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Abstract

In this thesis I present some aspects of the coherent sets theory in Hilbert space and some applications

in signal processing. The general theory will focus on three important types of coherent sets: Fourier

sets, Weyl-Heisenberg sets and wavelet sets. In a square-integrable unitary representation of a locally

compact group one chooses a generator (an admissible vector of the Hilbert space) and a discrete

subset of the locally compact group. Then the coherent set (associated to the given generator and

the discrete subset) is given by discretizing the continuous orbit passing through the generator, with

respect to the discrete subset.

The analysis of Fourier sets is intimately connected with the theory of nonharmonic Fourier

series and irregular sampling. Weyl-Heisenberg sets are obtained from a function (called window)

by translations and modulations given by a discrete subset of the time-frequency plane. Wavelet

sets are obtained starting again from a function (called wavelet) and then translating and dilating

it with parameters taken from a discrete subset of the time-scale plane.

My analysis concentrates around three problems: stability, localization and density.

In chapter 2 a geometric theory of frames is presented, emphasizing certain equivalence relations.

Within an equivalence class, a distance between equivalent frames is introduced.

In the next chapter two stability results are analyzed; one is an extension of Kadec' 1
4
-stability

theorem for nonharmonic Fourier series from Riesz bases to frames.; the other result generalizes an

observation by Daubechies and Tchamitchian that Meyer's wavelet basis is preserved under small

perturbations of the translation parameter.

In chapter 4 the localization of the wavelet generator is studied. An uncertainty inequality of

Battle type is proved, where the lower bound of 1

2
(as in the case of the classical uncertainty principle)

is replaced by 3

2
.

In the last chapter an application of the Weyl-Heisenberg Riesz bases for their span to a signal

processing problem is presented. The problem is to �nd the best approximation of a stochastic signal

by Weyl-Heisenberg expansions. Di�erent sources of error (distortion) in an encoding-decoding

scheme are further analyzed.
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Chapter 1

Coherent Sets: The Group

Representation Point of View

1.1 Square Integrable Representations of l.c.g.'s

Assume � is a locally compact group (l.c.g.) with the left invariant measure � and U a strongly

continuous unitary representation on the complex Hilbert space H , U : � ! U(H) (U(H) denotes

the space of unitary operators onH). Then the representationU is called irreducible if the only closed

subspaces of H invariant under the action of every unitary operator U(),  2 � are f0g and H itself.

A vector h 2 H is called cyclic if the linear span of fU()h;  2 �g is dense in H . A vector h 2 H is

called admissible if the map  !< h;U()h > is in L
2(�; d�), i.e.

R
�
j < h;U()h > j

2
d�() <1.

DEFINITION 1.1 The strongly continuous representation U is called square integrable if i) it has

a cyclic vector and ii) there is an admissible vector h 2 H.

The central result that is of interest for us is the following theorem proved in [GMP85]:

THEOREM 1.2 Suppose U : �! U(H) is a square integrable representation on H. Then:

1. The set of admissible vectors form a dense subset D of H;

2. There is a nonnegative selfadjoint operator A (unbounded, in general) on H with domain D

such that for every f1; f2 2 H and g1; g2 2 D the following relation holds true:

Z
�

< f1; U()g1 >< U()g2; f2 > d�() =< g2; Ag1 >< f1; f2 > (1.1)

1
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3. If the group is unimodular (i.e. the left and right invariant measures coincide) then the

selfadjoint operator is a multiple of the identity, A = � � 1, � � 0 and any vector is admissible, i.e.

D = H. 2

REMARK 1.3 The relation (1.1) represents the weak form of a continuous resolution of identity

that, for the square integrable representation U takes the following form:

f =
1

< h;Ah >

Z
�

< f;U()h > U()hd�() ; 8f 2 H;h 2 D (1.2)

with the vectorial integration converging strongly (i.e. in the sense of Bochner). The word \contin-

uous" refers to the fact that we integrate over the entire group �.

REMARK 1.4 From (1.1) by letting f1 = f2 = g1 = g2 = g 2 D we obtain:

< g;Ag >=
1

kgk
2

Z
�

j < g;U()g > j
2
d�() (1.3)

Since the diagonal elements (i.e. of the form < x;Ax >) of a quadratic form are su�cient to

uniquely de�ne that form we draw the conclusion that (1.3) speci�es completely the selfadjoint A.

The relation (1.1) (or 1.2) lies at the basis of the continuous transforms frequently used in signal

processing. Suppose we �x an admissible g 2 D. Then we can de�ne an operator:

Tg : H ! L
2(�; d�) ; Tgf() =< f;U()g > (1.4)

Note that:

kTgfk
2
L2(�;d�) =

Z
�

j < f;U()g > j
2
d�() =< g;Ag > kfk

2
(1.5)

Thus:

kTgkB(H;L2(�;d�)) =< g;Ag > (1.6)

(by B(H1; H2) we denote the space of bounded operators from H1 to H2 with the usual operator

norm).
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Relation (1.5) proves also the set Hg = RanTg = fTgf ; f 2 Hg is a closed subspace of L2(�; d�).

Using now (1.2) we obtain that the vector f is \recovered" from the transformation Tg by:

f =
1

< g;Ag >

Z
�

Tgf() � U()gd�() (1.7)

We point out that the mapping f 7! Tgf is one-to-one (because of (1.5)) but not onto (that is

Hg * L
2(�; d�)). In fact, for recovering f we might as well have used any function of the form

Tgf + Tzh, with h 2 H , z 2 D and < z;Ag >= 0. Indeed, for every k 2 H :

1

< g;Ag >

Z
�

(Tgf + Tzh)() < U()g; k > d�()

=
1

< g;Ag >

Z
Ga

Tgf() < U()g; k > d�() +
1

< g;Ag >

Z
�

< h;U()z >< U(); k > d�()

=< f; k > + < h; k >
< Ag; z >

< g;Ag >
=< f; k >

There exists thus many functions ' 2 L
2(�; d�) that allow reconstruction of f via the formula

1
<g;Ag>

R
�
'()U()gd�(); this points out that the continuous transform Tgf contains redundant

information on f . One way to cut down this redundancy is to discretize the continuous transform,

i.e. to consider only a sequence of the form f< f;U(i)g > g
i2I

for some particular discrete subset

figi2I of �. Sets of the form fU(i)ggi2I are called coherent subsets and make the subject of the

present thesis.

We end this section by recalling another property of the subspace Hg � L
2(�; d�). Recall a

Hilbert space of functions (V;<;>V ) is called a reproducing kernel Hilbert space if the mappings

f 2 V 7! f(x) are bounded for every x, i.e. for every x there is a constant Cx such that jf(x)j �

CxkfkV .

Take an arbitrarily f 2 H and the corresponding Tgf 2 Hg. Then, by using (1.4), (1.5) and the

Cauchy-Schwartz inequality we get:

jTgf()j � kfk � kU()gk =
kgk

(< g;Ag >)1=2
kTgfkL2(�;d�) (1.8)

which proves that Hg is a reproducing kernel Hilbert space.
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1.2 Frames, Riesz Bases, s-Riesz Bases

Consider a Hilbert spaceH and an indexed set of vectors F = (fi)i2I in H with Ia �nite or countably

in�nite index set.

DEFINITION 1.5 The set F is called a frame for H if there are two positive constants 0 < A;B <

1 such that for every h 2 H:

Akhk
2
�

X
i2I

j < h; fi > j
2
� Bkhk

2
(1.9)

DEFINITION 1.6 The set F is called a Riesz basis for H if it is a frame and a Schauder basis

for H.

DEFINITION 1.7 The set F is called a Riesz basis for its span (or a s-Riesz basis) if there are

two positive constants 0 < A;B <1 such that for every �nite sequence of complex numbers (ci)i2I

(i.e. ci 6= 0 for only a �nite number of i's):

A

X
i2I

jcij
2
� k

X
i2I

cifik
2
� B

X
i2I

jcij
2 (1.10)

DEFINITION 1.8 The set F is called a Bessel sequence if there is a B > 0 such that for every

h 2 H:

X
i2I

j < h; fi > j
2
� Bkhk

2
(1.11)

REMARK 1.9 Any frame is a complete set, i.e. its closed linear span is all of H. Indeed, if h 2 H

is such that < h; fi >= 0 then (1.9) implies h = 0. Any frame, Riesz basis or s-Riesz basis is a

Bessel sequence as well. However the converse is not true in general.

The positive numbers A and B in (1.9) are called frame bounds and in (1.10) are called Riesz basis

bounds. The number B in (1.11) is called a Bessel sequence bound. If in (1.9) we can choose A = B

then the frame is called tight.
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Suppose F is a Bessel sequence. Then the following operators are well-de�ned and bounded:

T : H ! l2(I) ; Th = (< h; fi >)i2I (1.12)

T � : l2(I)! H ; T �c =
X
i2I

cifi (1.13)

S : H ! H ; S = T �T ; S h =
X
i2I

< h; fi > fi (1.14)

G : l2(I)! l2(I) ; G = TT � ; G c = (<
X
i2I

cifi; fj >)j2I (1.15)

where l2(I) is the Hilbert space of the complex-valued square summable sequences indexed by I.

Let E = RanT � l2(I) and E = RanT � � H . The operator T is called the analysis operator, T �

(the adjoint of T ) is called the synthesis operator, S is called the frame operator and G is called the

grammian operator. The space E is called the coe�cients range and E represents the linear span of

the set F. Let us denote by �i the sequence (�i)j = 1 if i = j and (�i)j = 0 if i 6= j. Then the set

f�igi2I is an orthonormal basis in l2(I). The matrix of the grammian operator in the canonical basis

f�igi2I of l2(I) is given by: (G)ij =< fj ; fi >, i; j 2 I.

When S is invertible we let ~fi and f
#
i be:

~fi = S�1fi ; f
#
i S

�1=2fi (1.16)

When G is invertible we denote by �f i and f \i the following vectors:

�f i = T �(G)�1�i ; f \i = T �(G)�1=2�i (1.17)

Then the following result is known in the literature (see [Daub90, HeWa89, Chris93] for proof):

PROPOSITION 1.10 I. Consider F = (fi)i2I a Bessel sequence in the Hilbert space H. Then

1. The set F is a frame with frame bounds A;B if and only if A1 � S � B1 (where T � S stands

for < Tf; f >�< Sf; f > for all f 2 H);

2. The set F is a s-Riesz basis with Riesz basis bounds A;B if A1 � G � B1;

II. Suppose that F is a frame for H with frame bounds A;B. Then
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1. E = H and E is a closed subspace of l2(I)

2. The set ~F = f ~fi; i 2 Ig is a frame for H (called the standard dual frame) with frame bounds

1
A
,

1
B

and having the same coe�cients range;

3. The following reconstruction formula (or discrete resolution of identity) holds true for every

h 2 H:

h =
X
i2I

< h; fi > ~fi =
X
i2I

< h; ~fi > fi (1.18)

4. The set F# = ff#i ; i 2 Ig is a tight frame for H (called the associated tight frame) with frame

bound 1 and having the same coe�cients range E;

5. The orthogonal projection onto the coe�cients range E is given by:

PE(c) = (<
X
j2I

cjfj ; ~fi >)i2I= (<
X
j2I

cj ~fj ; fi >)i2I= (<
X
j2I

cjf
#
j ; f

#
i )i2I (1.19)

III. Suppose now that F is a s-Riesz basis for H with Riesz basis bounds A;B. Then

1. E = l2(I) and E is a closed subspace of H;

2. The set �F = f �f i; i 2 Ig is a s-Riesz basis for H (called the standard biorthogonal s-Riesz basis)

with Riesz basis bounds
1
B
,

1
A

and having the same span E; moreover, < fi; �fj >= �ij (the

Kronecker symbol) and �F is the standard dual frame of F when the later is restricted to E;

3. The following reconstruction formula holds for every c 2 l2(I):

c = (<
X
j2I

cjfj ; �f i >)i2I= (<
X
j2I

cj �f j ; fi >)i2I (1.20)

4. The set Fb = ff \i; i 2 Ig is an orthonormal set in H (called the associated orthonormal set)

and having the same span E (i.e. it is an orthonormal basis for E);

5. The orthogonal projection onto the span E is given by:

PE =
X
i2I

< �; fi > �f i =
X
i2I

< �; �f i > fi =
X
i2I

< �; f \i > f \i (1.21)
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IV . The set F is a Riesz basis for H with Riesz basis bounds A;B if and only if it is complete

and (1.10) holds for every �nite sequence c (i.e. it is s-Riesz basis with Riesz basis bounds A;B). 2

In �gure 1.1 we pictured the action of various operators. We shall return in Chapter 2 to the

geometry of frames. There, we shall analyze certain equivalency relations between frames and a

distance between elements within the same class.

�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
��

HHHHHHHHH

E = RanT

l2(I)H

@
@
@
@
@@

E = RanT �

-

� T �

T �



�

�
S G

�-

Figure 1.1: Operators and Subspaces associated to Frames and s-Riesz Bases

1.3 Three Examples: Fourier, Weyl-Heisenberg and Wavelet

Sets

In section 1.1 we called coherent set a set of vectors obtained by discretizing a continuous orbit of a

l.c.g. unitary representation. In this section we present three examples that preview the analysis of

the forthcoming chapters.

