Density and Redundancy of the Noncoherent Weyl-Heisenberg Superframes

Radu Balan
Institute for Mathematics and Its Applications
University of Minnesota
206 Church Street SE Minneapolis, MN 55455

May 17, 1999

Abstract

In this paper I shall present the construction of Weyl-Heisenberg superframes and density results related to the noncoherent case. A superframe is a collection of r-frames $\mathcal{F}^{1}=\left\{f_{i}^{1}, i \in \mathbf{I}\right\} \subset H_{1}, \ldots, \mathcal{F}^{r}=$ $\left\{f_{i}^{r}, i \in \mathbf{I}\right\} \subset H_{r}$ all having the same countable index set \mathbf{I} such that $\mathcal{F}=\left\{f_{i}^{1} \oplus \cdots \oplus f_{i}^{r}, i \in \mathbf{I}\right\}$ is a frame for the Hilbert space $H=H_{1} \oplus \cdots \oplus H_{r}$. For the Weyl-Heisenberg superframes we set $H_{1}=\cdots=H_{r}=L^{2}(\mathbf{R})$, $f_{i}^{l}=g_{z, a, b}^{l}(x):=z_{l} e^{2 \pi i a_{l} x} g^{l}\left(x-b_{l}\right)$ and $(z, a, b) \in \mathbf{I}:=\Lambda \subset T^{r} \times \mathbf{R}^{2 r}$. We study the density of superframes in the case Λ is a subset of the $r+2$ subgroup $T^{r} \times E_{\alpha, \beta}$. Our approach is inspired by a recent work of O.Christensen, B.Deng and C.Heil. In the special case of coherent WH superframes, we prove that its redundancy is given by $1 / \alpha \cdot \beta$ (where the lattice is $\Lambda=\{(m \alpha, n \beta) ; m, n \in \mathbf{Z}\})$.

1 Superframes

We start by recalling the standard frame theory. Let H be a (separable, complex) Hilbert space and I a countable index set.

DEFINITION $1 A$ set of vectors $\mathcal{F}=\left\{f_{i}, i \in \mathbf{I}\right\} \subset H$ is called a frame for H if there are two positive constants $0<A \leq B<\infty$ such that:

$$
A\|x\|^{2} \leq \sum_{i \in \mathbf{I}}\left|<x, f_{i}>\right|^{2} \leq B\|x\|^{2}
$$

for every $x \in H$. The constants A, B are called frame bounds and if we can choose $A=B$, the frame is called tight.

To a frame \mathcal{F} we associate the following objects:
the analysis operator, $T: H \rightarrow l^{2}(\mathbf{I}), T(x)=\left\{<x, f_{i}>\right\}_{i \in \mathbf{I}}$
the synthesis operator, $T^{*}: l^{2}(\mathbf{I}) \rightarrow H, T^{*}(c)=\sum_{i \in \mathbf{I}} c_{i} f_{i}$
the coefficient range, $E=\operatorname{Ran} T$ (it is a closed subspace of $l^{2}(\mathbf{I})$);
the frame operator, $S: H \rightarrow H, S=T^{*} T, S(x)=\sum_{i \in \mathbf{I}}<x, f_{i}>f_{i}$ (it is selfadjoint and $A \cdot \mathbf{1} \leq S \leq B \cdot \mathbf{1}$);
the standard dual frame, $\tilde{\mathcal{F}}=\left\{\tilde{f}_{i} ; i \in \mathbf{I}\right\}, \tilde{f}_{i}=S^{-1} f_{i}$; it is a frame with bounds $\frac{1}{B}, \frac{1}{A}$ having the same coefficient range as \mathcal{F} such that the following reconstruction formula holds true:

$$
x=\sum_{i \in \mathbf{I}}<x, f_{i}>\tilde{f}_{i}=\sum_{i \in \mathbf{I}}<x, \tilde{f}_{i}>f_{i}
$$

DEFINITION $2 A$ frame $\mathcal{F}^{d}=\left\{f_{i}^{d}, i \in \mathbf{I}\right\}$ in H is called an alternate dual of \mathcal{F} if the reconstruction formula holds true for $\left(\mathcal{F}, \mathcal{F}^{d}\right)$.
the associated tight frame, $\mathcal{F} \#=\left\{f_{i}^{\#}, i \in \mathbf{I}\right\}, f_{i}^{\#}=S^{-1 / 2} f_{i}$; it is a tight frame with bound 1 , having the same coefficient range as \mathcal{F}.

Suppose now we have a collection of Hilbert frames $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$, in Hilbert spaces $H^{l}, \mathcal{F}^{l} \subset H^{l}$, and all having the same index set \mathbf{I}.

To this collection $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$ we associate the following set:

$$
\mathcal{F}=\left\{f_{i}^{1} \oplus \cdots \oplus f_{i}^{r}, i \in \mathbf{I}\right\}=: \mathcal{F}^{1} \oplus \cdots \oplus \mathcal{F}^{r}
$$

'sitting' in $H=H^{1} \oplus \cdots \oplus H^{r}$. We also consider the collection of closed subspaces $\left(E^{1}, \ldots, E^{r}\right)$ in $l^{2}(\mathbf{R})$ of the coefficient ranges.

DEFINITION 3 The collection $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$ is a superframe if \mathcal{F} is a frame for H.

An equivalent condition is given in the following theorem. I thank Deguang Han for pointing out to me an error in a previous statement of this result (in fact a similar object has been considered independently in [HaLa97] as well):

THEOREM 4 The collection $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$ is a superframe iff $E^{i} \cap\left(\oplus_{j \neq i} E^{j}\right)=$ $\{0\}, \forall i$, and $E^{1} \oplus \cdots \oplus E^{r}$ is closed in $l^{2}(\mathbf{I})$.

DEFINITION 5 Two frames \mathcal{F}^{1} and \mathcal{F}^{2} are called orthogonal if their coefficient ranges are orthogonal subspaces, i.e. $E^{1} \perp E^{2}$ in $l^{2}(\mathbf{I})$ (we already assumed \mathcal{F}^{1} and \mathcal{F}^{2} have the same index set \mathbf{I}).

Suppose the superframe $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$ is given. The $\mathcal{F}=\mathcal{F}^{1} \oplus \cdots \oplus \mathcal{F}^{r}$ is a frame in H. Consider its standard dual $\tilde{\mathcal{F}}$ in H. Then $\tilde{\mathcal{F}}=\tilde{\mathcal{F}}^{1} \oplus \cdots \oplus \tilde{\mathcal{F}}^{r}$ for some frames $\tilde{\mathcal{F}}^{1}, \ldots, \tilde{\mathcal{F}}^{r}$ and $\left(\tilde{\mathcal{F}}^{1}, \ldots, \tilde{\mathcal{F}}^{r}\right)$ is a superframe as well.

DEFINITION 6 The superframe $\left(\tilde{\mathcal{F}}^{1}, \ldots, \tilde{\mathcal{F}}^{r}\right)$ is called the standard dual superframe of $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$.

THEOREM $7 \tilde{\mathcal{F}}^{l}$ is an alternate dual of \mathcal{F}^{l} (not necessarily the standard dual) and $\tilde{\mathcal{F}}^{l}$ is orthogonal to \mathcal{F}^{j}, for $l \neq j$.

