the sequence {ρn}n∈Z of complex numbers ρn = µn + iσn such that supn |µn − λn| = δ < L(γ)
and supn |σn| = M < ∞. Then the following two conclusions hold true:

1) The sequence {ρn}n∈Z is a frame sequence for L2[−γ, γ];
2) The real sequence {µn}n∈Z is a frame sequence with bounds:

A(1 −
√

A

B
(1 − cos γδ + sin γδ))2 , B(2 − cos γδ + sin γδ)2 (4)

�

We now turn to the statement of our second application. Consider two positive numbers a0 > 1
and b0 > 0 and a function Ψ ∈ L2(R). We set H = L2(R), I = Z2 and define the set of functions
FΨ;a0b0 = {Ψmn;a0b0 |(m, n) ∈ I} by Ψmn;a0b0(x) = a

−m/2
0 Ψ(a−m

0 x − nb0). If the set FΨ;a0b0 is a frame
in H we call it a wavelet frame; likewise, if it is a Riesz basis in H we call it a wavelet Riesz basis. Our
problem concerns the behavior of the set FΨ;ab when a = a0 and b runs through a neighborhood of b0.
This problem was first considered by Daubechies and Tchamichian in 1990 for the Meyer orthogonal
wavelet basis (see [4]) where a0 = 2, b0 = 1. They proved that for all b in some nontrivial interval
[1 − ε, 1 + ε], the corresponding FΨ;2b constituted a Riesz basis. We are going to extend this stability
result to a more general class of wavelet Riesz basis. The precise statement is given in Theorem 2:

THEOREM 2 Suppose that the function Ψ ∈ L2(R) generates a wavelet Riesz basis with bounds A, B
for some a0 > 1, b0 > 0 (i.e. FΨ;a0b0 is a Riesz basis with bounds A, B). Furthermore, let Ψ̂, the Fourier
transform of Ψ, satisfy the following requirement: Ψ̂ is of class C1 on R and both Ψ̂ and Ψ̂′ are bounded
by:

|Ψ̂(ξ)|, |Ψ̂′(ξ)| ≤ C
|ξ|α

(1 + |ξ|)γ
, ∀ξ ∈ R (5)

for some C > 0 and γ > 1 + α > 1. Then there exists an ε > 0 such that for any b with |b − b0| < ε, the
set FΨ;a0b is a Riesz basis. �

2 Proof of the Theorems

Proof of Theorem 1
By Theorem II from [6] (see also Theorem 14, §4.8 in [12]) we need to prove Theorem 1 only for real

sequences ρn = µn. On the other hand, if we scale the sequence we can reduce the problem to the case
γ = π. Indeed, if {λn}n∈Z is a frame sequence for L2[−γ, γ] then {λ′

n = γ
π λn}n∈Z is a frame sequence for

L2[−π, π] with the same bounds (in the former case fn(x) = 1√
2γ

eiλnx, in the latter f ′
n(x) = 1√

2π
eiλ′

nx).
Thus L(γ) = π

γ L(π) and we have to prove:

L(π) =
1
4
− 1

π
arcsin(

1√
2
(1 −

√
A

B
)) (6)
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Observe that this is consistent also with the frame bounds since γδ = πδ′.
To prove (6), we shall use Kadec’ estimations from his theorem and then the Type 2 form of the

Stability Theorem with λ = 0. Let N ∈ N and cn ∈ C, n ∈ IN be arbitrary. Set δn = µn − λn. We
obtain:

U = ‖
∑

n∈IN

cn(
1√
2π

eiλnx − 1√
2π

eiµnx)‖ =
1√
2π

‖
∑

n∈IN

cneiλnx(1 − eiδnx)‖ (7)

By expanding 1 − eiδnx into a Fourier series relative to the orthogonal system {1, cos νx, sin(ν − 1
2 )x},

ν = 1, 2, . . . we obtain:

1 − eiδnx = (1 − sin πδn

πδn
) +

∞∑
ν=1

(−1)ν2δn sin πδn

π(ν2 − δn
2)

cos(νx) + i
∞∑

ν=1

(−1)ν2δn cosπδn

π((ν − 1
2 )2 − δn

2)
sin((ν − 1

2
)x) (8)

We plug (8) into (7), we change the order of summation, we use the triangle inequality and then we use
the bounds ‖ cos(νx)ϕ(x)‖ ≤ ‖ϕ‖ and ‖ sin((ν − 1

2 )x)ϕ(x)‖ ≤ ‖ϕ‖. We obtain:

U ≤ ‖
∑

n∈IN

(1 − sin πδn

πδn
)cneiλnx‖ +

∞∑
ν=1

(‖
∑

n∈IN

2δn sin πδn

π(ν2 − δn
2)

cneiλnx‖ + ‖
∑

n∈IN

2δn cosπδn

π((ν − 1
2 )2 − δn

2)
cneiλnx‖)

Now we use that {λn}n∈Z is a frame sequence with upper bound B. Therefore each norm can be bounded
as:

‖
∑

n∈IN

ancneiλnx‖ ≤
√

B‖{ancn}‖ ≤
√

B sup
n

|an| ‖{cn}‖

and we have:
|1 − sin πδn

πδn
| ≤ 1 − sin πδ

πδ

| 2δn sin πδn

π(ν2 − δn
2)
| ≤ 2δ sinπδ

π(ν2 − δ2)

| 2δn cosπδn

π((ν − 1
2 )2 − δn

2)
| ≤ 2δ cosπδ

π((ν − 1
2 )2 − δ2)

(the last inequality holds because δ < 1
4 ) and thus:

U ≤
√

B(Re(1 − eiπδ) − Im(1 − eiπδ)) (
∑

n∈IN

|cn|2)1/2

or:
U ≤

√
B(1 − cosπδ + sin πδ) (

∑
n∈IN

|cn|2)1/2

Now we can apply the Stability Theorem (Type 2) with λ = 0 and µ =
√

B(1 − cosπδ + sin πδ). The

condition of that theorem turns into µ <
√

A or 1−cosπδ+sinπδ <
√

A
B and then, by a little trigonometry

we get:

δ < L =
1
4
− 1

π
arcsin(

1√
2
(1 −

√
A

B
))

The frame bounds for {µn}n∈Z come from A(1 − µ√
A

)2 and B(1 + µ√
B

)2. This ends the proof. �

To prove Theorem 2, we shall use the Type 1 criterion of stability together with an upper bound
estimation given by Daubechies in [4] Theorem 2.7,2.8. This estimate reads as follows: Consider f ∈
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L2(R) and, for some a > 1, b > 0 construct the set of functions Ff ;ab as before. Then, a sufficient
condition for Ff ;ab to be a Bessel set for L2(R) is that:

B :=
2π

b

{
sup

1≤|ξ|≤a

∑
m∈Z

|f̂(amξ)|2 + 2
∞∑

k=1

(β(
2π

b
k)β(−2π

b
k))1/2

}
< ∞ (9)

where β(s) = sup1≤|ξ|≤a

∑
m∈Z |f̂(amξ)| · |f̂ (amξ+s)|. Moreover, the constant B in (9) is an upper bound

of the Bessel sequence. A sufficient condition for (9) to hold for is that the function f̂(ξ) has good decay,
for instance |f̂(ξ)| ≤ C |ξ|α

(1+|ξ|)γ , for some γ > 1 + α > 1 and C > 0.
Now we return to the proof of theorem:
Proof of Theorem 2
Consider Ψ and a0 > 1, b0 > 0 and b > 0 as in hypothesis and denote by Ub : L2(R) → L2(R)

the unitary operator (Ubf)(x) =
√

b
b0

f( b
b0

x). We define Φ = UbΨ, or more specific Φ(x) =
√

b
b0

Ψ( b
bo

x).
One can easily check that UbΨmn;a0b = Φmn;a0b0 , therefore Ub maps FΨ;a0b into FΦ;a0b0 unitarily. Thus
FΨ;a0b is a Riesz basis (frame) if and only if FΦ;a0b0 is a Riesz basis (frame). Moreover, they have the
same bounds. In order to prove that FΨ;a0b is a Riesz basis, we show that FΦ;a0b0 is a Riesz basis by
comparing it with FΨ;a0b0 . We note that:

Ψmn;a0b0 − Φmn;a0b0 = (Ψ − Φ)mn;a0b0

Therefore the condition (1) with λ = 0 is equivalent with the condition FΨ−Φ;a0b0 to be a Bessel set with
upper bound less than A, the lower frame bound of the Riesz basis FΨ;a0b0 .

Let us denote by Bα,γ the constant B given by (9) for f̂(ξ) = |ξ|α
(1+|ξ|)γ . It is simple to check that

|Ψ̂(ξ) − Φ̂(ξ)| ≤ Cb
|ξ|α

(1+|ξ|)γ . Therefore an upper bound for the Bessel set FΨ−Φ;a0b0 is given by CbBα,γ .

On the other hand, using the Ascoli-Arzelá lemma and the hypotheses on Ψ̂(ξ) and Ψ̂′(ξ) we obtain
that gb(ξ) = (1+|ξ|)γ

|ξ|α Φ̂(ξ) converges uniformly to gb0(ξ) = (1+|ξ|)γ

|ξ|α Ψ̂(ξ) as b → b0. Thus we may choose
Cb to depend continuously on b around b0 and Cb0 = 0. Then, for some neighborhood of b0 for which
CbBαγ < A we may set µ =

√
CbBαγ in (1) and we obtain that FΦ;a0b0 is a Riesz basis. Now the proof

is complete. �

3 Conclusions

The first theorem proved in this paper gives a better stability bound of Fourier frames than known
previously in literature. This result covers also Kadec’14 theorem and extends its conclusion to Fourier
tight frames. One can check that:

π

4γ
− 1

γ
arcsin(

1√
2
(1 −

√
A

B
)) >

1
γ

ln(1 +

√
A

B
)

which means that the stability margin given by theorem 1 is larger than LDS .
The second result shows that wavelets Riesz bases are stable under translation parameter perturba-

tions provided some mild regularity and decaying conditions are satisfied by the wavelet. In particular it
applies also to Meyer’s orthogonal wavelet basis and thus extends a previously known result.
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