Fourier Sets

The group is the additive group � = (R;+) with the usual Lebesgue measure as Haar measure

and the Hilbert space is the Paley-Wiener space of band-limited functions:

H = B2
� := ff 2 L2(R) j supp f̂ � [��; �]g (1.22)

with the usual scalar product inherited from L2(R). Then the unitary representation is given by

translations:

U : �! U(H) ; U(a)f(x) = f(x� a) (1.23)
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In this thesis we consider the Fourier transform with the following normalization:

f 2 L1(R) 7! f̂(�) = F(f)(�) :=
1p
2�

Z 1

�1
e�ix�f(x)dx (1.24)

de�ned on L1 and next extended to L2(R) via the Plancherel theorem. The inverse Fourier transform

will be denoted by F�1(f) or �f .

It can be easily seen that U given by (1.23) is highly reducible; however, it has cyclic vectors.

For instance g = �1[��;�] is such a cyclic vector. Next let us analyze the admissibility condition. Take

a g 2 B2
� . Then: Z

�

j < g;U(a)g > j2da =

Z 1

�1
daj
Z 1

�1
e�i�ajĝ(�)j2d�j2

= 2�

Z �

��
jĝ(�)j4d� = 2�kĝk44 (1.25)

Thus any function g 2 B2
� whose Fourier transform is in L4 is an admissible function. In

particular g = 1v[��;�] is such a function. Hence the representation (1.23) is a square integrable

representation. The domain D of the selfadjoint operator A in theorem 1.2 is given by

D = B2
� \ F�1(L4[��; �]) (1.26)

Fix an admissible vector d 2 D. We discretize the continuous orbit passing through g according to

the set L = f��ngn2Z� R. Thus we obtain the set of vectors:

G = fgn = g(�+ �n) ; n 2 Zg (1.27)

indexed by I= Z. Note that ĝn(�) = ei�n� ĝ(�). Let us denote by

Ĝ = fĝn ; n 2 Zg ; (1.28)

then obviously G is a frame, a Riesz basis or a s-Riesz basis for B2
� if and only if Ĝ is a frame, a

Riesz basis or a s-Riesz basis for L2[��; �]. Thus the analysis of G reduces to the analysis of Ĝ for

L2[��; �].

A very popular choice for g is ĝ = 1p
2�
1[��;�]. In this case, for �n = �

�
n the set G is an

orthonormal basis for B2
� . Since gn(x) =

p
�
�
sinc(�x� n�) we obtain, for every f 2 B2

� :

f(x) =
X
n2Z

< f; gn > gn =
X
n2Z

f(n
�

�
) � sinc(�x� n�) (1.29)
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which is the classical Shannon sampling theorem.

When G is a frame, a Riesz basis or a s-Riesz basis, it is called a Fourier frame, Fourier Riesz

basis or a Fourier s-Riesz basis. Likewise the sequence (�n)n2Z is called a frame sequence, Riesz

basis sequence or a s-Riesz basis sequence if G is such, for g = �1[��;�].

REMARK 1.11 The frame sequence de�nition can be extended to the complex plane as well. In

this case we are interested whether for �n = �n + i�n 2 C the set ffn(x) = ei�nx; n 2 Zg is a

frame, a Riesz basis or a s-Riesz basis in L2[��; �]. A basic principle due to Du�n and Schae�er in

[DuSc52] proves that if (�n)n2Z is a frame sequence and j�nj �M for some M <1, then (�n)n2Z

is a frame sequence as well. Thus, in general, the complex frame sequence problem reduces to a real

sequence frame problem plus uniform bound of the imaginary part.

REMARK 1.12 Sets of the form fg(���n); n 2 Zg have been also studied in L2(R) instead of the

smaller space B2
�. In this case, one is interested in studying conditions under which fg(���n); n 2 Zg

is a frame for its span or a s-Riesz basis. It turned out for the case �n = na, a > 0 that the functionP
m jĝ(� � 2�m

a
)j2 determines the behaviour of the set fg(� � na); n 2 Zg (see [BeLi95]).

Weyl-Heisenberg Sets

We set � to be the Weyl-Heisenberg group:

� = H1 := (T 1 � R � R; ?) (1.30)

(z1; p1; q1) ? (z2; p2; q2) = (z1z2e
i(p1q2�q1p2); p1 + p2; q1 + q2)

where T 1 = fz 2 C j jzj = 1g is the complex 1-torus, and H = L2(R). Both left and right invariant

measures are given by d�(z; p; q) = 1
z
dz dp dq. Therefore the group is unimodular. We consider the

following representation of H1 on L2(R):

U(z; p; q)f(x) = zeipxf(x� q) (1.31)

Choose a g 2 L2(R). Then, using the Plancherel identity again, the 2-norm of the coe�cient map

turns into: Z
�

j < g;U(z; p; q)g > j2d�(z; p; q) = 2�kgk42
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Thus, from (1.3) we get:

< g;Ag >= 2�kgk22 ) A = 2� � 1 (1.32)

This shows that D = L2(R), i.e. every vector is admissible. Take now an arbitrary function g 2

L2(R) and consider a discrete subset ofH1, L = f(zi; pi; qi); i 2 Ig. Then we call fU(zi; pi; qi)g; i 2 Ig

a Weyl-Heisenberg set (or, simply, a WH set) and g a window. A particular but very important case

is when we choose L to be the lattice L = f(1; 2�m�; n�);m;n 2 Zg for some �; � > 0. Then

we denote U(1; 2�m�; n�)g by gmn;�� or, when there is no danger of confusion, by gmn. Likewise,

we denote the Weyl-Heisenberg set fgmn;��;m;n 2 Zg by WHg;�;� . Also, in the coherent case, we

denote by Tg;�� the analysis operator associated to WHg;�;� .

The following theorem summarizes the well-known results in literature (see [Daub90, HeWa89,

DaLaLa95, Jans95]):

THEOREM 1.13 I. a) If the window g belongs to the Wiener amalgam space W (L1; l1) de�ned

as follows:

W (L1; l1) := ff : R ! C j kfkW (L1;l1) :=
X
n2Z

ess sup
x2[n;n+1]

jf(x)j <1g ; (1.33)

then the set WHg;�;� is a WH Bessel sequence for every �; � > 0;

b) If WHg;�;� is a WH Bessel sequence with bound B then:

1

�

X
n

jg(x� n�)j2 � B
2�

�

X
m

jĝ(� � 2�m�)j2 � B (1.34)

for every x; � 2 R.

II. Suppose WHg;�;� is a frame with bounds A;B. Set ~g = S�1g and ggmn = S�1gmn, where S

is the frame operator.

a) ggmn(x) = e2�im�x~g(x� n�), for every m;n 2 Z;

b) � � � � 1;

c) If �� = 1 the WHg;�;� is a Riesz basis (for L2(R));

d) The associated tight frame is given by WHg#;�;� where g# = S�1=2g;
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e) For every x; � 2 R:

A � 1

�

X
n

jg(x� n�)j2 � B ; A � 2�

�

X
m

jĝ(� � 2�m�)j2 � B (1.35)

III.

1. If Tg;�;� is bounded, so is Tg; 1
�
; 1
�

;

2. Let f; h 2 L2(R) such that Tg;�;�, Tf ;�;�, Th; 1
�
; 1
�

are all bounded. Then:

T �f ;�;�Tg;�;�h =
1

��
T �
h; 1
�
; 1
�

Tg; 1
�
; 1
�

f (1.36)

(the Wexler-Raz identity).

IV . WHg;�� is a frame if and only if WHg; 1
�
; 1
�

is a Riesz basis for its span;

V . Suppose WHg;�� is a frame and WHg; 1
�
; 1
�

a Riesz basis for its span.

1. WHg0;�;� is a dual of WHg;�� if and only if WH 1
��

g0; 1
�
; 1
�

is a pseudodual of WHg; 1
�
; 1
�

;

2. WH~g;�;� is the standard dual of WHg;�� if and only if WH 1
��

~g; 1
�
; 1
�

is the standard dual of

WHg; 1
�
; 1
�

;

3. WHg#;�;� is the associated tight frame of WHg;�� if and only if

WH 1p
��

g#; 1
�
; 1
�

is the associated orthonormal set of WHg; 1
�
; 1
�

; 2

As this theorem suggests, the product � �� plays a major role in the behavior of the setWHg;�;� .

We shall call r = 1
��

the de�cit or redundancy of the set WHg;�;� depending on whether �� � 1 or

�� � 1. Hence a WH s-Riesz basis has a de�cit r = 1
��

� 1 and a WH frame has a redundancy

r = 1
��

� 1.

Wavelet Sets

Take for � the ax+ b group (or the translations and dilations group) de�ned by:

ax+ b = (R� � R; o) (a1; b1)o(a2; b2) = (a1a2; b1 + a1b2) (1.37)

Set H = L2(R) and consider the unitary representation of ax+ b on L2(R) given by:

U : ax+ b! U(L2(R)) ; U(a; b)h(x) =
1p
jaj

h(
x� b

a
) (1.38)
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Note that the ax+b group is not unimodular; the left and right invariant measures are di�erent. The

measure of interest to us is the left invariant measure da db
a2

. After some computations, the 2-norm

of the coe�cient map (a; b) 7!< h;U(a; b)h > turns into:

Z
�

j < h;U(a; b)h > j2 da db
a2

= khk2
Z 1

�1

1

j�j jĥ(�)j
2d� (1.39)

Thus, if we take h 2 Dax+b = fh 2 L2(R)j
R
j�j�1jĥ(�)j2d� < 1g then (1.39) is �nite. This shows

that U admits an admissible vector. On the other hand, although (1.38) is not an irreducible repre-

sentation (the Hardy spaceH2 = ff 2 L2(R) jsupp f̂ � [0;1)g is invariant under the action of all uni-

tary translation and dilation operators) it has cyclic vectors: for instance take h = �1[�2�;��][[�;2�];

then, for each �xed a, spanfU(a; b)h; b 2 Rg is dense in F�1(L2([� 2�
a0
;� �

a0
][ [ �

a0
; 2�
a
])); thus, taking

union over a we get F�1(L2(R)) = L2(R). Hence (1.3) is given by: Âh(�) = 1
j�j
bh(�).

Wavelet sets are coherent sets obtained by discretizing a continuous orbit of the ax + b group

according to the discrete subset L = f(am0 ; am0 nb0);m;n 2 Zg for some �xed a0 > 1; b0 > 0. Thus

the wavelet set associated to the wavelet 	 2 Dax+b and parameters a0 > 1; b0 > 0 is:

W	;a0b0 = f	mn;a0b0(x) = a
�m=2
0 	(a�m0 x� nb0) ; m; n 2 Zg (1.40)

If (1.40) is a frame, a Riesz basis or a s-Riesz basis, it is called a wavelet frame, a wavelet Riesz basis

or a wavelet s-Riesz basis, accordingly.

The following theorem summarizes the relevant known results in literature:

THEOREM 1.14 I. a) If the wavelet 	 satis�es the following decay condition for some  >

1 + � > 1 and C > 0:

j	̂(�)j � Cj�j�
(1 + j�j) (1.41)

then the set W	;ab is a wavelet Bessel sequence for every a > 1, b > 0. Moreover, the upper bound

is estimated by the following:

B � 2�

b
fess sup

j�j2[1;a]

X
m2Z

j	̂(am�)j2 + 2

1X
k=1

[�(
2�k

b
)�(�2�k

b
)]1=2g (1.42)

where �(s) = esssupj�j2[1;a]
P

m2Zj	̂(am�)j � j	̂(am� + s)j;
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b) If W	;ab is a wavelet Bessel sequence with bound B, then for every � 2 R:

2�

b

X
m

j	̂(am�)j2 � B (1.43)

II. a) If 	 satis�es (1.41) then for any a > 1 such that
P

m j	̂(am�)j2 � const > 0 there is a

bC > 0 such that for every 0 < b < bC the set W	;ab is a wavelet frame. Moreover, the upper bound

is given by (1.42), whereas for the lower bound we have the following estimate:

A � 2�

b
fess inf

j�j2[1;a]

X
m2Z

j	̂(am�)j2 �
1X
k=1

[�(
2�k

b
)�(�2�k

b
)]1=2g (1.44)

b) If W	;ab is a wavelet frame with bounds A;B, then for every � 2 R:

A � 2�

b

X
m

j	̂(am�)j2 � B (1.45)

c) In general, the standard dual frame of W	;ab (when this is a frame) is not a wavelet set.

However, the following is true: g	mn = U(am; 0)e	n.

1.4 General Problems: Stability, Localization, Density

In this section we introduce three problems related to coherent sets. As we have seen before, a

coherent set is de�ned by two pieces of data: a generator (usually an admissible vector) and a

discrete subset of the l.c.g.

Stability. The stability problem refers to the coherent set behaviour when either the generator

or the l.c.g.'s subset is modi�ed. If the generator is perturbed, we can introduce a new norm to

measure how large the perturbation can be, to preserve the coherent set's property (either frame,

Riesz basis or s-Riesz basis). If the discrete subset L is deformed we distinguish between structural

perturbation, when only a norm condition characterizes the perturbation (as, for instance,in the

Fourier frame case when we perturb �n 7! �n + � + n, with j�nj < �), or parametric perturbation

when the initial subset L and the perturbed one L0 have the same parametric structure, but with

di�erent values of the parameters (for instance in the wavelet Riesz basis case when we perturb only

the translation parameter b into b+ �).
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Under such perturbation, our task is to determine whether the coherent set keeps its original

property (frame, Riesz basis, s-Riesz basis) and to estimate the new bounds.