Frames are overcomplete sets. The dual notion (with respect to the overcompletness) is the Riesz basis for its span:

DEFINITION 8 set of vectors $\mathcal{F}=\left\{f_{i}, i \in \mathbf{I}\right\} \subset H$ is called a Riesz basis for its span (or a s-Riesz basis) if there are two positive constants $0<A \leq B<$ ∞ such that:

$$
A \sum_{i \in \mathbf{I}}\left|c_{i}\right|^{2} \leq\left\|\sum_{i \in \mathbf{I}} c_{i} f_{i}\right\|^{2} \leq B \sum_{i \in \mathbf{I}}\left|c_{i}\right|^{2}
$$

for every finite sequence $\left(c_{i}\right)_{i} \in l^{2}(\mathbf{I})$. The constants A, B are called s-Riesz basis bounds

Notice if we can choose $A=B$, the s-Riesz basis is an equinorm, orthogonal set.
Suppose $\mathcal{F}=\left\{f_{i}, i \in \mathbf{I}\right\} \subset H$ is a s-Riesz basis in H. We call $\mathcal{F}^{\prime}=\left\{f^{\prime}{ }_{i}, i \in\right.$ $\mathbf{I}\} \subset H$ a biorthogonal s-Riesz basis to \mathcal{F} if $\left.<f_{i}, f^{\prime}{ }_{j}\right\rangle=\delta_{i j}$. If in addition the span of \mathcal{F}^{\prime} coincides with the span of \mathcal{F}, then \mathcal{F}^{\prime} is called the standard biortogonal s-Riesz basis of \mathcal{F}.

The biorthogonality (as well the frame duality) is a symmetric relation. Suppose $\left(\mathcal{F}, \mathcal{F}^{\prime}\right)$ are biorthogonal to one another. Then the following reconstruction formula of the coefficients holds true:

$$
<\sum_{i \in \mathbf{I}} c_{i} f_{i}, f^{\prime}{ }_{j}>=<\sum_{i \in \mathbf{I}} c_{i} f^{\prime}{ }_{i}, f_{j}>=c_{j}
$$

Similarly to superframes, a superset $\left(\mathcal{F}^{1}, \ldots, \mathcal{F}^{r}\right)$ is called a super s-Riesz basis if $\mathcal{F}=\mathcal{F}^{1} \oplus \cdots \oplus \mathcal{F}^{r}$ is a s-Riesz basis for $H=H_{1} \oplus \cdots \oplus H_{r}$.

2 Weyl-Heisenberg Superframes

Consider $G^{r}=T^{r} \times \mathbf{R}^{2 r}$ the direct product of r 1-dimensional Weyl-Heisenberg groups $G^{1}=T^{1} \times \mathbf{R}^{2}$ with T^{1} the 1-dimensional torus identified with the unit complex circle. Let us denote by $L^{2, r}=L^{2}(\mathbf{R}) \oplus \cdots \oplus L^{2}(\mathbf{R})$ the direct sum of r copies of $L^{2}(\mathbf{R})$ endowed with the scalar product $<f_{1} \oplus \cdots \oplus f_{r}, g_{1} \oplus$ $\cdots \oplus f_{r}>=\sum_{i=1}^{r}<f_{i}, g_{i}>$. Then consider the r-direct sum of r Schrödinger representations of 1-dimensional WH groups G^{1} :

$$
\mathcal{U}(z, p, q) \mathbf{f}(x)=\oplus_{l=1}^{r} u\left(z_{l}, p_{l}, q_{l}\right) f_{l}(x) \quad, \mathbf{f} \in L^{2, r}
$$

where $u\left(z_{l}, p_{l}, q_{l}\right) f_{l}(x)=z_{l} e^{-i \pi p_{l} q_{l}} e^{2 \pi i p_{l} x} f_{l}\left(x-q_{l}\right)$.
A Weyl-Heisenberg set $\mathcal{W H}_{g, \Lambda}$ is obtained by discretizing the (continuous) orbit of some generator \mathbf{g} with respect to a discrete set of parameters $\Lambda \subset G^{r}$:

$$
\mathcal{W} \mathcal{H}_{g, \Lambda}=\left\{\mathcal{U}(z, p, q) \mathbf{g} ;(z, p, q) \in \Lambda \subset G^{r}\right\}
$$

We index Λ by a countable index set $\mathbf{I}, \Lambda=\left\{\left(z^{i}, p^{i}, q^{i}\right), i \in \mathbf{I}\right\}$. For $r=1$ we obtain the (standard) non-coherent Weyl-Heisenberg sets:

$$
\mathcal{W H}_{g ; \Lambda}=\left\{u(z, p, q) g ;(z, p, q) \in \Lambda \subset G^{1}\right\}
$$

The coherent set is obtained by choosing $\Lambda=\{(1, m \alpha, n \beta) ; m, n \in \mathbf{Z}\}$ for some particular $\alpha, \beta>0$.

A collection of WH sets all indexed by the same index set (called a Weyl-Heisenberg superset) $\left(\mathcal{W H}_{g^{1}, \Lambda_{1}}, \ldots, \mathcal{W H}_{g^{r}, \Lambda_{r}}\right)$ is equivalent to the WH set $\mathcal{W H}_{g, \Lambda}$ in $L^{2, r}$ given by $\mathbf{g}=g^{1} \oplus \cdots \oplus g^{r} \in L^{2, r}$ and

$$
\Lambda=\left\{\left(z_{1}^{i}, \ldots, z_{r}^{i}, p_{1}^{i}, \ldots, p_{r}^{i}, q_{1}^{i}, \ldots, q_{r}^{i}\right), i \in \mathbf{I},\left(z_{l}^{i}, p_{l}^{i}, q_{l}^{i}\right) \in \Lambda_{l}\right\} \subset G^{r}
$$

Thus $\left(\mathcal{W H}_{g^{1} ; \Lambda_{1}}, \ldots, \mathcal{W H}_{g^{r} ; \Lambda_{r}}\right)$ is a WH superframe (respectively a WH super s-Riesz basis) iff $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$ (respectively a WH s-Riesz basis in $\left.L^{2, r}\right)$. From now on we shall concentrate on WH sets of the form $\mathcal{W} \mathcal{H}_{g, \Lambda}$ for some $\mathbf{g} \in L^{2, r}$ and $\Lambda \subset G^{r}$.

For $\alpha, \beta \in\left(\mathbf{R}_{+}^{*}\right)^{r}$ we denote by $E_{\alpha, \beta}=\{(t \alpha, s \beta), t, s \in \mathbf{R}\} \subset \mathbf{R}^{2 r}$ a 2-dimensional linear subspace of $\mathbf{R}^{2 r}$. Let us denote by $K_{\alpha, \beta}^{r}=T^{r} \times E_{\alpha, \beta}$ the $r+2$-dimensional subgroup of G^{r} containing $E_{\alpha, \beta}$. Recall that a unitary representation $\mathcal{U}: G \rightarrow U(H)$ of a locally compact group G on a Hilbert space H is called square integrable if i) there is a cyclic vector (i.e. the linear span of its orbit is dense in H) and ii) there is a $f \in H$ such that $\int_{G} d \mu(\lambda) \mid<$ $f, \mathcal{U}(\lambda) f>\left.\right|^{2}<\infty$, for the left invariant measure $d \mu$ on G. Note that although $\mathcal{U}: G^{r} \rightarrow U\left(L^{2, r}\right)$ is not square integrable, $\mathcal{U}: K_{\alpha, \beta}^{r} \rightarrow U\left(L^{2, r}\right)$ is square integrable. This suggests to restrict our attention on $\Lambda \subset K_{\alpha, \beta}^{r}$, which is what we do.

