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Abstract—In this paper we derive the Fisher information
matrix and the Cramer-Rao lower bound for the non-additive
white Gaussian noise model yk = |〈x, fk〉 + µk|2, 1 ≤ k ≤ m,
where {f1, · · · , fm} is a spanning set for Cn and (µ1, · · · , µm)
are i.i.d. realizations of the Gaussian complex process CN (0, ρ2).
We obtain closed form expressions that include quadrature
integration of elementary functions.

I. INTRODUCTION

The phaseless reconstruction problem (also known as the
phase retrieval problem) has gained a lot of attention recently.
The problem is connected with several topics in mathematics
and has applications in many areas of science and engi-
neering. Consider a n-dimensional complex Hilbert space
H = Cn endowed with a sesquilinear scalar product 〈x, y〉
(e.g.

∑n
k=1 xkyk) that is linear in x and antilinear in y. Let

F = {f1, · · · , fm} be a spanning set for H . Since H is
finite dimensional, F is also frame that is there are constants
0 < A ≤ B < ∞ called frame bounds such that for every
x ∈ H ,

A‖x‖2 ≤
m∑
k=1

|〈x, fk〉|2 ≤ B‖x‖2.

Consider the following nonlinear map

α : H → Rm , α(x) = (|〈x, fk〉|)1≤k≤m .

Note α(eiϕx) = α(x) for any real ϕ. This suggests to replace
H by the quotient space Ĥ = H/ ∼ where for x, y ∈ H ,
x ∼ y if and only if there is a unimodular scalar z ∈ C,
|z| = 1, so that x = zy. The elements of Ĥ are called rays in
quantum mechanics. The nonlinear map α factors through the
projection H ↘ Ĥ to a well-defined map also denoted by α
that acts on Ĥ via

α : Ĥ → Rm , α(x̂) = (|〈x, fk〉|)1≤k≤m , ∀x ∈ x̂.

The phaseless reconstruction problem refers to analysis of the
nonlinear map α. By definition, we call F a phase retrievable
frame if α is injective. There has been recent progress on the
problems of injectivity, bi-Lipschitz continuity, and inversion
algorithms ([3], [4], [10], [2], [6], [8], [9]). This paper refers
to establishing information-theoretic performance bounds for
the reconstruction problem. Consider the general measurement
process:

y
(p)
k = |〈x, fk〉+ µk|p + νk , 1 ≤ k ≤ m (1.1)

where the noise variables (µ1, · · · , µm, ν1, · · · , νm) are ran-
dom variables with known statistics, and p is a known mea-
surement parameter. Typically p = 1 or p = 2. In [5], [6],
[8] the authors obtained the Fisher information matrix for
the measurement process with additive white Gaussian noise
(AWGN):

y
(2)
k = |〈x, fk〉|2 + νk , 1 ≤ k ≤ m (1.2)

where (ν1, · · · , νm) are i.i.d. N (0, σ2). In the real case the
Fisher information matrix has the form

IAWGN,real(x) =
4

σ2

m∑
k=1

|〈x, fk〉|2fkfTk . (1.3)

In the complex case, the Fisher information matrix takes the
form:

IAWGN,cplx(x) =
4

σ2

m∑
k=1

Φkξξ
∗Φk (1.4)

where ξ = j(x) and Φk are constructed from x and fk from
the realification process as described in the next section, see
(2.9,2.11). In this paper we consider a non-additive white
Gaussian noise model, namely the case with µk 6= 0 and
νk = 0. We derive the Fisher information matrix and the
Cramer-Rao Lower Bound (CRLB) for the case p = 2 but
we show the bounds we obtain can easily be applied to other
values of p. The noise model considered here is directly
applicable to the case of noise reduction from measurements
of the Short-Time Spectral Amplitude (STSA). For instance
see [12] for a MMSE estimator of STSA that uses linear
reconstruction of the signal x.