Localization. The localization problem refers to the generator of the coherent set. Basically

we study how well localized in time-frequency domain it is. The quantity we are interested in is the

uncertainty product de�ned as:

�g(Q)�g(P ) = (

Z 1

�1
(x � �x)2jg(x)j2dx)1=2(

Z 1

�1
(� � ��)2jĝ(�)j2d�)1=2 (1.46)

where �x =
R1
�1 xjg(x)j2dx, �� =

R1
�1 �jĝ(�)j2d� and assuming the generator has been previously

normed, kgk = 1. The classical Fourier inequality (called also the Heisenberg uncertainty principle

for its quantum physics interpretation) states that �g(Q)�g(P ) � 1
2
.

On the other hand, ifWHg;�;� is a Weyl-Heisenberg Riesz basis, then by the Balian-Low theorem,

�g(Q)�g(P ) = 1. Thus, between 1
2
(the lowest nontrivial possible bound) and 1 we may have a

lot of room for the other coherent set generators. We shall analyze the localization problem for both

the WH and wavelet sets.

Density. The density problem refers to the discrete subset L of the l.c.g. �. The problem is

to �nd necessary conditions (in terms of the subset L) such that the coherent set to be a frame, a

Riesz basis or a s-Riesz basis. It is clearly connected with the stability problem since this density

condition should be invariant under structural or parametric perturbations; for instance, it is known

that if WHg;�;� is a frame then �� < 1; thus any parametric stability result should preserve this

condition. It turns out that the density concept is very well suited for the Weyl-Heisenberg sets, but

not for wavelet sets.



Chapter 2

Geometry of Frames

2.1 Equivalency Relations

Suppose H is an in�nite dimensional separable Hilbert space. A theorem due to Paley-Wiener

[PaWi34] states the following: let feigi2N be an orthonormal basis of H and let ffigi2N be a family

of vectors in H . If there exists a constant � 2 [0; 1) such that

k
nX
i=1

ci(ei � fi) k� � k
nX
i=1

ciei k= �(

nX
i=1

jcij2)1=2 (2.1)

for all n; c1; c2; : : : ; cn, then ffigi2N is a Riesz basis inH with Riesz basis bounds (1��)2, (1+�)2. An

extension of this theorem was given by Christensen in [Chris95] to Hilbert frames and by Christensen

and Heil in [ChHe96] to Banach frames.

Du�n and Eachus ([DuSc52]) proposed a converse of the above result by proving that every

Riesz basis, after a proper scaling, is close to an orthonormal basis in the sense of (2.1). We are

going to extend this result to Hilbert frames and to prove some results about quadratic closeness

and distance between two frames.

In this chapter we shall discuss mainly the relations between two frames. Let F = (fi)i2I and

G = (gi)i2I be two frames in H . We de�ne the following notions:

� If Q is an invertible bounded operator Q : H ! H with bounded inverse, and if gi = Qfi,

then we say that F and G are Q-equivalent.

� We say they are unitarily equivalent if they are Q-equivalent for a unitary operator Q.

15
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� If Q is a bounded operator Q : H ! H (not necessarily invertible) and gi = Qfi, then we say

F is Q-partial-equivalent with G.

� We say F is partial-isometric-equivalent with G if there exists a partial isometry J : H ! H

such that gi = Jfi (then J should satisfy JJ
� = 1 since gi 2 RanJ and G is a complete set in

H).

The last two relations (Q-partial-equivalent and partial- isometric-equivalent) are not equivalence

relations, because they are not symmetric.

We say that a frame G = (gi)i2I is (quadratically) close to a frame F = (fi)i2I if there exists a

positive number � � 0 such that:

k
X
i2I

ci(gi � fi) k� � k
X
i2I

cifi k (2.2)

for any c = (ci)i2I 2 l
2(I) (see [Youn80]). The in�mum of such �'s for which (2.2) holds for any

c 2 l
2(I) will be called the closeness bound of the frame G to the frame F and denoted by c(G;F).

The closeness relation is not an equivalence relation (it is transitive, but not symmetric in gen-

eral). However, if G is quadratically close to F with a closeness bound less than 1, then F is also

quadratically close to G but the closeness bound is di�erent, in general. Indeed, from (2.2) it follows

that:

k
X
i2I

ci(gi � fi) k�
�

1� �
k
X
i2I

cigi k

The closeness bound can be related to a relative operator bound used in perturbation theory

(see [Kato76]). More speci�cally, if T g
; T

f denote the analysis operators associated respectively to

the frames G and F, then c(G;F) is the (T f )�-bound of (T g)� � (T f )� (in the terminology of Kato).

The next step is to correct the nonsymmetry of the closeness relation. We say that two frames

F = (fi)i2I and G = (gi)i2I are near if F is close to G and G is close to F. Nearness is now an

equivalence relation. We de�ne the predistance d0(F;G) between F and G, two frames that are near

to each other, as the maximum between the two closeness bounds:

d
0(F;G) = max(c(F;G); c(G;F)) (2.3)
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It is easy to prove that d0 is positive and symmetric, but does not satisfy the triangle inequality.

This inconvenience can be removed if we de�ne the (quadratic) distance between F and G by:

d(F;G) = log(d0(F;G) + 1) (2.4)

Then, as we shall see later (Theorem 2.7), this de�nes a metric on the set of frames which are near

to one another.

Since the nearness relation is an equivalence relation, we can partition the set of all frames on

H , denoted F(H), into disjoint equivalent classes, indexed by an index set A:

F(H) =
[
�2A

E� (2.5)

with the following properties:

E� \ E� = ; ; for � 6= �

8F;G 2 E�; d(F;G) <1; and 8F 2 E�;G 2 E� with � 6= � ; d(F;G) =1:

Let � denote the index projection: � : F(H)! A with F 7! �(F) = � if F 2 E�. We shall prove that

the partition (2.5) corresponds to the nondisjoint partition of l2(I) into closed in�nite dimensional

subspaces. Moreover, the two equivalence relations introduced before are identical (i.e. two frames

are near if and only if they are Q-equivalent) as we shall prove later.

We shall be interested in �nding the nearest tight frame to a given frame. For a frame G we

denote by T1G the set of tight frames which are quadratically close to G and by T2G the set of tight

frames such that G is close to them:

T
1
G = fF = (fi)i2I j F is a tight frame and c(G;F) < +1g (2.6)

T
2
G = fF = (fi)i2IjF is a tight frame and c(F;G) < +1g (2.7)

When no confusion can arise, we shall drop the subscript G. Let d1 : T1 ! R+ , d
2 : T2 ! R+ denote

the map from each F to the associated closeness bound, i.e. d1(F) = c(G;F) and d
2(F) = c(F;G). If

G is a tight frame itself then G 2 T1 \ T2 and min d1 = min d2 = 0.
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Consider now the intersection between these two sets:

TG = T
1 \ T2 = fF = (fi)i2I j F is a tight frame and d(F;G) < +1g � E�(G) (2.8)

In section 2.3 we will be looking for the minima of the functions d1, d2 and djT.

2.2 Geometry of Equivalent Frames

In this section we are mainly concerned with the relations introduced before. We shall prove that

Q-equivalence is the same as nearness (in other words, two frames are Q-equivalent if and only if they

are near). The following lemmas are fundamental for all constructions and results in this chapter:

LEMMA 2.1 Consider F1 = ff1
i
g
i2I and F2 = ff2

i
g
i2I two tight frames in H with frame bounds

1. Denote by T1 and T2 respectively their analysis operators. Then:

1) RanT2 � RanT1 if and only if F1 and F2 are partial isometric equivalent; moreover, if J

is the corresponding partial isometry, then Ker J ' RanT1=RanT2, more speci�cally: Ker J =

T
�
1 (RanT1 \ (RanT2)

?);

2) RanT1 = RanT2 if and only if F1 and F2 are unitarily equivalent.

Proof

1. Suppose F1 and F2 are partial isometric equivalent. Then f
2
i
= Jf

2
i
and T2 = T1J

� for some

partial isometry J . Obviously, RanT2 � RanT1. Now, recall that T1 and T2 are isometries from

H onto their ranges (since F1 and F2 are tight frames with bound 1). Therefore they preserve the

scalar product and linear independency. Thus:

RanT1 = T1(RanJ
� �Ker J) = T1J

�(H)� T1(Ker J) = RanT2 � T1(Ker J)

and T1(Ker J) is the orthogonal complement of RanT2 into RanT1. On the other hand T
�
1 jRanT1

is the inverse of T1 : H ! RanT1 and thus Ker J = T
�
1 (RanT1 \ (RanT2)

?) �xing canonically the

isometric isomorphism Ker J ' RanT1=RanT2.

Conversely, suppose RanT2 � RanT1. Then, the two projectors are P1 = T1T
�
1 onto RanT1

and P2 = T2T
�
2 onto RanT2 and we have P1T2 = T2. Now, consider J : H ! H , J = T

�
2 T1 which
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acts in the following way:

J(x) =
X
i2I

< x; f
1
i
> f

2
i

We have:

JJ
� = T

�
2 T1T

�
1 T2 = T

�
2 P1T2 = T

�
2 T2 = 1

We want to prove now that f2
j
= Jf

1
j
for all j. We have, for �xed j,

Jf
1
j
� f

2
j
=
X
i2I

(< f
1
j
; f

1
i
> � < f

2
j
; f

2
i
>)f2i = T

�
2 c

where c = fcigi2I, ci =< f
1
j
; f

1
i
> � < f

2
j
; f

2
i
>. On the other hand:

0 = f
1
j �
X
i2I

< f
1
j ; f

1
i > f

1
i =

X
i2I

(�ij� < f
1
j ; f

1
i >)f1i = T

�
1 a

j

where aj = faj
i
g
i2I, a

j

i
= �ij� < f

1
j
; f

1
i
> and �ij is the Kronecker symbol. Similarly 0 = T

�
2 b

j with

b
j = fbj

i
g
i2I, b

j

i
= �ij� < f

2
j
; f

2
i
>. Thus aj 2 Ker T

�
1 and bj 2 Ker T

�
2 . ButKer T

�
1 = (RanT1)

? �

(RanT2)
? = Ker T

�
2 . Therefore a

j 2 Ker T
�
2 and then cj = a

j�b
j 2 Ker T

�
2 which means T �2 c

j = 0

or f2
j
= Jf

1
j
. Moreover, T2 = T1J

� and, as we have proved before, Ker J = T
�
1 (RanT1\(RanT2)?).

2. The conclusion comes from point 1: the partial isometry will have a zero kernel (Ker J = f0g)

and therefore it is a unitary operator (recall that the range of J should be H).

This ends the proof of the lemma. 2

LEMMA 2.2 Consider F1 = ff1
i
g
i2I and F2 = ff2

i
g
i2I two frames in H. Let us denote their

analysis operators by T1 and T2, respectively. Then:

1) RanT2 � RanT1 if and only if F1 and F2 are Q-partial equivalent for some bounded operator

Q; furthermore, KerQ = T
�
1 (RanT1 \ (RanT2)

?).

2) RanT1 = RanT2 if and only if F1 and F2 are Q-equivalent, for some invertible operator Q

with bounded inverse.

Proof

Let us denote the frame operators by S1 = T
�
1 T1, S2 = T

�
2 T2.

1. Suppose RanT2 � RanT1. As before we de�ne (f1
i
)# = S

�1=2
1 f

1
i
. Then F1

# is S
1=2
1 -

equivalent with F1. By Lemma 2.1, F1
# is J-partial equivalent with F2

#, where J = (T
#
2 )�T#

1 is
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a partial isometry and F2
# de�ned by f

2
i
= S

1=2
2 (f2

i
)# is S

1=2
2 -equivalent with F2. By composing ,

we get that F1 is Q-partial equivalent with F2 with Q = S
1=2
2 JS

�1=2
1 . Furthermore, since S1 and S2

are invertible, KerQ = S
1=2
1 Ker J = T

�
1 (RanT1 \ (RanT2)

?).

Conversely, if F1 is Q-partial equivalent with F2 and Q is the bounded operator relating F1 to F2,

then T2 = T1Q
� and obvious RanT2 � RanT1. On the other hand, since T �1 T1 = S1 is invertible,

Q = T
�
2 T1S

�1
1 and then F1

# is J-partial equivalent with F2
# with J = S

�1=2
2 QS

1=2
1 . We have:

JJ
� = S

�1=2
2 QS

1=2
1 S

1=2
1 Q

�
S
�1=2
2 = S

�1=2
2 T

�
2 P1T2S

�1=2
2

where P1 = T1S
�1
1 T

�
1 is the orthogonal projection onto RanT1. But RanT2 � RanT1, hence

P1T2 = T2. Thus: JJ
� = S

�1=2
2 T

�
2 T2S

�1=2
2 = 1, proving that J is a partial isometry. Now we apply

the conclusion of Lemma 2.1 and obtain that Ker J = (T
#
1 )�(RanT1 \ (RanT2)

?). Substituting

this into KerQ = S
1=2
1 Ker J we obtain the result.

2. The statement is obtained from 1), by observing that KerQ = f0g; since we also know that

RanQ = H , Q is therefore invertible with bounded inverse. 2

We now present the connection between the closeness relation and partial equivalence.

LEMMA 2.3 Consider F1 = ff1
i
g
i2I and F2 = ff2

i
g
i2I two frames in H. Let us denote their

analysis operators by T1 and T2, respectively. Then F1 is close to F2 (i.e. c(F1;F2) <1) if and only

if F2 is Q-partial equivalent with F1 for some bounded operator Q and therefore RanT2 � RanT1.

Moreover c(F1;F2) =k Q� 1 k.

Proof

)

Suppose F1 is close to F2. Then k
P

i2Ici(f
1
i
� f

2
i
) k� � k

P
i2Icif

2
i
k for � = c(F1;F2).