Notation. For a $\lambda \in \Lambda$ we write $\lambda \in E_{\alpha, \beta}$ if $\lambda \in K_{\alpha, \beta}^{r}$. We call $E_{\alpha, \beta}$ a leaf. We say a set Λ or a WH set $\mathcal{W H}_{g, \Lambda}$ is supported on a leaf $E_{\alpha, \beta}$ if $\Lambda \subset K_{\alpha, \beta}^{r}$.

Our analysis will be done only on leaves of the phase space.

3 Densities and Main Results

Suppose $\alpha, \beta \in\left(\mathbf{R}_{+}^{*}\right)^{r}$ and $\Lambda \subset K_{\alpha, \beta}^{r}$ are given. For $h>0$ and $(p, q) \in \mathbf{R}^{2 r}$ we denote

$$
Q_{h}(p, q) \in\left\{(z, a, b) \in G^{r}| | a_{i}-p_{i}\left|<\frac{h}{2},\left|b_{i}-q_{i}\right|<\frac{h}{2}, i=1, \ldots, r\right\}\right.
$$

the cube of size length h. For a discrete set M we denote by $\# M$ the number of points it contains. Let:

$$
\nu^{+}(h)=\sup _{(p, q) \in E_{\alpha, \beta}} \#\left(Q_{h}(p, q) \cap \Lambda\right) \quad, \quad \nu^{-}(h)=\inf _{(p, q) \in E_{\alpha, \beta}} \#\left(Q_{h}(p, q) \cap \Lambda\right)
$$

Following [ChDeHe97], the upper and lower densities of Λ are defined by:

$$
D^{+}(\Lambda)=\limsup _{h \rightarrow \infty} \frac{\nu^{+}(h)}{\mu\left(Q_{h}(0,0) \cap E_{\alpha, \beta}\right)}
$$

$$
D^{-}(\Lambda)=\liminf _{h \rightarrow \infty} \frac{\nu^{-}(h)}{\mu\left(Q_{h}(0,0) \cap E_{\alpha, \beta}\right)}
$$

where $\mu($ Set $)=\operatorname{Aria}($ Set $)=\frac{\mu_{H a a r}\left(T^{r} \times \operatorname{Set}\right)}{(2 \pi)^{r}}$, for Set $\subset E_{\alpha, \beta}$, is the 2 dimensional Lebesgue measure of Set, or the normalized Haar measure of $T^{r} \times S e t$.

If $D^{+}(\Lambda)=D^{-}(\Lambda)$ then Λ is said to have uniform density $D(\Lambda)=D^{+}(\Lambda)=$ $D^{-}(\Lambda)$.

If Λ is the regular lattice $\{(m \alpha, n \beta) ; m, n \in \mathbf{Z}\}$ then $D(\Lambda)=\frac{1}{|\alpha| \cdot|\beta|}$, with $|\alpha|=\sqrt{\sum_{l=1}^{r} \alpha_{l}^{2}},|\beta|=\sqrt{\sum_{l=1}^{r} \beta_{l}^{2}}$.
Λ is said to be δ-uniformly separated if for any $(z, p, q) \in \Lambda, \#\left(Q_{2 \delta}(p, q) \cap\right.$ $\Lambda) \leq 1$.
Λ is said to be relatively uniformly separated if $\Lambda=\cup_{k=1}^{s_{0}} \Lambda_{k}$ for some $s_{0}>0$ and each Λ_{k} is δ_{k}-uniformly separated for some δ_{k}.

The following results extend similar results obtained in [ChDeHe97].
LEMMA 9Λ is relatively uniformly separated iff $D^{+}(\Lambda)<\infty$, iff $\nu^{+}(h)<\infty$, for some $h>0$.

The proof is presented in the next section.
For the next result, recall that $\mathcal{W H}_{g, \Lambda}$ is called a $W H$ Bessel set if there is a $B>0$ such that $\sum_{\lambda \in \Lambda}|<\mathbf{f}, U(\lambda) \mathbf{g}>|^{2} \leq B\|\mathbf{f}\|^{2}$ for every $\mathbf{f} \in L^{2, r}$.

THEOREM 10 If $\mathcal{W H}_{g, \Lambda}$ is a WH Bessel set then $D^{+}(\Lambda)<\infty$, and therefore Λ is relatively uniformly separated.

The proof is defered until the next section.
THEOREM 11 (Comparison Theorem) Suppose $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$ and $\mathcal{W H}_{\varphi, \Delta}$ is a Riesz basis for its span in $L^{2, r}$ with $\Lambda, \Delta \subset K_{\alpha, \beta}^{r}$. Then $D^{+}(\Lambda) \geq D^{+}(\Delta)$ and $D^{-}(\Lambda) \geq D^{-}(\Delta)$.

The proof in given in the next section.
COROLLARY 12 Suppose $\mathcal{W H}_{g, \Lambda}$ is a Riesz basis for $L^{2, r}$ supported in the leaf $E_{\alpha, \beta}$. Then Λ has uniform density $D^{+}(\Lambda)=D^{-}(\Lambda)=D(\Lambda)=\frac{\alpha \beta}{|\alpha| \cdot|\beta|}=$: $D_{0}(\alpha, \beta)$, where $|\alpha|=\sqrt{\sum_{i=1}^{r} \alpha_{i}^{2}},|\beta|=\sqrt{\sum_{i=1}^{r} \beta_{i}^{2}}$.

Proof of Corollary

The proof is based on the Comparison Theorem. Clearly any WH Riesz basis for $L^{2, r}$ supported in the leaf $E_{\alpha, \beta}$ would have the same uniform density $D_{0}\left(E_{\alpha, \beta}\right)$. Therefore we have only to construct an example of such WH Riesz basis and to compute its density. This is done in the following:

EXAMPLE 13 Consider $\varphi=\varphi^{1} \oplus \cdots \oplus \varphi^{r}$ with

$$
\varphi^{l}=\sqrt{\frac{\alpha_{l}}{\alpha \cdot \beta}} \mathbf{1}_{\left[a_{l}, b_{l}\right]} \quad \text { where } \quad a_{l}=\frac{1}{\alpha_{l}} \sum_{k=1}^{l-1} \alpha_{k} \beta_{k} \quad \beta_{l}=\frac{1}{\alpha_{l}} \sum_{k=1}^{l} \alpha_{k} \beta_{k}
$$

and

$$
\Delta=\left\{\left(e^{-i \frac{m n}{\alpha \cdot \beta} \alpha \otimes \beta}, m \frac{\alpha}{\alpha \cdot \beta}, n \beta\right),(m, n) \in \mathbf{Z}^{2}\right\}
$$