II. FISHER INFORMATION MATRIX

Consider the measurement model:

yk = |〈x, fk〉+ µk|2 , 1 ≤ k ≤ m (2.5)

where F = {f1, · · · , fm} is a frame with bounds A,
B for Cn and (µ1, · · · , µm) are independent and identi-
cally distributed complex random variables with distribution
CN (0, ρ2). Specifically the last statement means that the real
parts and imaginary parts of the complex random variables
µ1, · · · , µm are i.i.d. with distribution N (0, ρ
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We denote by n(t; a, b) the probability density function of
a Gaussian random variable T with mean a and variance b.
Thus

n(t; a, b) =
1√
2πb

e−
1
2b (t−a)2

.

First we derive the likelihood function. Let δk be the
phases from 〈x, fk〉 = |〈x, fk〉|e−iδk . Note that e−iδkµk
has the same distribution CN (0, ρ2) as µk. Furthermore
(e−iδ1µ1, · · · , e−iδmµm) remain independent and therefore
identically distributed with distribution CN (0, ρ2). Let uk +
ivk = e−iδkµk. Thus the joint distribution of (uk, vk) has pdf
n(uk; 0, ρ

2

2 )n(vk; 0, ρ
2

2 ). Note

yk = |〈x, fk〉|2 + 2|〈x, fk〉|uk + u2
k + v2

k

Consider now the polar change of cordinates (uk, vk) 7→
(yk, θk) where

uk =
√
ykcos(θk)− |〈x, fk〉| , vk =

√
yksin(θk).

The Jacobian of the inverse map (yk, θk) 7→ (uk, vk) is 1
2 .

Thus the joint pdf of (yk, θk) is given by

p(yk, θk;x) =
1

2
n(
√
ykcos(θk)− |〈x, fk〉|; 0,

ρ2

2
)×

× n(
√
yksin(θk); 0,

ρ2

2
) (2.6)

where x is the ”clean” signal. By integrating over θk we obtain
the marginal

p(yk;x) =
1

ρ2
exp

{
−yk
ρ2
− |〈x, fk〉|

2

ρ2

}
I0

(
2|〈x, fk〉|

√
yk

ρ2

)
(2.7)

where I0 is the modified Bessel function of the first kind and
order 0 (see [1], (9.6.16)). Hence the likelihood function for
y = (yk)1≤k≤m is given by

p(y;x) =

m∏
k=1

p(yk;x)

=
1

ρ2m
exp

{
− 1

ρ2

(
m∑
k=1

yk +

m∑
k=1

|〈x, fk〉|2
)}
×

×
m∏
k=1

I0

(
2|〈x, fk〉|

√
yk

ρ2

)
. (2.8)

As we observed in an earlier paper ([6]) it is more advatageous
to work with the realification of the problem. Let j : Cn →
R2n dentote the R-linear map

z ∈ Cn 7→ ζ = j(z) =

[
real(z)
imag(z)

]
. (2.9)

For 1 ≤ k ≤ m let

ξ = j(x), ϕk = j(fk) and J =

[
0 −I
I 0

]
(2.10)

where I is the identity matrix of size n. Note

J2 = −I (identity of order 2n), JT = −J and j(ix) = Jj(x).

Denote further

Φk = ϕkϕ
T
k + Jϕkϕ

T
k J

T (2.11)

and

S =

m∑
k=1

Φk (2.12)

which represents the frame operator acting on the realification
space HR = R2n. A little algebra shows that for every x, y ∈
H and 1 ≤ k ≤ m:

〈x, fk〉 = 〈ξ, ϕk〉+ i〈ξ, Jϕk〉 (2.13)
|〈x, fk〉|2 = 〈Φkξ, ξ〉 (2.14)

|〈x, fk〉| =
√
〈Φkξ, ξ〉 (2.15)

real(〈x, fk〉〈fk, y〉) = 〈Φkξ, η〉 (2.16)

where ξ = j(x) and η = j(y). Thus the log-likelihood becomes

log p(y; ξ = j(x)) = 2m log ρ+

m∑
k=1

log I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)