If c = fcigi2I 2 Ker T
�
2 , then necessarily c 2 Ker T

�
1 . Therefore Ker T

�
2 � Ker T

�
1 or RanT1 =

(Ker T
�
1 )
? � (Ker T

�
2 )
? = RanT2. Now, applying Lemma 2.2 we get that F2 is Q-partial equivalent

with F1. Then f
1
i
= Qf

2
i
. For any v 2 H we can �nd (ci)i2I 2 l

2(I) such that v =
P

i2Icif
2
i
; we

then have:
P

i2Ici(f
1
i
� f

2
i
) = (Q� 1)v, so that

inf
T�

2
c6=0

k(T �1 � T
�
2 )ck

kT �2 ck
= inf

v 6=0

k(Q� 1)vk
kvk

= kQ� 1k
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Therefore c(F1;F2) = k Q� 1 k.

(

Suppose F2 is Q-partial equivalent with F1. Then, it is easy to check that c(F1;F2) =k Q� 1 k

and then F1 is close to F2. 2

As a consequence of this lemma, we obtain the following result:

THEOREM 2.4 Let F1 and F2 be two frames. Then they are near if and only if they are Q-

equivalent for some invertible operator Q. Moreover, d0(F1;F2) = max(k Q � 1 k; k 1 � Q
�1 k).

3

Applying this theorem to the set T de�ned in (2:8) we obtain the following corollary:

COROLLARY 2.5 Consider a frame G = (gi)i2I in H and consider also the set TG de�ned by

(2:8). Then T is parametrized in the following way:

TG = fF = (fi)i2I j fi = �Ug
#
i
where � > 0 and U is unitaryg

Proof

Indeed, let � > 0 and U unitary. Then, by computing its frame operator one can easily check

that F = (fi)i2I, fi = �Ug
#
i
is a tight frame with bound �

2.

Conversely, suppose F = (fi)i2I 2 T. Then, from Theorem 2.4 we obtain fi = Qg
#
i

for some

invertible Q. We compute its frame operator:

S
F =

X
i2I

< �; fi > fi = Q(
X
i2I

< �; g#
i
> g

#
i
)Q� = QQ

�

Therefore QQ� = A � 1 which means that 1p
A
Q is unitary. Thus Q =

p
AU for some unitary U . 2

The following result makes a connection between the extension of the Paley and Wiener theorem

given by Christensen in [Chris95] and the relations introduced so far:

THEOREM 2.6 Let F = (fi)i2I be a frame in H and G = (gi)i2I be a set of vectors in H. Suppose

there exists � 2 [0; 1) such that

k
X
i2I

ci(gi � fi) k� � k
X
i2I

cifi k
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for any n 2 N and c1; c2; : : : in C . Then G is a frame in H and:

1) G is Q-equivalent with F;

2) If T f and T
g are the analysis operators associated respectively to F and G, then RanT

f =

RanT
g;

3) c(G;F) � � < 1 and d
0(G;F) <1.

Proof

The conclusion that G is a frame follows from a stability result proved by Christensen in [Chris95].

As we have checked before, from c(G;F) < 1 we get c(F;G) � �

1�� <1. Therefore F and G are near

and we can apply Theorem 2.4 and complete the proof. 2

Theorem 2.4 allows us to partition the set of all frames on H , denoted F(H), into equivalent

classes, as follows:

F(H) =
[
�2A

E�

where E� � F(H) is a set of frames such that any F;G 2 E�, F is Q-equivalent with G or, equivalent,

F is near to G. Therefore, for each index � 2 A, the function d
0 : E� �E� ! R+ is well-de�ned and

�nite. We want to prove now that the function:

d : E� � E� ! R+ ; d(F;G) = log(1 + d
0(F;G))

is a distance on each class E�.

THEOREM 2.7 The function d de�ned above is a distance on E�. Moreover, for any F 2 E� and

G 2 F(H), if d(F;G) <1 then G 2 E�.

Proof

The second part of the statement is immediate: if d(F;G) is �nite so is d0(F;G); hence F is close

to G and therefore they belong to the same class. To prove that d is a distance we need to check only

the triangle inequality. Let F;G;H 2 E�. Then there exist Q and R invertible bounded operators

on H such that gi = Qfi, hi = Rgi and therefore hi = RQfi. We have:

d(F;G) = log(1 +max(k Q� 1 k; k Q�1 � 1 k))
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d(G;H) = log(1 +max(k R� 1 k; k R�1 � 1 k))

d(F;H) = log(1 +max(k RQ� 1 k; k Q�1R�1 � 1 k))

and:

k RQ� 1 k= k (R� 1)(Q� 1) +R+Q� 2 k � k R� 1 k � k Q� 1 k + k R� 1 k + k Q� 1 k

= (k R� 1 k +1)(k Q� 1 k +1)� 1

Hence:

log(k RQ� 1 k +1) � log(k R� 1 k +1) + log(k Q� 1 k +1)

Similarly for k Q�1R�1 � 1 k and therefore d(F;H) � d(F;G) + d(G;H). 2

The next step is to relate the partition (2.5) with the set of in�nite dimensional closed subspaces of

l2(I). We suppose H is in�nite dimensional and I is countably in�nite. Otherwise the following result

still holds providing we replace \in�nite dimensional closed subspaces" by \subspaces of dimension

equal with the dimension of H".

Let us denote by S(l2(I)) the set of all in�nite dimensional closed subspaces of l2(I). Then Lemma

2.2 and Theorem 2.4 assert that F(H) is mapped into S(l2(I)) by:

i : F(H)! S(l2(I)) ; i(E�) = RanT (2.9)

where T is the analysis operator associated to any frame F 2 E�. The natural question that can

be asked is whether i is surjective, i.e. if for any closed in�nite dimensional subspace of l2(I) we

can �nd a corresponding frame in F(H). The answer is yes as the following theorem proves (see

Christensen in [Chris93], Aldroubi in [Ald94] or Holub in [Hol94] for this type of argument):

THEOREM 2.8 For any in�nite dimensional closed subspace E of l2(I) there exists a frame F 2
F(H) (and therefore a class E�) such that i(F) = E (in other words, RanT = E with T the analysis

operator associated to F). Therefore i is a bijective mapping from the set of classes E� into S(l2(I)).

Proof

Let E � l2(I) be an in�nite dimensional closed subspace. Choose an orthonormal basis fdigi2I
in E and a basis feigi2I in H (recall H is in�nite dimensional and separable and I countably
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in�nite). Let pi : l
2(I)! C be the canonical projections, pi(c) = ci, where c = fcjgj2I, i 2 I. Let

P : l2(I)! C be the orthogonal projection onto E. Let us denote by f�igi2I the canonical basis in

l2(I), i.e. �i = f�ijgj2I. Then it is known (see [Hol94]) that fP�igi2I is a tight frame with bound

1 in E (and any tight frame indexed by I with bound 1 in E is of this form, i.e. the orthogonal

projection of some orthonormal basis of l2(I)) since:

X
i2I

< c; P�i > P�i = P
X
i2I

< Pc; �i > �i = Pc = c ; 8c 2 E

We de�ne a tight frame with bound 1 in H in the following way:

fi =
X
j2I

< P�i; dj > ej =
X
j2I

< �i; dj > ej =
X
ji

pi(dj)ej

It is easy to prove that fi's are well de�ned, since k fik2 =
P

j2Ij < P�i; dj > j2 =k P�ik2 < 1.

Let T be the analysis operator associated to ffigi2I and x 2 H be arbitrarly. Then:

< x; fi >=
X
j2I

pi(dj) < x; ej >= pi(
X
j2I

< x; ej > dj) ; 8i 2 I

Thus: T (x) = f< x; fi > g
i2I=

P
j2I< x; ej > dj and obviously RanT = E. It is simple to check

that Tfi = P�i and therefore ffigi2I is a tight frame with bound 1. 2

2.3 The Closest Tight Frames

We are concerned here with close frames and with the distance functions d1; d2 and djT introduced

earlier; we would like to characterize the minima of these functions. Here is the main result:

THEOREM 2.9 Consider G = (gi)i2I a frame in H with optimal frame bounds A;B and consider

the sets T1, T2 and T introduced in (2:6), (2:7) and (2:8). Let us denote by � =
p
B�

p
Ap

B+
p
A

and

� = 1

4
(logB � logA). Then the following conclusions hold:

1: The values of the minima of d1, d2 and djT are given by:

min d1 = min d2 = � min djT = �

2: These values are achieved by the following scalings of the associated tight frames of G:

F1 = ff1i gi2I ; f1i =

p
A+

p
B

2
g
#

i
(2.10)
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F
2 = ff2i gi2I ; f2i =

2
p
ABp

A+
p
B
g
#

i
(2.11)

F
0 = ff0i gi2I ; f0i =

4
p
ABg

#

i
(2.12)

Hence d1(F1) = d2(F2) = � and d(F0) = �

3: Any tight frame that achieves the minimum of one of the three functions d1, d2 or d is unitarily

equivalent with the corresponding solution (2:10), (2:11) or (2:12) in the following way:

(d1)
�1

(�) = fK = fkigi2Ijki = Uf1i ; U unitary and k U � 2p
A+

p
B
S1=2 k= �g (2.13)

(d2)
�1

(�) = fK = fkigi2Ijki = Uf2i ; U unitary

and k U � 2
p
ABp

A+
p
B
S�1=2 k= �g (2.14)

d�1(�) = fK = fkigi2Ijki = Uf0i ; U unitary

and k U � 4
p
ABS�1=2 k= k U � 1

4
p
AB

S1=2 k= �g (2.15)

where S is the frame operator associated to G. Moreover, any unitary operator that parametrizes

(d1)�1(�), (d2)�1(�) or d�1(�) as above, has the value 1 in its spectrum.

Proof

If G is a tight frame then F1 = F2 = F0 = G and � = � = 0 and the problem is solved. Therefore

we may suppose that A < B.

The proof proceeds in three steps. In the �rst step we check that d1(F1) = d2(F2) = � and

d(F0) = �. Then, since � < 1, it follows that the in�mum of d1 and d2 are less than 1. Now, using

Corollary 2.5 and Theorem 2.4 we can reduce our problem to an in�mum of an operator norm. In

the third step we will prove two lemmas, one to be applied to d1 and d2, and the other to d, and

this will end the proof.

i) Let us check that (2:10), (2:11), (2:12) achieve the desired values for d1, d2 and d, respectively.

For f1
i
= Qgi with Q =

p
A+

p
B

2
S�1=2 we have d1(F1) = c(G;F1) =k 1�Q�1 k. Now, pA � S1=2 �

p
B and these bounds are optimal. Therefore:

�
p
B �pAp
B +

p
A
� 1�Q�1 �

p
B �pAp
B +

p
A
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which means k 1 � Q�1 k= �. Similar, for f2
i
= Lgi with L = 2

p
ABp

A+
p
B
S�1=2 we have d2(F2) =

c(F2;G) =k L� 1 k and a similar calculus shows that d2(F2) = �.

For F0 we have f0
i
= Rgi with R =

4
p
ABS�1=2; an easily calculation shows that:

k R� 1 k= k 1�R�1 k= max(
4

r
B

A
� 1; 1� 4

r
A

B
) =

4

r
B

A
� 1:

Therefore:

d(F0) = log(1 +max(k R� 1 k; k 1�R�1 k)) = log
4

r
B

A
= �

ii) Since we are looking for the in�mum of the functions d1, d2 and since � < 1 we may restrict

our attention to the tight frames F 2 T
1 (or in T2) such that d1(F) < 1 (respectively d2(F) < 1).

But this implies also that d2(F) < 1 (respectively d1(F) < 1). Therefore we may restrict our

attention to tight frames in T1 \ T2 = T.

Corrolary 2.5 tells us that these frames must have the form: F = (fi)i2I and fi =
p
CUg

#

i
=

p
CUS�1=2gi for some C > 0 and U unitary. Hence:

d1(F) =k 1� 1p
C
S1=2U�1 k= k 1p

C
S1=2 � U k (2.16)

d2(F) =k
p
CUS�1=2 � 1 k= k

p
CS1=2 � U k (2.17)

d0(F) = max(k 1p
C
S1=2 � U k; k

p
CS�1=2 � U k) (2.18)

To minimize d is equivalent to minimize d0; since d0 has a simpler expression, we prefer to work

with d0 from now on.

Thus, our problem is reduced to �nd minima of the operator norms (2:16), (2:17), (2:18) subject

to C > 0 and U unitary.

iii) The next step is to solve these norm problems. For d1 and d2 we apply the following lemma

to be proved later:
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LEMMA 2.10 Consider R a selfadjoint operator on H with a =k R�1k�1 and b =k R k. Then,

the solution of the following inf-problem:

� = inf

� > 0

U unitary

k �R� U k (2.19)

is given by � = b�a
b+a

and � = 2

a+b
. This in�mum is achieved by the identity operator; any other

unitary U that achieves the in�mum must have 1 in its spectrum.

If we apply this lemma with R = S1=2, � = 1p
C

and a =
p
A, b =

p
B, then we get � =

p
B�

p
Ap

B+
p
A
� � and � = 2p

A+
p
B
, hence the parametrization (2:13) of the solutions. This proves (2:16).

For (2:17) we apply the lemma with R = S�1=2, � =
p
C and a = 1p

B
, b = 1p

A
. We get � = � and

� = 2
p
ABp

A+
p
B
, hence the parametrization (2:14) of the solutions.

