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ABSTRACT

In this paper we study the property of phase retrievability by redundant sysems of vectors under perturbations
of the frame set. Specifically we show that if a set F of m vectors in the complex Hilbert space of dimension n
allows for vector reconstruction from magnitudes of its coefficients, then there is a perturbation bound ρ so that
any frame set within ρ from F has the same property. In particular this proves the recent construction in15 is
stable under perturbations. By the same token we reduce the critical cardinality conjectured in11 to proving a
stability result for non phase-retrievable frames.
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1. INTRODUCTION

The phase retrieval problem presents itself in many applications is physics and engineering. Recent papers on
this topic (see1,6–8,11,18,51) present a full list of examples ranging from X-Ray crystallography to audio and
image signal processing, classification with deep networks, quantum information theory, and fiber optics data
transmission.

In this paper we consider the complex case, namely the Hilbert space H = Cn endowed with the usual
Euclidian scalar product 〈x, y〉 =

∑n
k=1 xkyk. On H we consider the equivalence relation ∼ between two vectors

x, y ∈ H defined as follows; the vectors x and y are similar x ∼ y if and only if there is a complex constant z of
unit magnitude, |z| = 1, so that y = zx. Let Ĥ = H/ ∼ be the quotient space. Thus an equivalence class (a ray)
has the form x̂ = {eiϕx , ϕ ∈ [0, 2π)}. A subset F ⊂ H of the Hilbert space H (regardless whether it is finite
dimensional or not) is called frame if there are two positive constants 0 < A ≤ B <∞ (called frame bounds) so
that for any vector x ∈ H,

A ‖x‖2 ≤
∑
f∈F

|〈x, f〉|2 ≤ B ‖x‖2 (1)

In the finite dimensional case considered in this paper, the frame condition simply reduces to the spanning
condition. Specifically F = {f1, . . . , fm} is frame for H if and only if H = span(F). Obviously m ≥ n must
hold. When we can choose A = B the frame is called tight. If furthermore A = B = 1 then F is said a Parseval
frame. Consider the following nonlinear map

α : Ĥ → Rm , (α(x̂))k = |〈x, fk〉| , 1 ≤ k ≤ m (2)

which is well defined on the classes x̂ since |〈x, fk〉| = |〈y, fk〉| when x ∼ y.

The frame F = {f1, . . . , fm} is called phase retrievable is the nonlinear map α is injective. Notice that any
signal x ∈ H is uniquely defined by the magnitudes of its frame coefficients α(x) up to a global phase factor, if
and only if F is phase retrievable. The main result of this paper states that the phase retrievable property is
stable under small perturbations of the frame set. Specifically we show

Theorem 1.1. Assume F = {f1, . . . , fm} is a phase retrievable frame for a complex Hilbert space H. Then
there is a ρ > 0 so that any set F ′ = {f ′1, . . . , f ′m} with ‖fk − f ′k‖ < ρ, 1 ≤ k ≤ m, is also a phase retrievable
frame.
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We prove this theorem in section 3. The proof is based on a recent necessary and sufficent condition obtained
independently in11 and.7 The exact form of this result is slightly different than the equivalent results stated in
the aforementioned papers. Consequently we will provide a direct proof.

An interesting problem on phase retrievable frames is to find a critical cardinal m∗(n) that has the following
properties:

(A) For any m ≥ m∗(n) the set of phase retrievable frames is generic with respect to the Zariski topology;

(B) If F is a phase retrievable frame of m vectors, then m ≥ m∗(n).

Clearly (B) is equivalent to:

(C) If m < m∗(n) there is no frame F of m vectors that is also phase retrievable.