The claim is that the $W H$ set $\mathcal{W H}_{\varphi, \Delta}$ is an orthonormal basis for $L^{2, r}$.
Notice $a_{1}=0, a_{2}=\frac{\alpha_{1} \beta_{1}}{\alpha_{2}}, a_{3}=\frac{\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}}{\alpha_{3}}, \ldots, \alpha_{r}=\frac{\alpha \cdot \beta-\alpha_{r} \beta_{r}}{\alpha_{r}}$,
$b_{1}=\beta_{1}, b_{2}=\frac{\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}}{\alpha_{2}}, \ldots, a_{r}=\frac{\alpha \cdot \beta}{\alpha_{r}}$. Thus:

$$
\begin{gathered}
\varphi_{m, n}(x)=\sqrt{\frac{\alpha_{1}}{\alpha \cdot \beta}} e^{2 \pi i m \frac{\alpha_{1}}{\alpha \cdot \beta}\left(x-n \beta_{1}\right)} \mathbf{1}_{\left[a_{1}, b_{1}\right]}\left(x-n \beta_{1}\right) \oplus \cdots \oplus \sqrt{\frac{\alpha_{r}}{\alpha \cdot \beta}} e^{2 \pi i m \frac{\alpha_{r}}{\alpha \cdot \beta}\left(x-n \beta_{r}\right)} \mathbf{1}_{\left[a_{r}, b_{r}\right]}\left(x-n \beta_{r}\right) \\
<\varphi_{m, n}, \varphi_{m^{\prime}, n^{\prime}}>=\delta_{n, n^{\prime}} \frac{1}{\alpha \cdot \beta} \sum_{l=1}^{r} \alpha_{l} \int_{a_{l}}^{b_{l}} e^{2 \pi i \frac{\alpha_{l}}{\alpha \cdot \beta}\left(m-m^{\prime}\right) x} d x \\
=\delta_{n, n^{\prime}} \frac{1}{\alpha \cdot \beta} \int_{0}^{\alpha \cdot \beta} e^{2 \pi i \frac{m-m^{\prime}}{\alpha \cdot \beta} x} d x=\delta_{m, m^{\prime}} \delta_{n, n^{\prime}}
\end{gathered}
$$

This shows the system is orthonormal. It remains only to prove that $\mathcal{W H}_{\varphi, \Delta}$ is complete in $L^{2, r}$.

Consider $\mathbf{f} \in L^{2, r}$ such that $<\mathbf{f}, \varphi_{m, n}>=0$ for every $m, n \in \mathbf{Z}$, i.e. $\sum_{l=1}^{r}<$ $f^{l}, \varphi_{m n}^{l}>=0$. More specific this means:

$$
0=\sum_{l=1}^{r}<f^{l}, \varphi_{m n}^{l}>=\sum_{l=1}^{r} \sqrt{\frac{\alpha_{l}}{\alpha \cdot \beta}} \int_{a_{l}}^{b_{l}} e^{2 \pi i m \frac{\alpha_{l}}{\alpha \cdot \beta} x} f^{l}\left(x+n \beta_{l}\right) d x \quad, \quad \forall m, n
$$

Set $n=0$. We shall prove that $\left.f^{l}\right|_{\left[a_{l}, b_{l}\right]} \equiv 0$, for all l. Similarly one can obtain $\left.f^{l}\right|_{\left[a_{l}+n \beta_{l}, b_{l}+n \beta_{l}\right]} \equiv 0$ for every n and since $b_{l}-a_{l}=\beta_{l}$ we would obtain $f^{l} \equiv 0$ which means $\mathbf{f} \equiv 0$, or the WH set is complete and thus an orthonormal basis.

For $n=0$ we change the variable $y=\frac{\alpha_{l}}{\alpha \cdot \beta} x$ and let $H^{l}(y)=\sqrt{\frac{\alpha \cdot \beta}{\alpha_{l}}} f^{l}\left(\frac{\alpha \cdot \beta}{\alpha_{l}} y\right)$ and $c_{l}=\frac{1}{\alpha \cdot \beta} \sum_{k=1}^{l-1} \alpha_{k} \beta_{k}$. Then:

$$
0=\sum_{l=1}^{r} \int_{c_{l}}^{c_{l+1}} e^{2 \pi i m x} h^{l}(x) d x=\int_{0}^{1} e^{2 \pi i m x}\left(\sum_{l=1}^{r} \mathbf{1}_{\left[c_{l}, c_{l+1}\right]}(x) h^{l}(x)\right) d x \quad, \quad \forall m
$$

Thus $\sum_{l=1}^{r} \mathbf{1}_{\left[c_{l}, c_{l+1}\right]} h^{l} \equiv 0$. Note now $0=c_{1}<c_{2}<\cdots<c_{r}<c_{r+1}=1$ which makes the intervals $\left[c_{l}, c_{l+1}\right]$ nonoverlaping. Therefore $\left.h^{l}\right|_{\left[c_{l}, c_{l+1}\right]} \equiv 0$, or $\left.f^{l}\right|_{\left[a_{l}, b_{l}\right]} \equiv 0$.

For this example, the density is $D(\Lambda)=\frac{1}{\text { Cell_aria }}$ where

$$
\text { Cell_aria }=\left|\frac{\alpha}{\alpha \cdot \beta}\right| \cdot|\beta|=\frac{|\alpha| \cdot|\beta|}{\alpha \cdot \beta} \text {. }
$$

Hence

$$
D(\Lambda)=\frac{\alpha \cdot \beta}{|\alpha| \cdot|\beta|}=D_{0}(\alpha, \beta)
$$

and this concludes the proof of the Corollary 12.

DEFINITION 14 Suppose $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$ and Λ is supported in the leaf $E_{\alpha, \beta}$ and has uniform density $D(\Lambda)$. Then by redundancy we mean the following number:

$$
r(\Lambda)=\frac{D(\Lambda)}{D_{0}(\alpha, \beta)}
$$

The Comparison Theorem proves that if $\left(\mathcal{W H}_{g^{1} ; \Lambda_{1}}, \ldots, \mathcal{W} \mathcal{H}_{g^{r} ; \Lambda_{r}}\right)$ is a superframe then $r(\Lambda) \geq 1$, whereas if $\left(\mathcal{W H}_{g^{1} ; \Lambda_{1}}, \ldots, \mathcal{W H}_{g^{r} ; \Lambda_{r}}\right)$ is a super s-Riesz basis then $r(\Lambda) \leq 1$. Note that $r(\Lambda)=1$ does not imply $\mathcal{W} \mathcal{H}_{g, \Lambda}$ is a Riesz basis or a frame for $L^{2, r}$ (just add or leave out a finite number of vectors in any Riesz basis). Note also that any of the strict inequalities would not imply the set to be a frame or s-Riesz basis in $L^{2, r}$.

For a coherent WH frame (i.e. for one for which $\Lambda=\{(m \alpha, n \beta) ; m, n \in \mathbf{Z}\}$ for some $\alpha, \beta \in \mathbf{R}_{+}^{r}$),

$$
r(\Lambda)=1 / \alpha \cdot \beta=: r_{0}(\alpha, \beta)
$$

Note that always $r(\Lambda) \geq D(\Lambda)$.
Suppose $\mathcal{W} \mathcal{H}_{g, \Lambda}$ and $\mathcal{W H}_{\mathbf{h}, \Delta}$ are frames in $L^{2, r}$ supported on the same leaf $E_{\alpha, \beta}$ and having uniform densities $D(\Lambda), D(\Delta)$. Then by redundancy of Λ relative to Δ we mean the ratio:

$$
r(\Lambda, \Delta)=\frac{r(\Lambda)}{r(\Delta)}=\frac{D(\Lambda) / D_{0}(\alpha, \beta)}{D(\Delta) / D_{0}(\mu, \nu)}
$$

If Λ and Δ are regular,

$$
r(\Lambda, \Delta)=\frac{\mu \cdot \nu}{\alpha \cdot \beta}=\frac{r_{0}(\alpha, \beta)}{r_{0}(\mu, \nu)}
$$

The definition of redundancy is justified also by the following result:
THEOREM 15 Suppose $\mathbf{a} \in\left(\mathbf{R}_{+}^{*}\right)^{r}$ and denote by $R_{\mathbf{a}}: \mathbf{R}^{2 r} \rightarrow \mathbf{R}^{2 r}, R_{\mathbf{a}}(p, q)=$ $\left(\mathbf{a} \otimes p, \mathbf{a}^{-1} \otimes q\right)$ where $\mathbf{a}^{-1}=\left(\frac{1}{a_{1}}, \cdots, \frac{1}{a_{r}}\right)$ and $\mathbf{a} \otimes p=\left(a_{1} p_{1}, \ldots, a_{r} p_{r}\right)$. Suppose $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$ supported on the leaf $E_{\alpha, \beta}$ and having uniform density $D(\Lambda)$. Then $R_{\mathbf{a}}(\Lambda) \subset K_{R_{\mathbf{a}}(\alpha, \beta)}^{r}, D\left(R_{\mathbf{a}}(\Lambda)\right) \neq D(\Lambda)$ but $r\left(R_{\mathbf{a}}(\Lambda)\right)=r(\Lambda)$.