− 1

ρ2

m∑
k=1

yk −
1

ρ2
〈Sξ, ξ〉

Next we compute the (column-vector) gradient

∇ξ log p(y; ξ) =
2

ρ2

m∑
k=1

I1
I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)√
yk

〈Φkξ, ξ〉
Φkξ

− 2

ρ2
Sξ

where I1 = I ′0 is the modified Bessel function of the first kind
and order 1 (see [1] (9.6.27)). While we shall not use explicitly
the Hessian, a similar but slightly more tedious computation
shows the Hessian matrix of the log-likelihood to be:

∇2
ξ p(y; ξ) = − 2

ρ2
S

+
4

ρ4

m∑
k=1

1
2I2I0 + 1

2I
2
0 − I2

1

I2
0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)
× yk
〈Φkξ, ξ〉

Φkξξ
∗Φk

+
2

ρ2

m∑
k=1

I1
I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)

×
√

yk
〈Φkξ, ξ〉

(
Φk −

1

〈Φkξ, ξ〉
Φkξξ

∗Φk

)
where I2 = 2I ′1 − I0 is the modified Bessel function of the
first kind and order 2 (see [1] (9.6.26-3)). For the Fisher
information matrix we use the gradient:

I(ξ = j(x)) = E
[
(∇ξ log p(y; ξ)) · (∇ξ log p(y; ξ))

T
]



which becomes:

I(ξ) =
4

ρ4
Sξξ∗S

− 4

ρ4

m∑
k=1

E
[
I1
I0
| 2√yk〈Φkξ,ξ〉

ρ2

√
yk

〈Φkξ, ξ〉

]
×

×(Φkξξ
∗S + Sξξ∗Φk)

+
4

ρ4

m∑
k,l=1

E
[
I1
I0
| 2√yk〈Φkξ,ξ〉

ρ2

I1
I0
| 2√yl〈Φlξ,ξ〉

ρ2

√
ykyl

〈Φkξ, ξ〉〈Φlξ, ξ〉

]
×Φkξξ

∗Φl

Next we compute the expectations. Notice the double sum
contains two types of terms: those with k = l and those for
k 6= l. If k 6= l then the expectation factors as a product of the
expectation involving the k-indexed term and the expectation
of the l-indexed term. Let us denote

Lk = E

[
I1
I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)√
yk

〈Φkξ, ξ〉

]
(2.17)

Qk = E

[
I2
1

I2
0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)
yk

〈Φkξ, ξ〉

]
(2.18)

Then the Fisher information becomes

I(ξ) =
4

ρ4

[
Sξξ∗S−

m∑
k=1

Lk(Φkξξ
∗S + Sξξ∗Φk)+ (2.19)

+(

m∑
k=1

LkΦkξ)(

m∑
k=1

LkΦkξ)
∗ +

m∑
k=1

(Qk − L2
k)Φkξξ

∗Φk

]
Surprisingly this expression simplifies significantly once we
establish the following lemma:

Lemma 2.1: For the non-additive white Gaussian noise
model (2.5), Lk = 1. This means:

E

[
I1
I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)√
yk

〈Φkξ, ξ〉

]
= 1

for all 1 ≤ k ≤ m.
Proof. This result is obtained by direct computation. The
expectation is taken with respect to (2.7):

e
〈Φkξ,ξ〉
ρ2 E

[
I1
I0

(
2
√
yk〈Φkξ, ξ〉
ρ2

)
√
yk

]
=

= e
〈Φkξ,ξ〉
ρ2

∫ ∞
0

I1

(
2
√
y〈Φkξ, ξ〉
ρ2

)
√
y

1

ρ

2

e
− y

ρ2
− 〈Φkξ,ξ〉

ρ2 dy

Next use the series expansion (9.6.10) in [1] for I1(z) =∑∞
k=0

1
k!(k+1)! (

z
2 )2k+1. Substitute in the formula above and

integrate term by term:

1

ρ2

∞∑
k=0

1

k!(k + 1)!

∫ ∞
0

(√
〈Φkξ, ξ〉
ρ2

√
y

)2k+1
√
ye
− y

ρ2 dy =

√
〈Φkξ, ξ〉
ρ4

∞∑
k=0

1

k!(k + 1)!