For d we need a similar lemma, but this time for another optimization problem:

LEMMA 2.11 Consider R a bounded invertible selfadjoint operator on H with a =k R�1k�1 and

b = k R k. Then, the solution of the following optimization problem:

� = inf

� > 0

U unitary

max(k �R � U k; k 1

�
R�1 � U k) (2.20)

is given by � =

q
b

a
� 1, � = 1p

ab
and U in the set:

fU : H ! H jU unitary and k 1p
ab
R � U k= k

p
abR�1 � U k=

r
b

a
� 1g (2.21)

Moreover, the set (2:24) contains the identity and therefore is not empty, and the spectrum of any

U contains 1.

The solution for d0 is now straightforward: we apply this lemma to (2:18) with R = S1=2, � = 1p
C

and a =
p
A, b =

p
B. We get � = min d0 = 4

q
B

A
� 1 and � = 1

4
p
AB

, hence the parametrization

(2:15) of the solution and the proof of theorem is complete. 2

It still remains to prove the two lemmas:

Proof of Lemma 2.10
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We denote by �(X) the spectrum of the operator X . Thus a; b 2 �(R). Now, by Weyl's criterion

(see for instance [ReSi80]), there are two sequences of normed vectors in H , (vn)n2N and (wn)n2N

such that k vn k=k wn k= 1 and limn k (R � a)vn k= 0, limn k (R� b)wn k= 0.

Let � = � � 2
a+b

. Suppose � > 0. Let " = �

2
b. Then there exists an index N such that for any

n > N , k Rwn � bwn k� "

�
. We get k �Rwn k� �b� " > 1 and:

k (�R� U)wn k� j k �Rwn k � k Uwn k j =k �Rwn k �1 � �b� "� 1 =
b� a

b+ a
+ "

Therefore:

k �R � U k� b� a

b+ a
+ " >

b� a

b+ a
= � (2.22)

Suppose now � < 0. Let " = � �

2
a > 0. Then, there exists an N such that for any n > N ,

k Rvn � avn k� "

�
. We get k �Rvn k� �a+ " < 1 and:

k (�R � U)vn k� j k �Rvn k � k Uvn k j = 1� k �Rvn k� 1� �a� " =
b� a

b+ a
+ "

Therefore:

k �R � U k� b� a

b+ a
+ " >

b� a

b+ a
= � (2.23)

From (2.22) and (2.23) we observe that the in�mum of k �R � U k has the value b�a
b+a

and may be

achieved only if � = 0, i.e. � = 2
a+b

. Thus, the �rst part of the lemma has been proved.

The set of all unitary U that achieve the in�mum is then given by:

fU : H ! H jU unitary and k 2

a+ b
R� U k= b� a

b+ a
g (2.24)

We still have to prove that the set (2:24) contains the identity and 1 is in spectrum of any unitary

operator from this set.

From a � R � b we get � b�a
b+a

� 2
a+b

R � 1 � b�a
b+a

. Therefore k 2
a+b

R � 1 k� b�a
b+a

. But, as we

have proved, b�a
b+a

is the minimum that can be achieved. Therefore k 2
a+b

R� 1 k= b�a
b+a

= � and thus

1 is in the set (2:24).
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Now recall the sequence (vn)n and the inequality (2:22) which is realized on (vn)n. For U in the

set (2:24) we have: k ( 2
a+b

R� U)vn k! �. But:

k ( 2

a+ b
R� U)vnk2 = 4

(a+ b)2
< vn; R

2vn > � 2

a+ b
< vn; (RU + U�R)vn > +1

From (R � a)vn ! 0 we get < vn; R
2vn >! a2. Therefore:

lim
n

< vn; (RU + U�R)vn >=
a+ b

2
(

4a2

(a+ b)2
+ 1� �2) = 2a

Now:

RU + U�R = (R� a)U + U�(R� a) + a(U + U�)

and the previous limit gives limn < vn; (U + U�)vn >= 2.

Therefore:

k (U � 1)vnk2 =< vn; (2� (U + U�))vn >! 0

or limn k (U � 1)vn k= 0 which proves 1 2 �(U). 2

Proof of Lemma 2.11

First, let us solve the following scalar problem:

�� = inf

� > 0

max( max

a � x � b

j�x � 1j; max

a � x � b

j 1
�x

� 1j) (2.25)

Because of monotonicity:

max

a � x � b

j�x � 1j = max (j�a� 1j; j�b� 1j)

max

a � x � b

j 1
�x

� 1j = max (j 1
�a

� 1j; j 1
�b

� 1j)

Therefore �� = inf

� > 0

f(�) where f(�) = max (j�a� 1j ; j�b� 1j ; j 1
�a

� 1j ; j 1
�b

� 1j)

It is now simple to check that where the in�mum is achieved at least two moduli are equal. This

condition is ful�lled at the following points:

�1 =
2

a+ b
; �2 =

1

a
; �3 =

1

a
� 1

a

r
1� a

b
; �4 =

1p
ab

; �5 =
1

b
; �6 =

a+ b

2ab
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We evaluate f(�) at these points and we get:

f(�1) =
b� a

2a
; f(�2) =

b� a

a
; f(�3) =

p
b� a

a
(
p
b�

p
b� a)

f(�4) =

r
b

a
� 1; f(�5) =

b� a

a
; f(�6) =

b� a

2a

It is obvious now that: f(�4) � f(�1) = f(�6) � f(�2) = f(�5) � f(�3) and therefore �� = f(�4) =q
b

a
� 1 and �optim = �4 =

1p
ab
. Observe also that for � = �4 we have:

max

a � x � b

j�4x� 1j = max

a � x � b

j 1

�4x
� 1j

Let us now return to the norm problem (2:20). We are going to prove now that � = �� =

q
b

a
� 1 is the

optimum and � = �4 =
1p
ab
. As in the previous lemma, consider (vn)n�1 and (wn)n�1 two sequences

of normed vectors inH (k vn k= k wn k= 1) such that limn k (R�a)vn k= 0, limn k (R�b)wn k= 0.

It is simple to check that limn k (R�1 � 1
a
)vn k= 0 and limn k (R�1 � 1

b
)wn k= 0 hold too. Now,

consider some � > 0, � 6= �4 =
1p
ab
. Then, as in the scalar problem above, we have:

either max

a � x � b

j�x� 1j > �� or max

a � x � b

j 1
�x

� 1j > �� (2.26)

Suppose the �rst inequality holds. Now, either j�a�1j > �� or j�b�1j > ��. In the former case we use

the sequence (vn)n as follows: Let " = 1

2
(j�a�1j� ��) > 0 and let N" be such that k (R�a)vn k� "

�

for any n � N". Then:

k (�R� U)vn k� j k �Rvn k � k Uvn k j = j� k avn + (R� a)vn k �1j �

� j�a� 1j � � k (R� a)vn k> ��+ "

which implies k �R� U k> ��+ ".

Similarly, in the later case (j�b � 1j > ��) we take " = 1
2
(j�b � 1j � ��) > 0 and N" such that

k (R� b)wn k� "

�
for any n � N". Therefore:

k (�R � U)wn k� j k �Rwn k � k Uwn k j = j� k bwn + (R� b)wn k �1j �

� j�b� 1j � � k (R� b)wn k> ��+ "
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Thus, in both cases we obtain k �R � U k> ��. If the second inequality in (2.26) holds, a similar

argument can be used to prove that, for � 6= �4 we have k 1
�
R�1�U k> ��. Therefore the optimum

in (2:20) is achieved for � = 1p
ab

and the value of it is � =

q
b

a
� 1. It is obvious now that the set

of unitary operators that achieve the optimum is given by (2:21) and also that the identity operator

is in that set. The only problem that still remains to be proved is that all these unitary operators

have 1 in their spectrum.

The previous argument proves the following conclusion: �x �0 > 0 small enough and let U be in

the set (2.21). Then, since �� < k(�R�U)wnk for all � 6= 1p
ab

we can substitute � = 1p
ab

+ �, where

0 < � � �0, and obtain:

�� �k (�R+
1p
ab
R� U)wn k

for n � N� where N� is an integer depending on �. Then �� �k (�R+ 1p
ab
R�U)wn k< � k R k +��

for n � N� (use (2.21); it follows that j k( 1p
ab
R�U)wnk� ��j � 2�kRk can be made arbitrarily small

by choosing n su�ciently large, so that k ( 1p
ab
R�U)wn k! �� when n!1. Now, by repeating the

argument given in the proof of lemma 2.10 we obtain limn k (U � 1)wn k= 0 which proves 1 2 �(U)

and the lemma is proved. 2

REMARK 2.12 We point out that the entire theory can be carried out on the set of Hilbert frames

over di�erent Hilbert spaces, but indexed by the same index set. All the results are similar, the

changes being straightforward.

REMARK 2.13 As a �nal remark we acknowledge that the two Lemmas 2.1 and 2.2 have also

been independently obtained by D.Han and D.R.Larson in a recent paper ([HaLa97]).



Chapter 3

Stability of Coherent Frames

3.1 General Stability Results

All the stability results for frames known in the literature are based on the perturbation of the

identity principle (which says that if A is a bounded linear operator with kAk � 1 then I + A is

invertible and k(I + A)�1k � (1 � kAk)�1 or small variations of it. These various stability results

can be summarized in the following theorem due mainly (in this form) to O.Christensen:

THEOREM 3.1 (Stability Theorem for Hilbert Frames) Suppose H a separable complex

Hilbert space, I a countable index set and F = ffigi2I a frame in H with bounds A;B. Consider

G = (gi)i2I a family of vectors in H. If one of the following two conditions is ful�lled 8x 2 H:

(Type 1) (
X

i2I

j < x; fi � gi > j2)1=2 � �(
X

i2I

j < x; fi > j2)1=2 + �kxk (3.1)

or 8n � 0; ci 2 C :

(Type 2) k
X

n2IN

ci(fi � gi)k � �k
X

n2IN

cifik+ �(
X

n2IN

jcij2)1=2 (3.2)

where (In)n�0 is an increasing sequence of �nite subsets of I: I0 � I1 � I2 � : : : � I such that

[n2NIn = I, and � + �p
A

< 1; then (gi)i2I is also a frame in H with bounds A(1 � � � �p
A
)2,

B(1 + �+ �p
B
)2. Moreover, if F is a Riesz basis then G is also a Riesz basis. 2

This result was �rst stated by Paley and Wiener in their celebrated paper [PaWi34]. They

considered only the stability of Riesz basis and the type 2 condition. Later on, in a di�erent

32



CHAPTER 3. STABILITY OF COHERENT FRAMES 33

context, Kato ([Kato76]) proved a perturbation theorem which basically incorporates the above

theorem. Recently, Christensen and Heil ([Chris95], [ChHe96]) established the link between Kato's

perturbation theorem and frames in both Hilbert and Banach contexts.

In this chapter we are going to prove three stability results. The �rst one refers to general coherent

frames and claims that the frame generators set is open in the set of Bessel sequence generators with

respect to some topology. The second result extends a long sequence of results in nonharmonic

analysis. Using a Kadec-type estimate we give a stractural stability bound for Fourier frames (or

more speci�c, frame sequences). The last theorem extends to general wavelet bases a surprising

result due to Daubechies and Tchamitchian, but proved by them for the Meyer's orthogonal wavelet

basis only. Basically, this last result shows that the time-frequency density is not a well-de�ned

quantity for wavelet sets.

3.2 Stability of Coherent Frames

Recall from chapter 1 that a coherent set is characterized by a generator g and a collection of unitary

operators C = fUigi2I obtained by discretizing a continuous unitary representation of a l.c.g. Thus

we obtain the following coherent set:

S(C; g) := fUg ; U 2 Cg

Let us denote by BC the set of Bessel sequence generators and by FC the set of frame generators

with respect to the collection C. Obviously FC � BC.

We introduce now an unbounded operator associated to the collection C by:

TC : H ! B(H; l2(I)) ; (TCg)(x) = f< x;Uig > gi2I (3.3)

with domain D(TC) = BC. For any g 2 BC we denote kjgkj = kTCgkB(H;l2(I)). Is is straightforward

to prove that kj � kj : BC ! R+ is a norm and thus (BC; kj � kj) is a normed space.

The main result is the following:

THEOREM 3.2 TC is closed and (BC; kj � kj) is a Banach space.
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Proof

a) TC is closed: Let (xn; T
Cxn)n be a Cauchy sequence on the graph of TC in H � B(H; l2(I)).

Then xn 2 BC, xn ! x and TCxn ! T in B(H; l2(I)), for some x 2 H and T 2 B(H; l2(I)). Since

T 2 B(H; l2(I)) we obtain, by applying Riesz lemma, that T (y) = f< y; zi > gi2I for some zi 2 H .

Thus fzigi2I is a Bessel sequence in H . On the other hand, kTCxn � Tk = kn and limn!1 kn = 0

which turns into:
X

i2I

j < y;Uixn � zi > j2 � k2nkyk2 ; 8y 2 H

It also implies, for all i, j < y;Uixn � zi > j � knkyk and thus kUixn � zik � kn. Therefore

limn!1 Uixn = zi in H . But limn!1 xn = x in H and thus Uix = zi. We obtain that TCx = T

and therefore x 2 BC and TC is closed.

b) Since TC is closed, it follows that (BC; kj�kj) is a Banach space with the norm kxk1 = kxk+kjxkj.
But:

kjxkj = kTCxkB(H;l2(I)) = k(TCx)�kB(H;l2(I)) and (TCx)�(c) =
X

i2I

ciUix

Thus:

k(TCx)�kB(H;l2(I)) � kUixk = kxk

Therefore kjxkj � kxk1 � 2kjxkj which means that k � k1 and kj � kj are equivalent. 2
We have also the following stability result:

THEOREM 3.3 FC is open in (BC; kj � kj). More speci�c, for any g 2 FC if A denotes the lower

bound of the coherent frame S(C; g) then the ball of center g and radius
p
A is included in FC, i.e.