The current state-of-the-art on this problem is summarized by the following statements:

(i) see [8]. If m ≥ 4n−2 then generically (with respect to the Zariski topology) any frame is phase retrievable;

(ii) see [44]. For generic 4 n × n unitary matrices on Cn, any subset of m = 4n − 3 columns forms a phase
retrievable frame;

(iii) see [33]. If F is phase retrievable then

m ≥ 4n− 2− 2β +

 2 if n odd and β = 3mod 4
1 if n odd and β = 2mod 4
0 otherwise

where β = β(n) is the number of 1’s in the binary expansion of n− 1.

Hence, if such a critical cardinal exists, we know 4n−O(log(n)) ≤ m∗(n) ≤ 4n−2. The authors of11 conjectured
that m∗(n) = 4n− 4. In the case m = 4n− 4, Bodmann and Hammen constructed15 a phase retrievable frame.
In section 4 we review their construction and we show it is stable under small perturbations. In section 5 we
consider the critical cardinality conjecture and show that (C) is equivalent to a stability result for sets of frames
that fail to be phase retrievable.

2. NOTATIONS

In this section we recall some notations we introduced in7 that will be used in the following sections. Let
F = {f1, . . . , fm} be a frame in H = Cn. Let j : H → R2n denote the embedding

j(x) =

[
real(x)
imag(x)

]
(3)

which is a unitary isomorphism j between H seen as a real vector space endowed with the real inner product
〈x, y〉R = real(〈x, y〉) and R2n:

〈x, y〉R = real(〈x, y〉) = 〈j(x), j(y)〉. (4)

For two vectors u, v ∈ R2n, Ju, vK denotes the symmetric outer poduct

Ju, vK =
1

2
(uvT + vuT ). (5)

and similarly for two vector x, y ∈ Cn denote by Jx, yK their symmetric outer product defined by

Jx, yK =
1

2
(xy∗ + yx∗) (6)



For each n-vector fk we denote by ϕk the 2n real vector, and by Φk the symmetric nonnegative rank-2, 2n× 2n
matrix defined by

ϕk = j(fk) =

[
real(fk)
imag(fk)

]
, Φk = Jϕk, ϕkK+JJϕk, JϕkK = ϕkϕk

T +Jϕkϕk
TJT , where J =

[
0 −I
I 0

]
(7)

Note the following key relations:

real(〈x, fk〉) = 〈ξ, ϕk〉 (8)

|〈x, fk〉|2 = 〈Φkξ, ξ〉 (9)

real(〈x, fk〉〈fk, y〉) = 〈Φkξ, η〉 (10)

where ξ = j(x) and η = j(y). For every ξ ∈ R2n set

R(ξ) =

m∑
k=1

JΦkξ,ΦkξK (11)

Let S1,0 and S1,1 denote the following spaces of symmetric operators over a Hilbert space K (real or complex)

S1,0(K) = {T ∈ Sym(K) , rank(T ) ≤ 1 , λmax(T ) ≥ 0 = λmin(T )} (12)

S1,1(K) = {T ∈ Sym(K) , rank(T ) ≤ 2 , Sp(T ) = {λmax, 0, λmin} , λmax ≥ 0 ≥ λmin} (13)

where Sym(K) denotes the set of symmetric operators (matrices) on K, Sp(T ) denotes the spectrum (set of
eigenvalues) of T , and λmax, λmin denote the largest, and smallest eigenvalue of the corresponding operator.
Note

S1,0(K) = {T = Jx, xK , x ∈ K}

For the frame F = {f1, . . . , fm} we let A denote the linear operator

A : Sym(H)→ Rm , (A(T ))k = 〈Tfk, fk〉 = trace (T Jfk, fkK) (14)

Note the frame condition (1) reads equivalently:

A ‖Jx, xK‖1 ≤ ‖A(Jx, xK)‖2 ≤ B ‖Jx, xK‖1 (15)

where ‖T‖1 =
∑rank(T )
k=1 |λk(T )| denotes the nuclear norm of operator T , that is the sum of its singular values,

or the sum of magnitudes of its eigenalues when T is symmetric. The upper bound is obviously always true (for
an appropriate B) in the case of finite frames. The lower bound in (1) or (15) is equivalent to the spanning
condition span(F) = H. In turn this spanning condition can be restated in terms of a null space condition for
A. Specifically let ker(A) = {T ∈ Sym(H) , A(T ) = 0} denote the kernel of the linear operator A. Then
span(F) = H (and therefore F is frame) if and only if

ker(A) ∩ S1,0 = {0} (16)

Recall the nonlinear map α introduced in (2). We shall consider also the square map α2 defined by:

α2 : H → Rm , (α2(x))k = |〈x, fk〉|2 (17)

Of course α is injective if and only α2 is injective.

3. STABILITY OF PHASE RETRIEVABLE FRAMES

We start by presenting two lemmas regarding the objects we introduced earlier.

Lemma 3.1. Fix a Hilbert space K.



(i) As sets, S1,1(K) = S1,0(K)− S1,0(K). Explicitely this means:

∀T ∈ S1,1 ∃T1, T2 ∈ S1,0 s.t. T = T1 − T2 ; Conversely : ∀T1, T2 ∈ S1,0 , T1 − T2 ∈ S1,1;

(ii) For any T ∈ S1,1(K) there are u, v ∈ K so that T = Ju, vK;

(iii) For any u, v ∈ K, Ju, vK ∈ S1,1(K);

(iv) S1,1(K) = {T = Ju, vK , u, v ∈ K}.

The proof of this lemma can be found in7 Lemma 3.7.

Lemma 3.2. The following are equivalent:

(i) The nonlinear map α is injective;

(ii) ker(A) ∩ S1,1 = {0}

(iii) There is a constant a0 > 0 so that

m∑
k=1

∣∣|〈x, fk〉|2 − |〈y, fk〉|2∣∣2 ≥ a0 (‖x− y‖2 ‖x+ y‖2 + 4(imag(〈x, y〉))2
)

(18)

for any x, y ∈ H ∈ Cn;

(iv) There is a constant a0 > 0 so that for all ξ ∈ R2n, λ2n−1(R(ξ)) ≥ a0 ‖ξ‖2 (here, λ2n−1(T ) denotes the
2n− 1th largest eigenvalue of T );

(v) There is a constant a1 > 0 so that for all ξ ∈ R2n,

L(ξ) := R(ξ) + JJξ, ξKJT =

m∑
k=1

Φkξξ
TΦk + JξξTJT ≥ a1 ‖ξ‖2 1R2n (19)

where the inequality is in the sense of quadratic forms;

(vi) For every ξ ∈ R2n, dim kerR(ξ) = 1 ;

(vii) For every ξ ∈ R2n, rank(R(ξ)) = 2n− 1 ;

(viii) For every ξ ∈ R2n−1, ker(R(ξ)) = {c Jξ , c ∈ R};

(ix) There is a constant a0 > 0 so that for all ξ ∈ R2n,

R(ξ) ≥ a0 ‖ξ‖2 (1− PJξ) (20)

where PJξ = 1
‖ξ‖2 JJξ, JξK is the orthogonal projection onto Jξ.

Remark 3.3. Before presenting the proof, note the constants a0 at (iii), (iv) and (ix) can be chosen to be equal.
Hence the optimal (i.e. the largest) a0 is given by

a0 = min
‖ξ‖=1

λ2n−1(R(ξ)) (21)

Additionally, the constant a1 at (v) can be chosen as a1 = min(1, a0).