REMARK 16 Note that $\mathcal{W H}_{g, \Lambda}$ is unitary equivalent to $\mathcal{W H}_{\mathbf{g}^{\prime}, R_{\mathbf{a}}(\Lambda)}$ for $\mathbf{g}^{\prime}=$ $V(\mathbf{a}) \mathbf{g}$ where $V(\mathbf{a})$ is the unitary dilation with scales $\mathbf{a}: V(\mathbf{a})=\oplus_{l=1}^{r} v\left(a_{l}\right)$, $v\left(a_{l}\right) f^{l}(x)=\sqrt{a_{l}} f^{l}\left(a_{l} x\right)$.

4 Proofs of the Results

4.1 Proof of Lemma 9

The proof in essentialy the same as the proof of Lemma 2.3 from [ChDeHe97]. We (re)derive here the result just for completness.
\Rightarrow Suppose $\Lambda=\cup_{k=1}^{s_{0}} \Lambda_{k}$, and each Λ_{k} is δ_{k}-uniformly separated. Let $\delta=$ $\min _{k=1, \ldots, s_{0}}\left(\delta_{k}\right)$. Then any cube $Q_{\frac{\delta}{2}}(p, q)$ contains at most s_{0} points of Λ. Thus $\nu^{+}(h) \leq s_{0}\left(\frac{h}{\delta / 2}\right)^{2}=\frac{4 s_{0}}{\delta^{2}} h^{2}$ and $\mu\left(Q_{h}(0,0) \cap E_{\alpha, \beta}\right)=$ const $\cdot h^{2}$. Thus $D^{+}(\Lambda) \leq \frac{4 s_{0}}{\text { const } \cdot \delta^{2}}<\infty$.
\Leftarrow Suppose now $D^{+}(\Lambda)<\infty$, for some h. Let $N_{h}=\nu^{+}(h)$ for a fxed h. Thus each cube $Q_{h}(p, q)$ contains at most N_{h} points of Λ. Let $e_{1}, e_{2}, \ldots, e_{2^{d}}$ be the verticies of the unit cube $[0,1]^{2 d} \subset \mathbf{R}^{2 d}$ and define $Z_{k}=(2 \mathbf{Z})^{2 d}+e_{k}$ and $B_{k}=\cup_{n \in Z_{k}} Q_{h}(n h), k=1, \ldots, 2^{2 d}$. Then $\mathbf{R}^{2 d}$ is the disjoint union of the $2^{2 d}$ sets B_{k}. Moreover for every $m, n \in Z_{k}, m \neq n$, $\operatorname{dist}\left(Q_{h}\left(m h, Q_{h}(n h) \geq h\right.\right.$ and each cube $Q_{h}(n h)$ contains at most N_{h} elements of Λ. Thus $\Lambda \cap B_{k}$ can be split into N_{h}-uniformly separated squences and therefore Λ can be split into $2^{2 d} N_{h}$ uniformly separated sequences.

4.2 Proof of Theorem 10

The proof is based on Theorem 3.1 from [ChDeHe97]. Consider $f \in L^{2}(\mathbf{R})$, $\|f\|=1$, and $\mathbf{f}=0 \oplus \cdots \oplus f \oplus \cdots \oplus 0$, with f on the $l^{t h}$ position. Then $B=B\|\mathbf{f}\|^{2} \geq \sum_{\lambda \in \Lambda}|<\mathbf{f}, U(\lambda) \mathbf{g}>|^{2}$ which means each $\pi_{i}(\Lambda)=\Lambda_{i}=$ $\left\{\left(z_{i}, p_{i}, q_{i}\right), i \in \mathbf{I}\right\}$ gives a Bessel set $\mathcal{W} \mathcal{H}_{g^{i} ; \Lambda_{i}}, g^{i}=\pi_{i} \mathbf{g}$.

Now we apply Theorem 3.1 from [ChDeHe97] and obtain that each Λ_{i} is relatively uniformly separated. Since $\Lambda=\Lambda_{1} \oplus \cdots \oplus \Lambda_{r}$ we obtain that Λ is relatively uniformly separated and hence $D^{+}(\Lambda)<\infty$.

4.3 Proof of Theorem 11

The proof is based on a Homogeneous Approximation Property (HAP) for supersets that will be stated below. But first a lemma whose proof can be found in [ChDeHe97] as Lemma 3.3:
LEMMA 17 Set $\varphi=e^{-\frac{\pi}{2} x^{2}}$, and let $h>0$ be fixed. Then there is a $K=$ $K(h)>0$ such that for each $f \in L^{2}(\mathbf{R})$ and each $(z, p, q) \in T^{1} \times \mathbf{R}^{2}=G^{1}$,

$$
\left|<\varphi, u(z, p, q) f>\left.\right|^{2} \leq K(h) \iint_{Q_{h}(p, q) \subset G^{1}}\right|<\varphi, u(w, x, y) f>\left.\right|^{2} d \mu_{G^{1}}(w, x, y)
$$

Proof of Lemma 17

See Lemma 3.3 in [ChDeHe97].
LEMMA 18 (Local HAP) Let $\mathbf{g} \in L^{2, r}$ and $\Lambda \subset K_{\alpha, \beta}^{r}$ be such that $\mathcal{W} \mathcal{H}_{g, \Lambda}$ is a frame for its span $\mathcal{E} \subset L^{2, r}$. Then for each $\mathbf{f} \in L^{2, r}$,

$$
\begin{equation*}
\forall \varepsilon>0 \exists R>0 \forall(z, p, q) \in K_{\alpha, \beta}^{r}, \operatorname{dist}(\pi U(z, p, q) \mathbf{f}, W(R, p, q))<\varepsilon \tag{1}
\end{equation*}
$$

where $W(R, p, q)=\operatorname{span}\left\{\tilde{g}_{\lambda}, \lambda \in Q_{R}(p, q) \cap \Lambda\right\},\left\{\tilde{g}_{\lambda}, \lambda \in \Lambda\right\}$ is the standard dual of $\mathcal{W H}_{g, \Lambda}$ and $\pi: L^{2, r} \rightarrow \mathcal{E}$ is the orthogonal projection onto \mathcal{E}.