BpA(g) � FC.

Proof

The second statement implies the �rst one, therefore we shall prove only the inclusion of that

ball. Let y 2 BpA(g). Then � = kjg � ykj < p
A and:

(
X

i2I

j < z;Uig � Uiy > j2)1=2 � �(kzk2)1=2 ; 8z 2 H

Now, by the stability theorem of Hilbert frames 3.1, Type 1 (3.1) with � = 0 and � as above, we

obtain that y 2 FC also. This concludes the proof. 2
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3.3 Structural Stability of Fourier Frames

Consider  > 0 and L2[�; ] with the usual scalar product inherited from L
2. Consider a sequence

(�n)n2Zof complex numbers and construct the sequence of functions F = ffngn2Zby fn : [�; ]!

C , fn(x) =
1p
2
e
i�nx. Recall that we called (�n)n2Z a frame sequence if F is a frame for L2[�; ],

in which case F is called a Fourier frame. Likewise, Fv is then a Fourier frame for B2

.

Our problem is the following: given a frame sequence of real numbers (�n)n2Zwith bounds A, B,

�nd a positive constant L such that any sequence of real numbers (�n)n2Zwith j�n � �nj � � < L

is also a frame sequence. An extension of this problem will take into account the complex case.

In the context of an orthonormal Fourier basis (�n = n,  = �) this problem was �rst considered

by Paley and Wiener. By using their stability result, they obtained a �rst value for L, L1 = 1
�2
.

Later on, Du�n and Eachus in [DuEa42] improved this constant to L2 = ln 2
�

= 0:22:::. Finally,

Kadec in [Kadec64] proved that the optimal value of this constant (called the Paley-Wiener constant)

is LK = 1
4
(earlier, Levinson in [Levin40] proved that for � = 1

4
one can perturb the orthonormal

Fourier basis to a noncomplete set).

The stability question of Fourier frames was considered by Du�n and Schae�er in their seminal

paper [DuSc52]. They used a type (3.1) inequality with � = 0 and they obtained LDS = 1

ln[1+

q
A

B
]

(see proof of Theorem 13, x4.8 in [Youn80]). This value has been used recently by [CvVet95] in a

quantization error analysis of Weyl-Heisenberg frame expansions. For  = � and A = B one can

obtain LDS = ln 2
�

which is less than Kadec' estimate. A better estimate for L is given in Theorem

3.4:

THEOREM 3.4 Suppose (�n)n2Z a frame sequence of real numbers for L
2[�; ] with bounds

A;B. Set:

L() =
�

4
�

1


arcsin(

1
p
2
(1�

r
A

B
)) (3.4)

Consider the sequence f�ngn2Zof complex numbers �n = �n+i�n such that supn j�n��nj = � < L()

and supn j�nj =M <1. Then the following two conclusions hold true:

1) The sequence f�ngn2Z is a frame sequence for L2[�; ];
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2) The real sequence (�n)n2Z is a frame sequence with bounds:

A(1�

r
A

B
(1� cos � + sin �))2 ; B(2� cos � + sin �)2 (3.5)

2

Proof of Theorem 3.4

By Theorem II from [DuSc52] (see also Theorem 14, x4.8 in [Youn80]) we need to prove Theorem

3.4 only for real sequences �n = �n. On the other hand, if we scale the sequence we can reduce the

problem to the case  = �. Indeed, if (�n)n2Z is a frame sequence for L2[�; ] then f�0
n
= 

�
�ngn2Z

is a frame sequence for L2[��; �] with the same bounds (in the former case fn(x) =
1p
2
e
i�nx, in

the latter f 0
n
(x) = 1p

2�
e
i�

0

n
x). Thus L() = �


L(�) and we have to prove:

L(�) =
1

4
�

1

�
arcsin(

1
p
2
(1�

r
A

B
)) (3.6)

Observe that this is consistent also with the frame bounds since � = ��
0.

To prove (3.6), we shall use Kadec' estimations from his theorem and then the Type 2 form of

the Stability Theorem with � = 0. Let N 2 N and cn 2 C , n 2 IN be arbitrary. Set �n = �n � �n.

We obtain:

U = k
X
n2IN

cn(
1

p
2�

e
i�nx �

1
p
2�

e
i�nx)k =

1
p
2�
k
X
n2IN

cne
i�nx(1� e

i�nx)k (3.7)

By expanding 1�ei�nx into a Fourier series relative to the orthogonal system f1; cos�x; sin(�� 1
2
)xg,

� = 1; 2; : : : we obtain:

1� e
i�nx = (1�

sin��n

��n

) +

1X
�=1

(�1)�2�n sin��n
�(�2 � �n

2)
cos(�x)

+i

1X
�=1

(�1)�2�n cos��n
�((� � 1

2
)2 � �n

2)
sin((� �

1

2
)x) (3.8)

We plug (3.8) into (3.7), we change the order of summation, we use the triangle inequality and then

we use the bounds k cos(�x)'(x)k � k'k and k sin((� � 1
2
)x)'(x)k � k'k. We obtain:

U � k
X
n2IN

(1�
sin��n

��n

)cne
i�nxk+

1X
�=1

(k
X
n2IN

2�n sin��n

�(�2 � �n
2)
cne

i�nxk

+k
X
n2IN

2�n cos��n

�((� � 1
2
)2 � �n

2)
cne

i�nxk)



CHAPTER 3. STABILITY OF COHERENT FRAMES 37

Now we use that (�n)n2Z is a frame sequence with upper bound B. Therefore each norm can be

bounded as:

k
X
n2IN

ancne
i�nxk �

p
Bkfancngk �

p
B sup

n

janj kfcngk;

since we have:

j1�
sin��n

��n

j � 1�
sin��

��

j
2�n sin��n

�(�2 � �n
2)
j �

2� sin��

�(�2 � �2)

j
2�n cos��n

�((� � 1
2
)2 � �n

2)
j �

2� cos��

�((� � 1
2
)2 � �2)

(the last inequality holds because � < 1
4
); it follows that:

U �
p
B(Re(1� e

i��)� Im(1� e
i��)) (

X
n2IN

jcnj2)1=2

or:

U �
p
B(1� cos�� + sin��) (

X
n2IN

jcnj2)1=2

Now we can apply the Stability Theorem (Type 2) with � = 0 and � =
p
B(1 � cos�� + sin��).

The condition of that theorem turns into � <

p
A or 1� cos��+ sin�� <

q
A

B
and then, by a little

trigonometry we get:

� < L =
1

4
�

1

�
arcsin(

1
p
2
(1�

r
A

B
))

The frame bounds for (�n)n2Z come from A(1� �p
A
)2 and B(1 + �p

B
)2. This ends the proof. 3

3.4 Parametric Stability of Wavelet Riesz Bases

Consider two positive numbers a0 > 1, b0 > 0 and a function 	 2 L
2(R). Recall that a wavelet set

W	;a0;b0 is de�ned by W	;a0;b0 = f	mn;a0b0 j(m;n) 2 Z2g where 	mn;a0b0(x) = a
�m=2
0 	(a�m0 x �

nb0). If the set W	;a0b0 is a frame (respectively, a Riesz basis or a s-Riesz basis) in L
2(R) we call it

a wavelet frame ( a wavelet Riesz basis or a wavelet s-Riesz basis).

Our problem concerns the behavior of the set W	;ab when a = a0 and b runs through a neigh-

borhood of b0. This problem was �rst considered by Daubechies and Tchamitchian in 1990 for the



CHAPTER 3. STABILITY OF COHERENT FRAMES 38

Meyer orthogonal wavelet basis (see [Daub90]) where a0 = 2, b0 = 1. They proved that for all b in

some nontrivial interval [1� "; 1+ "], the corresponding F	;2b constituted a Riesz basis; their proof

exploited the very particular structure of the Meyer basis. We are going to extend this stability re-

sult to a more general class of wavelet Riesz basis, using a di�erent argument. The precise statement

is given in Theorem 3.5:

THEOREM 3.5 Suppose that the function 	 2 L
2(R) generates a wavelet Riesz basis with bounds

A;B for some a0 > 1; b0 > 0 (i.e. W	;a0b0 is a Riesz basis with bounds A;B). Furthermore, let 	̂,

the Fourier transform of 	, satisfy the following requirement: 	̂ is of class C1 on R and both 	̂ and

	̂0 are bounded by:

j	̂(�)j; j	̂0(�)j � C
j�j�

(1 + j�j)
; 8� 2 R (3.9)

for some C > 0 and  > 1+� > 1. Then there exists an " > 0 such that for any b with jb� b0j < ",

the set W	;a0b is a Riesz basis. 2

Proof of Theorem 3.5

To prove this theorem, we shall use the Type 1 criterion of stability together with an upper

bound estimation given in theorem 1.14 in section 1.3.

Consider 	 and a0 > 1, b0 > 0 and b > 0 as in the hypothesis and denote by Ub : L
2(R) !

L
2(R) the unitary operator (Ubf)(x) =

q
b

b0
f( b

b0
x). We de�ne � = Ub	, or more speci�cally

�(x) =
q

b

b0
	( b

bo
x). One can easily check that Ub	mn;a0b = �mn;a0b0 , therefore Ub maps F	;a0b

into F�;a0b0 unitarily. Thus W	;a0b is a Riesz basis (respectively, frame) if and only if W�;a0b0 is a

Riesz basis (frame). Moreover, they have the same bounds. In order to prove that W	;a0b is a Riesz

basis, we show that W�;a0b0 is a Riesz basis by comparing it with W	;a0b0 . We note that:

	mn;a0b0 ��mn;a0b0 = (	� �)mn;a0b0

Therefore the condition (3.1) with � = 0 is equivalent with the condition that F	��;a0b0 be a Bessel

set with upper bound less than A, the lower frame bound of the Riesz basis W	;a0b0 .

Let us denote by B�; the constant B given by (1.42) for f̂(�) =
j�j�

(1+j�j) . It is simple to check

that j	̂(�)� �̂(�)j � Cb
j�j�

(1+j�j) . Therefore an upper bound for the Bessel set F	��;a0b0 is given by
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CbB�; . On the other hand, using the Ascoli-Arzel�a lemma and the hypotheses on 	̂(�) and 	̂0(�)

we obtain that gb(�) =
(1+j�j)
j�j� �̂(�) converges uniformly to gb0(�) =

(1+j�j)
j�j� 	̂(�) as b! b0. Thus we

may choose Cb to depend continuously on b around b0 and Cb0 = 0. Then, for some neighborhood

of b0 for which CbB� < A we may set � =
p
CbB� in (3.1) and we obtain that W�;a0b0 is a Riesz

basis. Now the proof is complete. 3



Chapter 4

An Uncertainty Principle for

Wavelet Sets

4.1 Introduction

In this chapter we look for lower bounds of various uncertainty quantities. On L2(R) we introduce

the following unbounded selfadjoint operators:

Qf(x) = x f(x) ; D(Q) = ff 2 L2(R)j

Z
x2jf(x)j2dx <1g (4.1)

P f(x) = �i
df

dx
; D(P ) = ff 2 L2(R)j f 0 2 L2(R)g (4.2)

Now take a f 2 D(P ) \D(Q) with kfk = 1 and let us denote by:

�x =< f;Qf > ; �� =< f; Pf > (4.3)

the �rst moments of jf j2, respectively jf̂ j2. Then, by uncertainty quantity we mean one of the

following products:

�1(f) = kPfk � kQfk (4.4)

�2(f) = k(P � ��)fk � k(Q� �x)fk (4.5)

�3(f) = kPfk � k(Q� �x)fk (4.6)

We point out that �2(f) is the product of the two variances associated to jf j2 and, respectively,

jf̂ j2. Notice also that �1(f) � �3(f) � �2(f).

40
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The classical Fourier inequality (or the uncertainty principle) states that for every f 2 L2(R)

with kfk = 1, �2(f) �
1
2
. Thus 1

2
is an absolute lower bound achieved only by (possibly modulated

or translated) gaussian functions.

On the other hand, for Weyl-Heisenberg Riesz bases WHg;�;� (with �� = 1) the Balian-Low

theorem states that �1(g) =1 - see [Batt88] for a nice proof.

Thus, one may naturally ask whether this nonlocalization is due to the Riesz basis property.

The answer is negative and, in fact, it has been proved by J.Bourgain in [Bourg88] that for every

" > 0 there is an orthonormal basis fhngn�0 of L
2(R) such that �2(hn) <

1
2
+ ". Unfortunatelly his

construction does not yield a coherent set. Thus the next question could be whether the coherence

is the obstacle for localization. Again the answer is (at least partially) negative because Y.Meyer

constructed in [Mey86] an orthonormal wavelet basis that is localized in time-frequency domain

(i.e. �2(	) <1) - note that the much older orthonormal wavelet basis given by the Haar wavelet

basis has uncertainty in�nite because of its discontinuity. Since then a lot of other wavelet basis

(orthogonal or biorthogonal) have been constructed (see [Daub88]), many of them with good time-

frequency localization.