Proof of Lemma 3.2

Claims (i),(ii),(iv),(vi)-(ix) are known in literature - see for instance7 Theorem 2.2 and the bibliographical in-

dications - and Theorem 3.1 of.7 Claim (v) follows from (ix) by adding ‖ξ‖2 PJξ on both sides. Claim (iii) follows



from Theorem 3.1 (2) of,7 where we set u = x− y and v = x+ y and by remarking imag(〈u, v〉) = 2 imag(〈x, y〉)
and real(〈u, fk〉〈fk, v〉) = real(|〈x, fk〉|2 − |〈y, fk〉|2). 2

Recall two frames F = {f1, . . . , fm} and G = {g1, . . . , gm} for the same Hilbert space H are said equivalent
if there is an invertible operator T : H → H so that gk = Tfk, for all 1 ≤ k ≤ m (see3,32).The property of being
phase retrievable is invariant among equivalent frames, as the following lemma shows.

Lemma 3.4. Assume F = {f1, . . . , fm} is a phase retrievable frame for H. Then

(i) For any invertible operator T : H → H and non-zero scalars z1, . . . , zm ∈ K, the frame G = {g1, . . . , gm}
defined by gk = zkTfk, 1 ≤ k ≤ m, is also phase retrievable;

(ii) For any invertible operator T : H → H, the equivalent frame G = {g1, . . . , gm} defined by gk = Tfk,
1 ≤ k ≤ m is also phase retrievable;

(iii) The canonical dual frame F̃ = {f̃1, . . . , f̃m} is also phase retrievable, where f̃k = S−1fk, 1 ≤ k ≤ m;

(iv) The associated Parseval frame F# = {f#1 , . . . , f#m} is also phase retrievable, where f#k = S−1/2fk, 1 ≤
k ≤ m;

(v) Any finite set of vectors G ⊂ H so that F ⊂ G is a phase retrievable frame;

(vi) If G ⊂ H is not a phase retrievable frame then any subset H ⊂ G is also not a phase retrievable frame.

Proof of Lemma 3.4

(i) Note that each zk 6= 0 and hence G is also frame. Let αG : Ĥ → Rm be the nonlinear map associated to G,
(αG(x))k = |〈x, gk〉|2. If x,∈ Ĥ are so that αG(x) = αG(y) then α(T ∗x) = α(T ∗y). Since F is phase retrievable
it follows T ∗x = T ∗y and hence x = y. (Note any operator R : H → H lifts to a unique operator R : Ĥ → Ĥ
that is denoted using the same letter).

(ii)-(iv) follows from (i). Claims (v) and (vi) are obvious. 2

Remark 3.5. While the claim (vi) in previous Lemma is obvious, the following question is not so obvious.
Assume F is a phase retrievable frame in the real case (that is H = Rn). We know m ≥ 2n − 1. Assume
m > 2n − 1. Does there always exist a subset G ⊂ F so that G is a phase retrievable frame? Interestingly the
answer to this question is negative. The following example shows this phenomenon (similar example was proposed
by24).

Example 3.6. Consider H = R3 and m = 6 where the 6 vectors are:

f1 =

 1
0
0

 , f2 =

 0
1
0

 , f3 =

 0
0
1

 , f4 =

 1
1
0

 , f5 =

 1
0
1

 , f6 =

 0
1
1

 (22)

The associated rank-1 operators Fk = fkf
T
k , 1 ≤ k ≤ 6, belong to the linear space of symmetric 3 × 3 matrices

Sym(R3). Note the Sym(R3) is a real vectors space of dimension 6. The Gram matrix G(2) associated to

{F1, . . . , F6} is a 6 × 6 symmetric matrix of entries G
(2)
k,l = 〈Fk, Fl〉 = |〈fk, fl〉|2, which are the square of the

entries of Gram matrix associated to F . Explicitely G(2) is given by

G(2) =


1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 0 4 1 1
1 0 1 1 4 1
0 1 1 1 1 4

 (23)



Its determinant is det(G(2)) = 8. Hence {F1, . . . , F6} is a basis for Sym(R3) and thus ker(A) = {0} which
implies F is a phase retrievable frame. On the other hand consider any subset G of 5 vectors of F . It is easy to
check G is a frame for R3. Howeverfor each G there is a subset of 3 elements that is not linearly independent,
hence cannot span R3. This fact together with Corollary 2.6 from8 proves that G is not phase retrievable. Thus
we constructed a frame F of 6 vectors (which is more than the critical cardinal 2n − 1 = 5) so that any subset
is not phase retrievable. 5mm