Proof of Lemma 18

By Theorem 10 the assumption $\mathcal{W H}_{g, \Lambda}$ is a frame implies Λ is relatively uniformly separated. Thus we can separate Λ into subsets that are uniformly separated, all supported on the same leaf: $\Lambda=\cup_{k=1}^{r_{0}} \Lambda_{k}$, where Λ_{k} is δ_{k}-uniformly separated. Define $\delta=\min \left\{\delta_{1} / 2, \ldots, \delta_{r_{0}} / 2\right\}$.

Let H be the set of those elements $\mathbf{f} \in L^{2, r}$ for which (1) holds. One can easily check that H is closed under finite linear combinations. It is also closed under $L^{2, r}$-norm: if $\left(\mathbf{f}_{k}\right)_{k \geq 1}$ is a sequence in H converging to \mathbf{f} in $L^{2, r}$-sense then for any $\varepsilon>0$ choose first a $k_{\varepsilon}>1$ such that $\left\|f-\mathbf{f}_{k_{\varepsilon}}\right\|_{L^{2, r}}<\frac{\varepsilon}{2}$ and then $R>0$ such that $\operatorname{dist}\left(\pi U(z, p, q) \mathbf{f}_{k_{\varepsilon}}, W(R, p, q)\right)<\frac{\varepsilon}{2}$ for every $(z, p, q) \in K_{\alpha, \beta}^{r}$. Then a triangle inequality argument shows that \mathbf{f} has the HAP as well. Thus H is a closed subset of \mathcal{E}.

It then sufficies to show that if $\varphi(x)=e^{-\frac{\pi}{2} x^{2}}$ then the gaussian generator $\varphi=$ $\varphi \oplus \cdots \oplus \varphi$ and all its time-frequency translates belong to H, i.e. $(U(z, r, s) \varphi \in H$, for every $(z, r, s) \in G^{r}$, for then $H=L^{2, r}$ and the result follows.

Fix $(z, r, s) \in G^{r}=T^{r} \times \mathbf{R}^{2 r}$ and consider any $\left(z^{\prime}, p, q\right) \in G^{r}$. The expansion of $\pi\left(U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi\right)$ with respect to the frame $\mathcal{W} \mathcal{H}_{g, \Lambda}$ has the form:

$$
\pi\left(U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi\right)=\sum_{\lambda \in \Lambda}<U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi, U(\lambda) \mathbf{g}>\tilde{\mathbf{g}}_{\lambda}
$$

If A, B are the frame bounds of $\mathcal{W} \mathcal{H}_{g, \Lambda}$ then $\left\{\tilde{\mathbf{g}}_{\lambda}\right\}$ has bounds $\frac{1}{B}$ and $\frac{1}{A}$. Hence:

$$
\begin{aligned}
& \operatorname{dist}\left(\pi\left(U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi\right), W(R, p, q)\right)^{2} \leq \| \pi\left(U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi\right)- \\
& =\sum_{\lambda \in \Lambda \cap Q_{R}(p, q)}<U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi, U(\lambda) \mathbf{g}>\tilde{\mathbf{g}}_{\lambda} \|_{2}^{2} \\
& =\| \frac{1}{\lambda \in \Lambda \backslash Q_{R}(p, q)} \\
& \left.\leq \frac{1}{A} \sum_{\lambda \in \Lambda \backslash Q_{R}(p, q)} \right\rvert\,<U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi, U(\lambda) \mathbf{g}>\tilde{\mathbf{g}}_{\lambda} \|_{2}^{2} \\
& \quad=\frac{1}{A} \sum_{k=1}^{r_{0}} \sum_{\lambda \in \Lambda_{k} \backslash Q_{R}(p, q)}|<U(z, r, s) \varphi, U(\lambda) \mathbf{g}>|^{2}
\end{aligned}
$$

Note that for $\lambda=\left(z^{\prime \prime}, a, b\right)$,

$$
\left|<U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi, U(\lambda) \mathbf{g}>_{L^{2, r}}\right|^{2} \leq \sum_{l=1}^{r}\left|<\varphi, u\left(1, a_{l}-p_{l}-r_{l}, b_{l}-q_{l}-s_{l}\right) g^{l}>\right|^{2}
$$

Using Lemma 17,

$$
\left|<\varphi\left(1, a_{l}-p_{l}-r_{l}, b_{l}-q_{l}-s_{l}\right) g^{l}>\left.\right|^{2} \leq K(\delta) \iint_{Q_{\delta}\left(a_{l}-p_{l}-r_{l}, b_{l}-q_{l}-s_{l}\right)}\right|<\varphi, u(1, x, y) g^{l}>\left.\right|^{2} d x d y
$$

Now we sum over $\lambda \in \Lambda_{k} \cap Q_{R}(p, q)$ and take into account that Λ_{k} is δ-separated we obtain:

$$
\begin{aligned}
& \sum_{\lambda \in \Lambda_{k} \backslash Q_{R}(p, q)} \iint_{Q_{\delta}\left(a_{l}-p_{l}-r_{l}, b_{l}-q_{l}-s_{l}\right)}\left|<\varphi, u(1, x, y) g^{l}>\right|^{2} d x d y \\
& \leq \iint_{\mathbf{R}^{2} \backslash Q_{R-\delta}\left(-r_{l}, s_{l}\right)}\left|<\varphi, u(1, x, y) g^{l}>\right|^{2} d x d y
\end{aligned}
$$

Since the map $(x, y) \mapsto<\varphi, u(1, x, y) g^{l}>$ is in $L^{2}\left(\mathbf{R}^{2}\right)$ (i.e. φ is an admissible vector) we can choose R large enough so that for given (r, s), the integral of the right hans side above becomes smaller than $\frac{\varepsilon^{2} A}{k(\delta) r_{0} r^{2}}$ for every $l=1, \ldots, r$. Then summating over l and k we obtain:

$$
\operatorname{dist}\left(\pi\left(U\left(z^{\prime}, p, q\right) U(z, r, s) \varphi\right), W(R, p, q)\right) \leq \varepsilon
$$

for every $\left(z^{\prime}, p, q\right) \in G^{r}$ which implies $U(z, r, s) \varphi \in H$ and thus $H=L^{2, r}$. End of proof.

LEMMA 19 (HAP and Uniqueness) Let $\mathbf{g} \in L^{2, r}$ and $\Lambda \subset K_{\alpha, \beta}^{r}$ be such that $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$. Then for each $\mathbf{f} \in L^{2, r}$,

$$
\begin{equation*}
\forall \varepsilon>0 \exists R>0 \forall(z, p, q) \in K_{\alpha, \beta}^{r}, \operatorname{dist}(U(z, p, q) \mathbf{f}, W(R, p, q))<\varepsilon \tag{2}
\end{equation*}
$$

where $W(R, p, q)=\operatorname{span}\left\{\tilde{g}_{\lambda}, \lambda \in Q_{R}(p, q) \cap \Lambda\right\}$ and $\left\{\tilde{g}_{\lambda}, \lambda \in \Lambda\right\}$ is the standard dual of $\mathcal{W H}_{g, \Lambda}$.