Given these results, we ask whether the lower bound 1
2
is still optimal for wavelet sets. As we

shall see later, the answer is negative and the bound 1
2
should be replaced by 3

2
. This type of result

has been �rst proved by G.Battle in [Batt97]. He assumed either W	;ab is an orthonormal set, or

(4.8) holds true. We show below that (4.8) is always satis�ed for localized wavelet Bessel sequence

generators, so that Battle's lower bound 3
2
will hold for all wavelet Bessel sequence generators. We

also give a shorter proof of Battle's result.

4.2 An Uncertainty Inequality for Wavelet Bessel Sequences

Suppose the wavelet set W	;ab is a Bessel sequence (see chapter 1, section 1.3 for de�nitions and

properties). Then a necessary condition on the wavelet 	 is the inequality (1.43). If we divide it by

� and integrate from 1 to a we get:

X
m

Z a

1

j	̂(am�)j2

�
d� �

b ln a

2�
B
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or, equivalently:

Z 1

0

j	̂(�)j2

�
d� �

b ln a

2�
B (4.7)

LEMMA 4.1 Suppose W	;ab is a wavelet Bessel sequence and 	 2 D(Q). Then:

Z 1

�1

	(x)dx = 0 (4.8)

Proof

Suppose we proved that 	 is in L1(R). Then 	̂ is continuous and for (4.7) to hold it is necessary

that 	̂(0) = 0. This implies (4.8).

Thus it remains to prove that 	 2 L1(R). We know that Q	 2 L2(R). Then:

Z
j	(x)jdx � (

Z
1

(1 + jxj)2
dx)1=2(

Z
(1 + jxj)2j	(x)j2dx)1=2 <1

Thus 	 2 L1(R) and the proof is done. 2

Let us introduce two linear spaces and a norm that next will play a very important role :

V0 = ff 2 D(P ) \D(Q) j

Z
f(x)dx = 0g (4.9)

S0 = f' 2 S j

Z
'(x)dx = 0g (4.10)

where S is the Schwartz class of rapidly decreasing functions, and:

kfk(1;1) = kfk+ kP fk+ kQfk (4.11)

for which norm the space V0 is closed.

LEMMA 4.2 S0 is dense in V0 with respect to the norm k � k(1;1).

Proof

Take a f 2 V0 and a sequence 'n 2 S such that kf � 'nk(1;1) ! 0, as n ! 1 (this is possible

because S is dense in D(p) \D(q) w.r.t. the norm (4.11)). Choose G 2 S such that
R
G(x)dx = 1
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and set cn =
R
'n(x)dx. Then:

jcnj = j

Z
('n(x)� f(x))dxj �

Z
j'n(x)� f(x)jdx

� (

Z
1

(1 + jxj)2
dx)1=2(

Z
(1 + jxj)2j'n(x) � f(x)j2dx)1=2

n!1
�! 0

Hence cn ! 0 as n!1. Set '0
n
= 'n � cnG 2 S0. We obtain:

k'0
n
� fk(1;1) � k'n � fk(1;1) + jcnjkGk(1;1)

n!1
�! 0

Thus S0 is dense in V0. Q.E.D. 2

Now we are ready for the main result:

THEOREM 4.3 If W	;ab is a wavelet Bessel sequence with k	k = 1 then for every c 2 R:

k(Q� c)	k � kP	k �
3

2
(4.12)

Proof

If 	 62 D(P )\D(Q) then at least one of the two norms in (4.12) is in�nite, the product is in�nite

as well and therefore (4.12) is trivially checked.

Suppose now 	 2 D(P )\D(Q). By Lemma 4.1 we know
R
	(x)dx = 0. Thus 	 2 V0. Let us take

a sequence (	n)n�1 in S0 converging to 	 in k�k(1;1) norm. It follows that k	nk ! 1; we can assume,

without loss of generality that k	nk = 1. Then clearly k(Q� c)	nk � kP	nk ! k(Q� c)	k � kP	k.

Thus it is enough to prove (4.12) for 	n. The following argument is taken from Battle's paper

([Batt97]). Let us introduce the following unbounded selfadjoint operator:

Z =
1

2
(P Q+QP ) ; D(Z) = ff 2 D(P ) \D(Q)jP Qf 2 L2(R)g (4.13)

Since P Q�QP = �i we get Z = P Q+ i

2
= QP � i

2
. Note also:

P Z = Z P � i P (4.14)

Since 	n 2 S0, it follows that x 7! 'n(x) = i
R x
�1

	n(t)dt is a map in L2(R) and 	n = P'n. Then:

k(Q� c)	nk = k(QP � c P )'nk = k(Z � c P +
i

2
)'nk = k(Z � c P �

i

2
)'nk
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where for the second equality we used (4.14) and the last equality is due to the fact that Z � c P

and 1
2
1 are commuting selfadjoint operators. Next:

k(Q� c)	nk � kP	nk � j < P	n; (Z � c P �
i

2
)'n > j = j < 	n; P (Z � c P �

i

2
)'n > j

= j < 	n; (Z � c P �
3

2
i)P'n > j = j < 	n; (Z � c P )	n > +

3

2
ij �

3

2

because < 	n; (Z � c P )	n > is a real number. Thus (4.12) holds for 	n and this proves that it

holds for 	 as well. Q.E.D. 2

From this theorem we draw immediately the following corollary:

COROLLARY 4.4 If W	;ab is a wavelet Bessel sequence with k	k = 1 then:

1. �1 �
3
2
, �3 �

3
2
;

2. If 	 is a real-valued function then �2 �
3
2
.

Proof

1. is straightforward;

2. If 	 is real-valued, then j	̂j is even and �� = 0. Thus �2(	) = �3(	) and we are done. 2

4.3 Uncertainty Inequalities for Higher-Order Vanishing Mo-

ment Wavelets

In [Batt97], G.Battle was interested to �nd lower bounds for quantities of the form kPn	k � kQn	k

when 	 is a nth order vanishing moment wavelet. On the other hand, our interest lays in �nding

lower bounds for the uncertainty quantities introduced in (4.4){(4.6), when 	 is a nth order vanishing

moment wavelet. Here I shall present a result proving the previous estimates are optimal for higher

order vanishing moment wavelets too.

A nth order vanishing moment wavelet means a function 	 2 L2(R) such that the following

integrals are well-de�ned and vanish:

Z
	(x)dx = 0 ;

Z
x	(x)dx = 0 ; : : : ;

Z
xn	(x)dx = 0 (4.15)
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Let us introduce the following space:

Sn = f' 2 Sj' is a nth order vanishing moment waveletg (4.16)

Note that S0 agrees with the de�nition (4.10) and Sn � Sn�1 � S0 � V0 are linear spaces. Our

problem concerns the in�mum of the uncertainty quantities (4.4){(4.6) for f 2 Sn, kfk = 1. The

next lemma tells us an important property regarding Sn:

LEMMA 4.5 For every n � 0, Sn is dense in V0 with respect to the topology induced by the norm

k � k(1;1).

Proof

The proof follows in two steps. In the �rst step we shall construct a nice system of vectors in Sn.

In the second step we shall use this system to approximate arbitrary elements in V0 by functions

from Sn.

Consider '0; '1; : : : ; 'n a set of n functions in S which are biorthogonal to 1; x; x2; : : : ; xn in the

following sense:

Z
1

�1

xj'l(x)dx = �jl ; j = 0; 1; 2; : : : ; n (4.17)

Such functions exist and are easy to construct; for instance if we denote hj(x) = e�x
2
=2 � xj 2 S, we

can denote by f~h1; : : : ; ~hng the standard biorthogonal s-Riesz basis of the s-Riesz basis fh1; : : : ; hng

in L2(R) (the ~hl's can be expressed in terms of Hermite polynomials); then we can take 'l(x) =

e�x
2
=2~hl(x) 2 S. Next let us denote:

'l

"(x) = "l+1'l("x) (4.18)

a special scaling of 'l's. One can check that (4.17) is invariant under this normalization, i.e.

R
xj'l

"(x)dx = �jl. The Fourier transform of '̂l
"(�) = "l'̂l( �

"
). Note also the following relations

that will be useful later:

k'l

"k = "l+
1

2 k'lk

kQ'l

"k = "l�
1

2 kQ'lk

kP'l

"k = "l+
3

2 kP'lk
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We prove now that Sn is dense in S0. Since S0 is dense in V0 (Lemma 4.2), the conclusion will then

follow.

Choose an arbitrary f 2 S0. Fix " > 0. Set aj =
R
xjf(x)dx, j = 0; 1; : : : ; n. Note that a0 = 0

by the de�nition of S0. Let us denote by g� = f �
P

n

j=1 aj'
j

�
. We have g� 2 Sn and:

kf � g�k(1;1) �
nX

j=1

jaj j � k'
j

�
k(1;1) �

nX
j=1

�j�
1

2 jaj j � k'
jk(1;1) � �

1

2

nX
j=1

jaj j � k'
jk(1;1)

Thus, by choosing � < "2=(
P

n

j=1 jaj j � k'
jk(1;1))

2 we obtain kf � g�k < " and the proof is done. 2

From this lemma we get immediately the following result.

THEOREM 4.6 For every " > 0 and n � 0 there is a nth order vanishing moment wavelet 	 2 Sn

such that �j(	) �
3
2
+ ", j = 1; 2; 3.

Proof

We know the Hermite function H1(x) = (�)�1=2xe�x
2
=2 achieves the lower bound 3

2
. However it

does not belong to Sn in general (except for the case n = 0). Yet, since Sn is dense in S0, we can

approximate H1 by a sequence 	" 2 Sn, 	" ! H1, in k � k(1;1)-norm as "! 0. The convergence in

k � k(1;1)-norm implies the convergence of �k(	") to �j(H1) =
3
2
, j = 1; 2; 3. 2

REMARK 4.7 This result shows that we cannot say more about the uncertainty products based

solely on the number of vanishing moments. To obtain larger lower bounds we need to know more

about the wavelet.



Chapter 5

Approximation of Stochastic

Signals by Weyl-Heisenberg Pairs

5.1 Weyl-Heisenberg Pairs and Signal Models

By a (deterministic) signal we mean a function f belonging to some Banach space X that will be

speci�ed by the context. The Banach space will be either L2(R) if the signal has �nite energy,

or a weighted L2
w
space, for a suitable weight w, if the signal has in�nite energy but �nite power.

When dealing with stochastic signals, it is assumed that a probability space (
;�; �) is given and

the stochastic model will represent a (measurable) map from 
 into X satisfying some additional

conditions.

In this section we are interested in describing certain ways to approximate a signal, whether

deterministic or stochastic, by coherent Weyl-Heisenberg pairs.

In 1992, P.J. Munch analyzed the dependency of colored noise optimal reduction on the re-

dundancy for a particular class of WH frames (see [Munch92]). Our goal is to analyze how the

approximation error depends on the de�cit when using a WH s-Riesz basis.

Consider now two functions g1; g2 2 L2(R) and two positive numbers � > 0; � > 0.

De�nition The four-tuple (g1; g2;�; �) is called a Weyl-Heisenberg pair (or, shortly, a WH pair)

if WHg1;�;� and WHg2;�;� are both WH Bessel sequences.

The pair (g1; g2;�; �) is called a standard biorthogonal WH pair if WHg1;�;� and WHg2;�;� are

47
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WH s-Riesz bases and the latter is the standard biorthogonal WH s-Riesz basis of the former.

The pair (g1; g2;�; �) is called a standard dual WH pair ifWHg1;�;� andWHg2;�;� are both WH

frames and the latter is the standard dual frame of the former.

Suppose (g1; g2;�; �) is a WH pair. Then the following frame-like operator is bounded and

well-de�ned:

Sg1;g2;�;� : L2(R) ! L
2(R) ; Sg1;g2;�;�(f) =

X

m;n2Z

< f; g
1
mn

> g
2
mn

(5.1)

Similarly the grammian-like operator:

Gg1;g2;�;� : l2(Z2)! l
2(Z2) ; Gg1;g2;�;�(c) =

X

m0;n02Z

< g
1
m0n0 ; g

2
mn

> cm0n0 (5.2)

is bounded and well-de�ned (see [RnShn96]). We shall call Sg1;g2;�;� the frame operator and

Gg1;g2;�;� the grammian operator of the pair (g1; g2;�; �).

We restrict our attention to WH pairs satisfying two additional assumptions:

A1: The pair has a de�cit
1

��
< 1 (5.3)

A2: WHg1;�;� and WHg2;�;� are WH s-Riesz bases. (5.4)

Under these assumptions, RanSg1;g2;�;� and RanSg1;g2;�;�
� are both proper closed subspaces of

L
2(R) and Sg1;g2;�;� is thus not invertible for any choice of g1, g2 (see [Rief81] and [RaSt95]).

For a signal (or a signal model) f in a Banach space X our goal is to analyze how close its

coherent approximation Sg1;g2;�;�f , given by a WH pair (g1; g2;�; �), is to the original signal (i.e.

kf � Sg1;g2;�;�fkX ). To do this we need to introduce certain signal models.

5.1.1 Deterministic Model

Suppose f 2 L
2(R) is an unknown deterministic signal and (g1; g2;�; �) is a WH pair. Then the

approximation error is: E(f) = f � Sg1;g2;�;�f 2 L
2(R) and the error measure is kE(f)k. Since f

is unknown and we did not make any �a priori assumption about the signal, we should consider the
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worst-case, namely:

sup

f2L2(R)

kfk=1

kE(f)k

Thus a measure of the approximation error given by a WH pair (g1; g2;�; �) is given by the operator

norm:

J(g1; g2;�; �) = k1� Sg1;g2;�;�kB(L2(R)) (5.5)

where B(L2(R)) stands for the space of bounded operators on L2(R).