(
〈Φkξ, ξ〉
ρ4

)k ∫ ∞
0

yk+1e−y/ρ
2

dy =

√
〈Φkξ, ξ〉

∞∑
k=1

1

k!

(
〈Φkξ, ξ〉
ρ2

)k
=
√
〈Φkξ, ξ〉e

〈Φkξ,ξ〉
ρ2

from where the lemma follows. 2

This lemma allows us to simplify the Fisher information
matrix to:

I(ξ) =
4

ρ4

m∑
k=1

(Qk − 1)Φkξξ
∗Φk (2.20)

Let us denote by G1 and G2 the following two scalar func-
tions:

G1(a) =
e−a

a

∫ ∞
0

I2
1 (2
√
at)

I0(2
√
at)

te−tdt (2.21)

=
e−a

8a3

∫ ∞
0

I2
1 (t)

I0(t)
t3e−

t2

4a dt

G2(a) = a(G1(a)− 1) (2.22)

Then we obtain:
Lemma 2.2: For the non-additive white Gaussian noise

model (2.5) we have

Qk = G1

(
〈Φkξ, ξ〉
ρ2

)
(2.23)

Proof. This follows by direct computation. 2

In turn this lemma yields:
Theorem 2.3: The Fisher information matrix for the non-

additive white Gaussian noise model (2.5) is given by

I(ξ) =
4

ρ4

m∑
k=1

(
G1

(
〈Φkξ, ξ〉
ρ2

)
− 1

)
Φkξξ

∗Φk (2.24)

=
4

ρ2

m∑
k=1

G2

(
〈Φkξ, ξ〉
ρ2

)
1

〈Φkξ, ξ〉
Φkξξ

∗Φk (2.25)

For small Signal-To-Noise-Ratio SNR = 〈Φkξ,ξ〉
ρ2 ,

G1(SNR) ≈ 2 and G2(SNR) ≈ SNR. Thus:

I(ξ) ≈ 4

ρ4

m∑
k=1

Φkξξ
∗Φk , when

maxk 〈Φkξ, ξ〉
ρ2

� 1 (2.26)

For large SNR, G1(SNR) ≈ 1 + 1
2SNR and

limSNR→∞G2(SNR) = 1
2 . Hence

I(ξ) ≈ 2

ρ2

m∑
k=1

1

〈Φkξ, ξ〉
Φkξξ

∗Φk , when
mink 〈Φkξ, ξ〉

ρ2
� 1

(2.27)
Proof. Equation (2.25 follows from (2.20) and (2.23). The two
asymptotical regimes follow from:

lim
a→0

G1(a) = 2 and lim
a→∞

G1(a)

1 + 1
2a

= 1

These limits are obtained as follows. For small SNR, we can
approximate I0(t) ≈ 1 and I1(t) ≈ t

2 (see [1], (9.8.1) and
(9.8.3)). Then substitute these expressions in (2.21) and obtain
the first limit.



Fig. 1. Plots of G1 (top) and G2 (bottom) with SNR on a linear scale.

Fig. 2. Plots of G1 (top) and G2 (bottom) with SNR on a dB scale.

For large SNR use I0(t) ≈ et√
2πt

(1 − 3
8t ) and I1(t) ≈

et√
2πt

(1 + 1
8t ) (see [1], (9.7.1)). Then substitute these expres-

sions in (2.21) and obtain the second limit. 2

It is useful to illustrate the two functions G1 and G2.
Figures 1 and 2 contain the plots of these functions. In figure
1 we use a linear scale for SNR. In figure 2 we use a
logarithmic scale (dB) for SNR. Specifically SNR [dB] =
10 log10(SNR [linear]).