Proof of Lemma 19

It comes directly from Lemma 18.
LEMMA 20 (Strong HAP) Suppose $\mathcal{W H}_{g, \Lambda}$ is a frame for $L^{2, r}$ where $\mathbf{g} \in$ $L^{2, r}, \Lambda \subset K_{\alpha, \beta}^{r}$. Then

$$
\begin{array}{r}
\forall \mathbf{f} \in L^{2, r} \forall \varepsilon>0 \exists R>0 \forall(z, p, q) \in K_{\alpha, \beta}^{r} \forall h>0 \forall(w, x, y) \in Q_{h}(p, q) \cap K_{\alpha, \beta}^{r} \\
\operatorname{dist}(U(w, x, y) \mathbf{f}, W(h+R, p, q))<\varepsilon \tag{3}
\end{array}
$$

Proof of Lemma 20

Note that for $(w, x, y) \in Q_{h}(p, q) \cap K_{\alpha, \beta}^{r}, W(R, x, y) \subset W(h+R, p, q)$. Then, by applying Lemma 19 to \mathbf{f} and $(w, x, y) \in K_{\alpha, \beta}^{r}$ we get $\operatorname{dist}(U(w, x, y) \mathbf{f}, W(R, x, y))<$ ع. But $\operatorname{dist}(U(w, x, y) \mathbf{f}, W(h+R, p, q)) \leq \operatorname{dist}(U(w, x, y) \mathbf{f}, W(R, x, y))<\varepsilon$ which end the proof of lemma 20.

Proof of Theorem 11

Let $\left\{\tilde{\varphi}_{\delta}, \delta \in \Delta\right\}$ be the (standard) biorthogonal s-Riesz basis of $\mathcal{W} \mathcal{H}_{\varphi, \Delta}$, and $\left\{\tilde{\mathbf{g}}_{\lambda}, \lambda \in \Lambda\right\}$ be the standard dual of $\mathcal{W} \mathcal{H}_{g, \Lambda}$. Let $W(h, p, q)=\operatorname{span}\left\{\tilde{\mathbf{g}}_{\lambda}, \lambda \in\right.$ $\left.Q_{h}(p, q) \cap \Lambda\right\}, V(h, p, q)=\operatorname{span}\left\{\varphi_{\delta}, \delta \in Q_{h}(p, q) \cap \Delta\right\}$. Since Δ, Λ are relatively uniformly separated, each space $V(h, p, q), W(h, p, q)$ is finite dimensional. Let
$C=\sup _{\delta \in \Delta}\left\|\tilde{\varphi}_{\delta}\right\|<\infty$ Fix $\varepsilon>0$. Using the strong HAP Lemma 20 for $\mathbf{f} \varphi$, $\exists R>0$ such that
$\forall(p, q) \in E_{\alpha, \beta}, \forall h>0, \forall(z, x, y) \in K_{\alpha, \beta}^{r} \cap Q_{h}(p, q) \quad, \quad \operatorname{dist}(U(z, x, y) \varphi, W(h+R, p, q))<\frac{\varepsilon}{C}$
Let $P_{V}=P_{V(h, p, q)}$ and $P_{W}=P_{W(h+R, p, q)}$ denote the two orthogonal projectors onto $V(h, p, q)$, respectively $W(h+R, p, q)$. Define $T: V(h, p, q) \rightarrow V(h, p, q)$, $T=P_{V} P_{W}$. We shall evaluate the trace of T :

$$
\begin{array}{r}
\operatorname{trace}\{T\}=\sum_{\delta \in \Delta \cap Q_{h}(p, q)}<T \varphi_{\delta}, \tilde{\varphi}_{\delta}>=\sum_{\delta \in \Delta \cap Q_{h}(p, q)}<P_{W} \varphi_{\delta}, P_{V} \tilde{\varphi}_{\delta}> \\
=\sum_{\delta \in \Delta \cap Q_{h}(p, q)}<I \varphi_{\delta}, \tilde{\varphi}_{\delta}>+<\left(P_{W}-I\right) \varphi_{\delta}, \tilde{\varphi}_{\delta}>=\#\left(\Delta \cap Q_{h}(p, q)\right) \\
\quad+\sum_{\delta \in \Delta \cap Q_{h}(p, q)}<\left(P_{W}-I\right) \varphi_{\delta}, \tilde{\varphi}_{\delta}>\geq \#\left(\Delta \cap Q_{h}(p, q)\right) \\
-\sum_{\delta \in \Delta \cap Q_{h}(p, q)}\left\|\left(I-P_{W}\right) \varphi_{\delta}\right\| \cdot\left\|\tilde{\varphi}_{\delta}\right\| \geq \#\left(\Delta \cap Q_{h}(p, q)\right)-\sum_{\delta \in \Delta \cap Q_{h}(p, q)} \frac{\varepsilon}{C} C \\
=(1-\varepsilon) \cdot \#\left(\Delta \cap Q_{h}(p, q)\right)
\end{array}
$$

On the other hand, since any eigenvalue of T, λ_{T} is subunital, $\left|\lambda_{T}\right| \leq 1$ we obtain:

$$
\operatorname{trace}\{T\}=\sum_{\text {spectrum of } T} \lambda_{T} \leq \operatorname{rank}(T) \leq \operatorname{dim}(W(h+R, p, q))=\#\left(\Lambda \cap Q_{h+R}(p, q)\right)
$$

Hence

$$
\#\left(\Lambda \cap Q_{h+R}(p, q)\right) \geq(1+\varepsilon) \cdot \#\left(\Delta \cap Q_{h}(p, q)\right)
$$

A simple computation shows that

$$
\operatorname{Aria}\left(Q_{h}(p, q) \cap K_{\alpha, \beta}^{r}\right)=\frac{|\alpha| \cdot|\beta|}{\|\alpha\|_{\infty} \cdot\|\beta\|_{\infty}} h^{2}
$$

for every $(p, q) \in E_{\alpha, \beta}$ (see the proof of Theorem 15). Therefore

$$
\begin{array}{r}
\frac{\#\left(\Lambda \cap Q_{h+R}(p, q)\right)}{\operatorname{Aria}\left(Q_{h+R} \cap K_{\alpha, \beta}^{r}\right)}\left(\frac{h+R}{h}\right)^{2}=\frac{\#\left(\Lambda \cap Q_{h+R}(p, q)\right)}{\operatorname{Aria}\left(Q_{h+R} \cap K_{\alpha, \beta}^{r}\right)} \cdot \frac{\operatorname{Aria}\left(Q_{h+R}(p, q) \cap K_{\alpha, \beta}^{r}\right)}{\operatorname{Aria}\left(Q_{h}(p, q) \cap K_{\alpha, \beta}^{r}\right)} \\
\geq(1-\varepsilon) \frac{\#\left(\Delta \cap Q_{h+R}(p, q)\right)}{\operatorname{Aria}\left(Q_{h+R} \cap K_{\alpha, \beta}^{r}\right)}
\end{array}
$$

Now, taking the supremum over $(p, q) \in E_{\alpha, \beta}$ and the limit $h \rightarrow \infty$ we obtain $D^{+}(\Lambda) \geq(1-\varepsilon) D^{+}(\Delta)$; but $\varepsilon>0$ was arbitrary, consequently $D^{+}(\Lambda) \geq D^{+}(\Delta)$. Similary, taking the infimum over $(p, q) \in E_{\alpha, \beta}$ and next the limit $h \rightarrow \infty$ we obtain $D^{-}(\Lambda) \geq(1-\varepsilon) D^{-}(\Delta)$ for every $\varepsilon>0$ and therefore $D^{-}(\Lambda) \geq D^{-}(\Delta)$ which ends the proof of theorem.