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1

Assume F is a phase retrievable frame. Then equation (19) is satisfied for some a1 > 0. Let B be the upper
frame bound for F . Then set:

ρ = min(
1√
m
,

a1
4(3B + 2)3/2

) (24)

We will find a ρ > 0 so that (19) is satisfied for any set F ′ = {f ′1, . . . , f ′m} with ‖fk − f ′k‖ < ρ. Let
0 < A ≤ B <∞ be the frame bounds of F and let L′(ξ) denote the right hand side in (19) associated to F ′. We
compute

|〈L(ξ)η, η〉 − 〈L′(ξ)η, η〉| ≤
m∑
k=1

| |〈Φkξ, η〉|2 − |〈Φ′kξ, η〉|2 | ≤
m∑
k=1

(|〈Φkξ, η〉|+ |〈Φ′kξ, η〉|) |〈(Φk − Φ′k)ξ, η〉|

≤

(
m∑
k=1

|〈Φkξ, η〉|+
m∑
k=1

|〈Φ′kξ, η〉|

)
max

1≤k≤m
|〈(Φk − Φ′k)ξ, η〉|

Fix ξ ∈ R2n with ‖ξ‖ = 1. Then

max
‖η‖=1

m∑
k=1

|〈Φkξ, η〉| =
m∑
k=1

〈Φkξ,
ξ

‖ξ‖
〉 ≤ B ‖ξ‖

Thus for any ξ, η ∈ R2n,

m∑
k=1

|〈Φkξ, η〉| ≤ B ‖ξ‖ ‖η‖ ,
m∑
k=1

|〈Φ′kξ, η〉| ≤ B′ ‖ξ‖ ‖η‖

where B′ is the upper frame bound of F ′. On the other hand we bound

|〈(Φk − Φ′k)ξ, η〉| ≤ ‖Φk − Φ′k‖ ‖ξ‖ ‖η‖

According to Lemma 3.12 (4) from,7 ‖Φk − Φ′k‖ = ‖Fk − F ′k‖, where Fk = fkf
∗
k and F ′k = f ′kf

′∗
k . Note Fk−F ′k ∈

S1,1(Cn) and Fk − F ′k = Jfk − f ′k, fk + f ′kK. Now using Lemma 3.7 (4) from,7 we obtain

‖Fk − F ′k‖ ≤ ‖Fk − F ′k‖1 =

√
‖fk − f ′k‖

2 ‖fk + f ′k‖
2

+ (imag(〈fk − f ′k, fk + f ′k〉))2 ≤
√

2 ‖fk − f ′k‖ ‖fk + f ′k‖

where ‖T‖1 is the nuclear norm (the sum of its singular values) of T . Next notice ‖fk + f ′k‖ ≤ ‖fk‖ + ‖f ′k‖ ≤√
B +

√
B′ ≤

√
2(B +B′). Putting all the estimates together we obtain:

|〈L(ξ)η, η〉 − 〈L′(ξ)η, η〉| ≤ 2(B +B′)3/2
(

max
1≤k≤m

‖fk − f ′k‖
)
‖ξ‖2 ‖η‖2

Thus
L′(ξ) ≥ (a1 − 2(B +B′)3/2ρ) ‖ξ‖2 1R2n



Finally we obtain an estimate of B′ in terms of B, ρ and m. This estimate can be further refined, but we do not
need such a refinment for this proof. Let δk = f ′k − fk. Then

m∑
k=1

|〈x, f ′k〉|2 =

m∑
k=1

|〈x, fk〉+ 〈x, δk〉|2 ≤ 2

(
m∑
k=1

|〈x, fk〉|2 +

m∑
k=1

|〈x, δk〉|2
)