III. THE IDENTIFIABILITY PROBLEM

It is interesting to note the relationship between the Fisher
information matrix we derived in the previous section and
conditions for phase retrievable frames. As we know the vector
x is not identifiable from measurement y (in the absence of
noise). At best its class x̂ can be identified from y, in the
absence of noise. This nonidentifiability is expressed in the
fact that I(ξ) is always rank deficient. In fact the vector Jξ
is always in the null space of I(ξ). However the question is
whether this is the only independent vector in the null space.
The following result summarizes a necessary and sufficient

condition for the frame F to be phase retrievable. For this let
us introduce one more object:

R : R2n → Sym(R2n) , R(ξ) =

m∑
k=1

Φkξξ
∗Φk (3.28)

where Sym(R2n) denotes the space of symmetric operators
over R2n.

Theorem 3.1 ([6]): The following are equivalent:
1) The frame F is phase retrievable;
2) For every 0 6= ξ ∈ R2n, rank(R(ξ)) = 2n− 1;
3) There is a constant a0 > 0 so that for every ξ ∈ R2n

with ‖ξ‖ = 1,

R(ξ) ≥ a0(I − Jξξ∗J∗) (3.29)

where the inequality is between quadratic forms;
4) There is a constant a0 > 0 so that for every ξ, η ∈ R2n,

m∑
k=1

|〈Φkξ, η〉|2 ≥ a0(‖ξ‖2‖η‖2 − |〈Jξ, η〉|2). (3.30)

Furthermore, the constants a0 at 3. and 4. can be chosen to
be the same.

Now we show that F is phase retrievable if and only if
rank(I(ξ)) = 2n− 1 for all ξ 6= 0. Furthermore, we establish
also a lower bound on I(ξ) in the sense of quadratic forms:

Theorem 3.2: Fix ρ > 0 and let B denote the upper frame
bound. The following are equivalent:

1) The frame F is phase retrievable;
2) For every 0 6= ξ ∈ R2n, rank(I(ξ)) = 2n− 1;
3) There is a constant c0 > 0 that depends on ρ and frame
F so that for every ξ ∈ R2n, ‖ξ‖ ≤ ρ

√
10
B ,

I(ξ) ≥ c0(I − Jξξ∗J∗) (3.31)

where the inequality is between quadratic forms.
This result follows directly from Theorem 3.1 and the

following lemma:
Lemma 3.3: Fix ρ > 0. Let A,B be the frame bounds. Set

D0 = 4
ρ4 and d0 = 0.16

ρ4 . Then:
1) For every ξ ∈ R2n, I(ξ) ≤ D0R(ξ).
2) For every ξ ∈ R2n with ‖ξ‖ ≤ ρ

√
10
B , I(x) ≥ d0R(ξ).

3) For every ξ ∈ R2n, I(ξ) ≥ 4
ρ4

(
G1(B‖ξ‖

2

ρ2 )− 1
)
R(ξ).

Proof Since G1 is monotonically decreasing and G1(a) ≤ 2,
then from (2.24) it follows that I(ξ) ≤ 4

ρ4R(ξ). For the second
inequality, notice G2 is monotonically increasing and concave.
A lower bound is G2(a) ≥ min(0.04a, 0.4), where the break
point is for SNR = 10. Thus by (2.25)

I(ξ) ≥ 4

ρ2

m∑
k=1

min(
0.04

ρ2
,

0.4

〈Φkξ, ξ〉
)Φkξξ

∗Φk

Since 〈Φkξ, ξ〉 = |〈fx, j−1(ξ)〉|2 ≤ B‖ξ‖2 ≤ 10ρ2 it follows

min(
0.04

ρ2
,

0.4

〈Φkξ, ξ〉
) ≥ 0.04

ρ2



Thus

I(ξ) ≥ 0.16

ρ4

m∑
k=1

Φkξξ
∗Φk

which proves the second statement. The third inequality fol-
lows from the fact that maxk〈Φkξ, ξ〉 ≤ B‖ξ‖2 and G1 is
monotonically decreasing. 2

Proof of Theorem 3.2.
1 ⇔ 2. Note that rank(I(ξ)) = rank(R(ξ)). Thus the

claim follows from Theorem 3.1(2).
1⇒ 3. If F is phase retrievable then by Theorem 3.1(3) and

Lemma 3.3(3) it follows I(ξ) ≥ d0R(ξ) ≥ d0a0(I−Jξξ∗J∗).
3 ⇒ 1. Equation (3.31) and Lemma 3.3(1) imply R(ξ) ≥

c0
D0

(I − Jξξ∗J∗) and thus the frame is phase retrievable by
Theorem 3.1(3). 2

Note the constant c0 in Theorem 3.2 can be chosen as c0 =
0.16a0

ρ4 with a0 as in Theorem 3.1.