4.4 Proof of Theorem 15

We want to find the relation between $D\left(R_{\mathbf{a}}(\Lambda)\right)$ and $D(\Lambda)$. Fix $\varepsilon>0$. Let $h>0$ be sufficiently large such that $D^{+}(\Lambda) \cdot \mu\left(Q_{h}(0,0) \cap E_{\alpha, \beta}\right) \leq \nu_{\Lambda}^{+}(h)+\varepsilon$. Let $p, q \in E_{\alpha, \beta}$ be such that $\#\left(Q_{h}(p, q) \cap \Lambda\right) \geq \nu_{\Lambda}^{+}(h)-\varepsilon$. Then $\#\left(R_{\mathbf{a}}\left(Q_{h}(p, q)\right) \cap\right.$ $\left.R_{\mathbf{a}}(\Lambda)\right)=\#\left(Q_{h}(p, q) \cap \Lambda\right)>\nu_{\Lambda}^{+}(h)-\varepsilon$.

Next we need to find the aria $\operatorname{Aria}\left(R_{\mathbf{a}}\left(Q_{h}(0,0)\right) \cap E_{R_{\mathbf{a}}(\alpha, \beta)}\right)$. Note that

$$
R_{\mathbf{a}}\left(Q_{h}(0,0)\right)=\left\{(z , d , e) \in G ^ { r } | | d _ { i } \left|<\frac{a_{i} h}{2},\left|e_{i}\right|<\frac{h}{2 a_{i}}\right.\right.
$$

On the other hand the two leaves are parametrized as: $E_{\alpha, \beta}=\{(t \alpha, s \beta) \mid t, s \in$ $\mathbf{R}\}$ and respectively $E_{R_{\mathbf{a}}(\alpha, \beta)}=\{(t \mu, s \nu) \mid t, s \in \mathbf{R}\}$ for $(\mu, \nu)=R_{\mathbf{a}}(\alpha, \beta)$. We obtain:

$$
\begin{gathered}
\operatorname{Set}_{1}=Q_{h}(0,0) \cap E_{\alpha, \beta}=\left\{(z, t \alpha, s \beta) ;|t|<\frac{h}{2 \alpha_{i}},|s|<\frac{h}{2 \beta_{i}}\right\} \\
\operatorname{Set}_{2}=R_{\mathbf{a}}\left(Q_{h}(0,0)\right) \cap E_{\mu, \nu}=\left\{(z, t \mu, s \nu) ;|t|<\frac{h}{2 \alpha_{i}},|s|<\frac{h}{2 \beta_{i}}\right\}
\end{gathered}
$$

Therefore the measures are:

$$
\begin{aligned}
& \operatorname{Aria}\left(\text { Set }_{1}\right)=h^{2} \frac{|\alpha| \cdot|\beta|}{\|\alpha \cdot\|_{\infty}\|\beta\|_{\infty}} \\
& \operatorname{Aria}\left(\text { Set }_{2}\right)=h^{2} \frac{\mid \text { mun }|\cdot| \nu \mid}{\|\alpha\|_{\infty} \cdot\|\beta\|_{\infty}}
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
& D_{R_{\mathbf{a}}(\Lambda)}^{+} \cdot \operatorname{Aria}\left(\operatorname{Set}_{2}\right) \geq \#\left(R_{\mathbf{a}}\left(Q_{h}(p, q)\right) \cap R_{\mathbf{a}}(\Lambda)\right) \\
& \quad=\#\left(Q_{h}(p, q) \cap \Lambda\right)>\nu_{\Lambda}^{+}(h)-\varepsilon \geq D^{+}(\Lambda) \cdot \operatorname{Aria}\left(\operatorname{Set}_{1}\right)-2 \varepsilon
\end{aligned}
$$

which implies:

$$
D_{R_{\mathbf{a}}(\Lambda)}^{+} \geq D_{\Lambda}^{+} \frac{|\alpha| \cdot|\beta|}{|\mu| \cdot|\nu|}-\frac{2 \varepsilon}{h^{2}} \frac{\|\alpha\|_{\infty} \cdot\|\beta\|_{\infty}}{|\alpha| \cdot|\beta|} ; \forall h \quad \Rightarrow \quad D_{R_{\mathbf{a}}(\Lambda)}^{+} \geq D_{\Lambda}^{+} \frac{|\alpha| \cdot|\beta|}{|\mu| \cdot|\nu|}
$$

Similarly $D_{\Lambda}^{+} \geq D_{R_{\mathbf{a}}(\Lambda)}^{+} \frac{|\mu| \cdot|\nu|}{|\alpha| \cdot|\beta|}$ (considering $R_{\mathbf{a}}\left(\mathbf{a}^{-1}\right)$ for instance). Also a similar argument holds for D_{Λ}^{-}and $D_{R_{\mathbf{a}}(\Lambda)}^{-}$as well. Hence we obtain the following equalities:

$$
\begin{equation*}
D_{R_{\mathbf{a}}(\Lambda)}^{+}=D_{\Lambda}^{+} \frac{|\alpha| \cdot|\beta|}{|\mu| \cdot|\nu|} \quad, \quad D_{R_{\mathbf{a}}(\Lambda)}^{-}=D_{\Lambda}^{-} \frac{\alpha|\cdot| \beta \mid}{|\mu| \cdot|\nu|} \tag{4}
\end{equation*}
$$

If Λ has uniform density, i.e. $D_{\Lambda}^{+}=D_{\Lambda}^{-}$, then we obtain:

$$
\begin{equation*}
D\left(R_{\mathbf{a}}(\Lambda)\right)=D(\Lambda) \frac{|\alpha| \cdot|\beta|}{|\mu| \cdot|\nu|} \tag{5}
\end{equation*}
$$

and in terms of redundancies:

$$
r\left(R_{\mathbf{a}}(\Lambda)\right)=\frac{D\left(R_{\mathbf{a}}(\Lambda)\right)}{D_{0}\left(R_{\mathbf{a}}(\alpha, \beta)\right)}=\frac{D(\Lambda) \frac{\alpha|\cdot| \beta \mid}{|\mu| \cdot|\nu|}}{\frac{\mu \cdot \nu}{|\mu| \cdot|\nu|}}=\frac{D(\Lambda)}{\frac{\alpha \cdot \beta}{|\alpha| \cdot|\beta|}}=r(\Lambda)
$$

where we have used $\mu \cdot \nu=\alpha \cdot \beta$. This ends the proof.

References

[ChDeHe97] O.Christensen, B.Deng, C.Heil, On Densities of Gabor Frames, preprint 1997
[DaiLa98] .Dai, D.Larson, Wandering vectors for unitary systems and orthogonal wavelets, Memoirs AMS 134, no.640, (1998)
[Daub90] I.Daubechies, The Wavelet Transform, Time-Frequency Localizatin and Signal Analysis, IEEE Trans.Inform. Theory 36, no. 5 (1990), 9611005
[HaLa97] D.Han, D.Larson, Frames, bases and group representations, preprint 1997
[HeWa89] C.Heil, D.Walnut, Continuous and Discrete Wavelet Transforms, SIAM Review 31, no. 4 (1989), 628-666
[Janss95] A.J.E.M.Janssen, Duality and Biorthogonality for Weyl-Heisenberg Frames, J.Fourier Anal.Appl. 1, no. 4 (1995), 403-436
[RaSt95] J.Ramanathan, T.Steger, Incompleteness of Sparse Coherent States, Appl.Comp.Harm.Anal. 2, no. 2 (1995), 148-153
[Rieff81] M.A.Rieffel, Von Neumann Algebras Associated with Pairs of Lattices in Lie Groups, Math.Anal., 257 (1981), 403-418