= 2(B +mmax
k
‖δk‖2) ‖x‖2 (25)

Due to (24) we obtain B′ = sup‖x‖=1

∑m
k=1 |〈x, f ′k〉|2 ≤ 2(B + 1). This bound implies that

L′(ξ) ≥ a1
2
‖ξ‖2 1R2n

and hence F ′ is phase retrievable. 2

4. CRITICAL CASE M = 4N − 4

This section comments on the recent construction by Bodmann and Hammen15 of a 4n − 4 phase retrievable
frame in Cn. Their construction is as follows. Fix a ∈ R \ πQ, an irrational multiple of π. The frame set F is
given by a union of two sets, F = F1 ∪ Fa2 , where F1 constains the following 2n− 3 vectors:

F1 = {f1k =
[

1 e2πi(k+1)/(2n−1) e2πi(k+1)2/(2n−1) · · · e2πi(k+1)(n−1)/(2n−1) ]T , 1 ≤ k ≤ 2n− 3} (26)

and Fa2 contains the following 2n− 1 vectors:

Fa2 = {f2k =
[

1 zk z2k · · · zn−1k

]T
, 1 ≤ k ≤ 2n− 1} (27)

where

zk =
sin
(

π
2n−1

)
sin(a)

ei
k−1
2n−1 − ei(

π
2n−1−

a
2 )
sin
(

π
2n−1 −

a
2

)
sin(a)

(28)

The proof that F is a phase retrievable frame is based on a result by P. Jamming from.37 Our Theorem 1.1
proves that, in fact, F remains phase retrievable for a small perturbation. Since f2k depends continuously on
a, it follows that the set R \ πQ can be replaced by a much larger set of real numbers that includes most of
rational multiples of π. Going through the proof of Theorem 2.3 in15 , and in particular of Lemma 2.2, the only
requirement on a is that, any set of 2(n− 1) complex numbers cannot be simultaneoulsy symmetric with respect
to the real line and to a line of angle a passing through the origin. This phenomenon happens for any n when a
is an irrational multiple of π. However, for a fixed n, only finitely many values of a may allow such a symmetry.
In fact when such a symmetric set of 2(n − 1) complex numbers exists, a = π pq for some q ≤ 2(n − 1). Thus
the frame set above F = F1 ∪ Fa2 remains phase retrievable for all values of a except a finite set of the form
{π pq , 0 ≤ p ≤ 2q ≤ 4(n− 1)}.

5. NON PHASE-RETRIEVABLE FRAMES

Consider now the case when m is ”small”. The conjecture in11 reads that for m < 4n − 4 there is no phase
retrievable frame. In this section we comment on a partial result supporting this conjecture. The main result of
this section is the following

Proposition 5.1. Fix the n-dimensional Hilbert space H. Denote by m∗(n) the critical cardinal m∗(n) = 4n−4.
Assume the following statement holds true for some m < m∗(n):

(O) For any frame set F = {f1, . . . , fm} ⊂ H that is not a phase retrievable frame for H there exists a ρ > 0
so that any other set F ′ = {f ′1, . . . , f ′m} with ‖fk − f ′k‖ < ρ, 1 ≤ k ≤ m, is also not phase retrievable.

Then any subset G = {g1, . . . , gm} ⊂ H of m vectors in H is not a phase retrievable frame.

Remark 5.2. Before presenting its proof, we make the following remark. While not proving the fulll conjecture,
this result reduces the proof of the 4n − 4 conjecture to a stability result for non phase retrievable frames.



Additionally the result holds true even if the critical cardinal is not 4n − 4. However the author recognizes
this is just a partial result that does not prove the full conjecture.

Remark 5.3. Note the set F is supposed to be frame. If (O) holds for any set of m vectors of H, one can use
the trivial set {0, 0, . . . , 0} of m vectors. Then if (O) holds for this special set, then any set of m vectors whose
norms are less than some ρ > 0 is non phase retrievable frame. By scaling we obtin immediately that any m-set
of vectors is not phase retrievable frame.