IV. THE CASE OF OTHER EXPONENTS p

In the case the exponent p is different than 2, the Fisher
information matrix can be easily obtained from (2.25). Indeed
consider the model:

zk = |〈x, fk〉+ µk|p , 1 ≤ k ≤ m (4.32)

where p 6= 0, F = {f1, · · · , fm} is a phase retrievable frame
and (µ1, · · · , µm) are independent and identically distributed
complex random variables with distribution CN (0, ρ2). The
likelihood of z = (zk)1≤k≤m can be easily obtained from
the distribution of y. Indeed the change of distribution is
performed via zk = (yk)p/2. Hence:

pZ(z; ξ) =
2

p
z1− 2

p pY (z
2
p ; ξ).

Thus

∇ξ log pZ(z; ξ) = ∇ξ log pY (y; ξ) ; yk = z
2/p
k

which implies that the Fisher information matrix for measure-
ments model (4.32) is the same as for (2.5), hence also I(ξ).

V. THE CRAMER-RAO LOWER BOUND

Let us use now the Fisher information matrix derived in
a previous section in order to derive performance bounds for
statistical estimators. First we need to constraint the estimation
problem so the signal to become identifiable.

Fix a unit-norm vector z0 ∈ H , ‖z0‖ = 1 and let
ζ0 = j(z0) ∈ HR = R2n. Define the closed set Ωz0 =
{ξ ∈ R2n , 〈ξ, ζ0〉) ≥ 0, 〈ξ, Jζ0〉) = 0} and its relative
interior: Ω̊z0 = {ξ ∈ R2n , 〈ξ, ζ0〉) > 0, 〈ξ, Jζ0〉) = 0}.
Let Ez0 = spanRΩ̊z0 be the real span of Ω̊z0 . Note Ez0 is the
orthogonal complement of Jζ0, Ez0 = {Jζ0}⊥. Let Πz0 de-
note the orthogonal projection onto Ez0 , Πz0 = 1−Jζ0ζ∗0J∗.

Assume now the following scenario. We assume the
vector to-be-estimated x satisfies real(〈x, z0〉) > 0 and
imag(〈x, z0〉) = 0. For ξ = j(x) this means ξ ∈ Ω̊z0 .

Then following the discussion in [6] we obtain the Fisher
information matrix for this scenario is

Iz0(ξ) = Πz0I(ξ)Πz0 (5.33)

Next we restrict to the class of unbiased estimators, that are
functions ω : Rm → Ωz0 so that E[ω(y); ξ] = ξ for all ξ ∈
Ω̊z0 . Again following Theorem 4.3 in [6] we obatin:

Theorem 5.1: Assume the model (2.5) with ξ = j(x) ∈ Ω̊z0 .
Then the covariance of any unbiased estimator is bounded
below by:

Cov[ω(y); ξ] ≥ (Πz0Iz0(ξ)Πz0)
† (5.34)

for every ξ ∈ Ω̊z0 , where † denotes the pseudo-inverse
operation. In particular the Mean-Square Error (MSE) of such
an estimator is bounded below by:

E[‖ω(y)− ξ‖2; ξ] ≥ trace
{

(Πz0Iz0(ξ)Πz0)
†
}

(5.35)

for every ξ ∈ Ω̊z0 .

VI. CONCLUSION

In this paper we analyzed the Fisher information matrix and
the Cramer-Rao lower bound for a non-additive white Gaus-
sian noise model in the phase retrieval problem. Specifically
we obtained a closed-form expression for these objects that
involves parametric integrals of modified Bessel functions. The
rank condition is similar to the case of an AWGN model.
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