Proof of Proposition 5.1

First note that if m < 2n any set F of m elements cannot be a phase retrievable frame (conform28). Hence
we can assume m ≥ 2n. Let Hm = H ×H × · · · ×H denote the m-product space endowed with the topology
induced by the norm

‖x‖Hm = max
1≤k≤m

∥∥xk∥∥ , x = (x1, . . . , xm) ∈ Hm

Note that Hm is homeomorphic with Cnm endowed with the usual Euclidian norm. Let Fmn denote the set of
frames for H with m elements. Fmn is an open set in Hm since each frame set is stable under small perturbations:
for instance this can be seen using an estimate similar to equation (25) that bounds below

∑m
k=1 |〈x, f ′k〉|2:

m∑
k=1

|〈x, f ′k〉|2 ≥
m∑
k=1

|〈x, fk〉|2 −

2
√
m

(
m∑
k=1

|〈x, fk〉|2
)1/2(

max
k
‖fk − f ′k‖

)
‖x‖+m

(
max
k
‖fk − f ′k‖

)2

‖x‖2


≥ (A− 2
√
mBρ−mρ2) ‖x‖2

Thus for some sufiiciently small ρ, A− 2
√
mBρ−mρ2 > 0 and {f ′1, . . . , f ′m} is also frame when ‖fk − f ′k‖ < ρ,

1 ≤ k ≤ m.

Assume the hypothesis (O) holds true. Let Nm
n denote the set of non phase-retrievable frames of m vectors

in H. Thus Nm
n ⊂ Fmn ⊂ Hm is an open set in H by hypothesis (O).

On the other hand the complement Γmn := Fmn \Nm
n represents the set of phase retrievable frames. Theorem

1.1 shows Γmn is open in Hm.

Now let us show the set of frames Fmn is connected in Hm. Firstly two equivalent frames are connected by
path as shown e.g. in.3 We will show that any two frames of m elements for the n dimensional Hilbert space H
can be connected by a continuous path (in fact two segments of line), when m ≥ 2n. Let F1 = {f11 , . . . , f1m} and
F2 = {f21 , . . . , f2m} be two m-frames. Let I = {k1, . . . , kn} be the n-set so that F1[I] = {f1k1 , . . . , f

1
kn
} is a linearly

independent subset of F1. Let J = {j1, . . . , jm−n} be a m−n-set so that F2[J ] = {f2j , j ∈ J} is a frame for H.
Let γ : Ic → J and δ : Jc → I be two bijective maps where Ic = {1 ≤ k ≤ m} \ I and Jc = {1 ≤ j ≤ m} \ J are
the complement sets of I and J respectively. We build a piecewise linear path β : [−1, 1]→ Hm connecting F1

to F2 as follows: For −1 ≤ t ≤ 0,

(β(t))k =

{
f1k if k ∈ I

−tf1k + (t+ 1)f2γ(k) if k ∈ Ic

For 0 ≤ t ≤ 1,

(β(t))k =

{
f2j if j ∈ J

tf1δ(j) + (1− t)f2j if j ∈ Jc

One can easilty check that β(t) is a frame for each −1 ≤ t ≤ 1, and β(−1) = F1, β(1) = F2. This proves the set
of frames Fmn is path connected, hence connected.

We obtained that the connected set Fmn can be partitioned into two opens sets Γmn and Nm
n . It follows that

one of the two sets must be the empty set. However we can always construct a non phase retrievable frame, for
instance F = {e1, . . . , en, en, . . . , en} where {e1, . . . , en} is a basis of H and the vector en is repeated a total of
m−n+ 1 times. This shows Γmn must be empty. Thus any set G ⊂ H of m vectors cannot be a phase retrievable
frame. 2
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