In this model, our optimization problem is to �nd g
1
; g

2 that minimizes (5:5) for a given set of

parameters �; � and subject to the assumption A2 made before:

arg min

g1;g2

A2 holds

k1� Sg1;g2;�;�k (5.6)

Despite its rather complicated statement, the optimization problem (5:6) has a very simple solution

with a nice geometric interpretation. As we shall prove further, the optimum in (5:6) is 1 if �� > 1

and 0 if �� � 1, and is achieved for a large class of optimizers (g1; g2).

To �nd the optimum in (5:6) notice that for f 2 Ker Sg1;g2;�;�, kfk = 1 we obtain kf �

Sg1;g2;�;�fk = kfk = 1. Therefore k1 � Sg1;g2;�;�k � 1 for every WH pair satisfying A1 and A2.

Let us show now that the bound 1 is actually achieved. We claim that J(g1; g2;�; �) = 1 for any

standard biorthogonal WH pair. Indeed, suppose (g1; g2;�; �) is a standard biorthogonal WH pair,

then Sg1;g2;�;� is the orthogonal projection onto the span E of WHg1;�;� and therefore 1�Sg1;g2;�;�

is the orthogonal projection PE? onto the orthogonal complement E? of E. Hence:

J(g1; g2;�; �) = k1� Sg1;g2;�;�k = kPE?k = 1

Conversely, the following fact holds: Suppose (g1; g2;�; �) is a minimizer of (5:6), i.e. a WH pair

satisfying A1 and A2, and J(g1; g2;�; �) = 1. Let us denote by ~g2 the generator of the standard

biorthogonal WH s-Riesz basis WH~g2;�;� of WHg2;�;�. Choose an arbitrary f 2 L
2(R). Then f has
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a unique orthogonal decomposition:

f = f
? +
X

m;n2Z

< f; ~g2
mn

> g
2
mn

; f
? ? g

2
mn

; 8m;n

Then:

k(1� Sg1;g2;�;�)fk2 = kf? +
X

m;n

< f; (~g2 � g
1)mn > g

2
mn
k2 =

= kf?k2 + k
X

m;n

< f; (~g2 � g
1)mn > g

2
mn
k2 � kf?k2 = k(1� S~g2;g2;�;�)fk2

Thus, for any minimizer (g1; g2;�; �), the biorthogonal WH pair (~g2; g2;�; �) has an approximation

error that is pointwise smaller than that of the minimizer (in the strong operator sense). We have

thus proved the following result:

THEOREM 5.1 For any �xed �; �, the optimal value of the optimization problem ming1;g2 k1 �

Sg1;g2;�;�k is given by:

J
�(�; �) =

�
1 ; � � � > 1

0 ; � � � � 1
(5.7)

For �� > 1, any biorthogonal WH pair (g; ~g;�; �) is a minimizer of (5:6). Conversely, if (g1; g2;�; �)

is a minimizer of (5:6) then, for every f 2 L
2(R):

k(1� Sg1;g2;�;�)fk � k(1� S~g2;g2;�;�)fk (5.8)

where WH~g2;g2;�;� is the standard biorthogonal WH s-Riesz basis of WHg2;�;�.

Notice the discontinuity of the optimal value J�(�; �), as a function of �; �, at the threshold

value �� = 1 (see Figure 5.1), where the incomplete set WHg;�;� may cross from being incomplete

when �� > 1 to overcomplete when �� < 1. For the stochastic models presented below, we shall

obtain a continuous transition from 1 to 0 (see Figure 5.2).

5.1.2 Stochastic Models

We present two stochastic models: one is nonstationary in terms of second-order statistics, the other

is stationary. Since we are working for time-moments de�ned on the entire real line, the stationary

model will require a special class of functions, as we shall see further.
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J
�(�; �)
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1
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Figure 5.1: Distortion-de�cit characteristic for the deterministic model
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��

Figure 5.2: Distortion-de�cit characteristic for the stationary stochastic model given by (5.85)
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The Nonstationary Model. Basically we assume the existence of a probability space (
;�; �)

and a L2(R)-valued random variable f = (f!)!2
 with the following �rst- and second-order statistics:

Ef(t) = 0 ; a:e: t

Ef(t)f(s) = R(t; s)
(5.9)

where the expectation E means Ef(t) =
R


f!(t)d�(!) and

Ef(t)f(s) =
R


f!(t)f!(s)d�(!). Consider also a WH pair (g1; g2;�; �). Then the measure of

the approximation error is taken as:

J(g1; g2;�; �) = Ekf � Sg1;g2;�;�fk2 (5.10)

Beside the usual assumptions A1 and A2 made on the WH pair (g1; g2;�; �) we also ask the following

condition regarding the second-order statistics:

Z 1

�1

R(t; t)dt <1 (5.11)

This condition is necessary and su�cient for J(g1; g2;�; �) to be �nite. We also point out that a

stationary model does not obey (5:11) and therefore the analysis needs to be di�erent (see below).

At a more abstract level of formalism, (5:10) and (5:11) can also be understood through the fol-

lowing scheme: Let us denote by L2(
;L2(R)) the Hilbert space of L2(R)-valued square integrable

functions on 
 with respect to the probability measure �. Since E = 1�Sg1;g2;�;� is a bounded oper-

ator on L2(R), it also lifts to a bounded operator on L2(
;L2(R)). For an element f 2 L
2(
;L2(R))

we have:

kfk2
L2(
;L2(R)) =

Z 1

�1

R(t; t)dt <1

and:

kE(f)k2
L2(
;L2(R)) = J(g1; g2;�; �)

Thus for every nonstationary stochastic model obeying (5:11) the approximation error measure is

given by:

J(g1; g2;�; �) = kE(f)k2
L2(
;L2(R)) (5.12)
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(see Figure 5.3). The optimization problem that is to be solved becomes:

inf

g1;g2

A2 holds

J(g1; g2;�; �) = inf

g1;g2

A2 holds

Ek(1� Sg1;g2;�;�)fk2 (5.13)

for given parameters �; � > 1 and a given autocovariance function R(t; s).




6

L
2(R) - L

2(R)

6




Sg1;g2;�;�

- L
2(
;L2(R))L

2(
;L2(R))
Sg1;g2;�;�

6

Figure 5.3: The lifting scheme in the nonstationary case

The Stationary Stochastic Model. As we have mentioned before, we cannot use L2(R) as

space of functions for a stationary random variable, since (5:11) would not be satis�ed. Therefore

we have to choose a di�erent space of functions. First, let us present the \ingredients" of this model,

namely the statistics:

Ef(t) = 0

Ef(t)f(s) = R(t� s)
(5.14)

We can no longer use L2(R) as the space in which we consider the signals or realizations, because

E(kfk2
L2) =1. Instead, we shall be interested in working in weighted L2-spaces,

L
2
w
= ff ;

Z 1

�1

jf(x)j2w(x)dx <1g (5.15)

for some non-negative weight function w. It will be convenient to work also with a \periodized"

version of L2
w given by the amalgam space

W�(L
2
w
; l
1) = ff : R ! C j kfk

W�(L2
w;l

1) := sup
n2Z

Z 1

�1

w(x)jf(x � n�)j2dxg (5.16)
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This space has better properties with respect to translation (a bounded operator in W�(L
2
w
; l
1))

than L
2
w
(in which translation by a �nite amount need not be bounded). A special case is given by

the choice � = 1, w = 1[0;1]; in this case we obtain the standard amalgam space:

W (L2
; l
1) := ff : R ! C jkfk2

W (L2;l1) := sup
n

(

Z
n+1

n

jf(x)j2dx)1=2 <1g (5.17)

(see [FouSte85] for a review of properties) In this subsection we shall show that, under certain

conditions, Sg1;g2;�;� can be de�ned as a bounded operator on W (L2
; l
1) or W�(L

2
w
; l
1).

Note that the norm k � k
W (L2;l1) is not translation invariant. However one can replace it by a

translation invariant equivalent norm, namely:

kfk
W (L2;L1) := sup

y

(

Z
y+1

y

jf(x)j2dx)1=2 < +1; (5.18)

we have:

kfk
W (L2;l1) � kfk

W (L2;L1) �
p
2kfk

W (L2;l1) (5.19)

Moreover, instead of intervals of length 1 taken in (5.17), we can choose intervals of arbitrary length,

say, a and obtain an equivalent norm related to k � k
W (L2;l1). Indeed, if a < 1 we have:

r
a

a+ 2
kfk

W (L2;l1) � sup
n

(

Z (n+1)a

na

jf(x)j2)1=2 �
p
2kfk

W (L2;l1); (5.20)

if a > 1 then:

1p
3
kfk

W (L2;l1) � sup
n

(

Z (n+1)a

na

jf(x)j2dx)1=2 �
p
a+ 2kfk

W (L2;l1) (5.21)

Note that Lp �W (L2
; l
1), for every p � 2 and also that (W (L2

; l
1))� =W (L2

; l
1) where:

W (L2
; l

1) := ff : R ! C j kfk
W (L2;l1) :=

X
n2Z

(

Z
n+1

n

jf(x)j2dx)1=2 <1g

and � denotes the dual Banach space (see [FouSte85])

We assume the stochastic model is given by an element f of L2(
;W (L2
; l
1)) (this is the space of

W (L2
; l
1)-valued functions on 
 that are square integrable with respect to the probability measure
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� for a probability space (
;�; �)) having the �rst two orders statistics given by (5.14), i.e.

Z



f!(t)d�(!) = 0 ; a:e: t 2 R (5.22)

Z



f!(t)f!(s)d�(!) = R(t� s) ; 8t; s 2 R (5.23)

where f!(t) := (f(!))(t). The assumption f 2 L
2(
;W (L2

; l
1)) yields the following bound on the

autocovariance function. Take t = s in (5.23); since the result R(0) is independent of t, we can

integrate it over any interval of length 1 and still obtain R(0). Thus:

R(0) = sup
n

Z



Z
n+1

n

jf!(t)j2dt d�(!) ��
Z



sup
n

Z
n+1

n

jf!(t)j2dt d�(!) = kfk2
L2(
;W (L2;l1))

Hence:

kRk
1

= R(0) � kfk2
L2(
;W (L2;l1)); (5.24)

the assumption that f 2 L
2(
;W (L2

; l
1)) enables us to control the signal spectral power.

Note however that we cannot control the L
2(
;W (L2

; l
1))-norm of f by any measure of R.

Thus the assumption that the model is given by an element of L2(
;W (L2
; l
1)) seems to be slighty

stronger than just giving a stationary stochastic model on W (L2
; l
1).

Let us consider a WH pair (g1; g2;�; �) satisfying A1 and A2. We know that the frame operator

Sg1;g2;�;� is well-de�ned and bounded on L
2(R). Our goal is to extend it to a bounded and well-

de�ned operator on W (L2
; l
1). The next theorem gives su�cient conditions for this to happen. It

is strongly inspired by a similar result in [Waln94]. However there is an important di�erence due

to the fact that the set of compactly supported C
1 functions is not dense in W (L2

; l
1). Thus we

have to deal directly with the W (L2
; l
1) functions. We shall choose g1 and g2 to be in the space of

functions W (L1; l1), introduced in section 1.3 (1:33) (we recall here its de�nition:

W (L1; l1) := ff : R ! C j kfk
W (L1;l1) :=

X
n2Z

ess sup
x2[n;n+1]

jf(x)j <1g ):

For this space as for W (L2
; l
1), one can again use a di�erent interval length than 1 and obtain

equivalent norms. The translation invariant equivalent norm is kfk
W (L1;L1) := supy2[0;1]

P
n
kf �

1[y+n;y+n+1]k1. Note that W (L1; l1) is densly imbedded in L
p, for every p � 1.
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THEOREM 5.2 Suppose g
1
; g

2 2W (L1; l1).

a) Let f 2 W (L2
; l
1) and �; � > 0. Then

P
m;n

< f; g
1
mn

> g
2
mn

converges in L
2
loc

, i.e. for

every compact K, there is a function fK 2 L
2(K) such that

lim
N!1

lim
M!1

k1K
NX

n=�N

MX
m=�M

< f; g
1
mn

> g
2
mn

� fKkL2(K) = 0

and the convergence is independent of the order in which we let M and N tend to 1.

b) If two compact sets K1 and K2 have non-empty intersection K = K1 \ K2, then fK1
jK =

fK = fK2
jK . It follows that we can de�ne a unique function on R, which we denote by Sg1;g2;�;�f ,

such that Sg1;g2;�;�f jK = fK for all compact K.

c) The series
P

m;n
< f; g

1
mn > g

2
mn converges unconditionally to Sg1;g2;�;�f in the L

2
loc

topolgy,

i.e. for every " > 0 and compact K there are N";M" > 0 such that for every �nite set S �

Z
2 n ([�M";M"]� [�N"; N"]):

k
X

(m;n)2S

< f; g
1
mn > g

2
mnkL2(K) < "

and it converges also in the weak-� topology of W (L2
; l
1), i.e. for every h 2 W (L2

; l
1) and " > 0

there are M"; N" > 0 such that for every N > N", M >M"

j < h; f �
X

jmj�M"

X
jnj�N"

< f; g
1
mn

> g
2
mn

> j < "

THEOREM 5.3 For every �; � > 0 there is some constant C = C(g1; g2;�; �) such that for every

f 2 W (L2
; l
1), the function de�ned by Sg1;g2;�;�f =

P
m;n2Z

< f; g
1
mn

> g
2
mn

is in W (L2
; l
1) and

kSg1;g2;�;�fkW (L2;l1) � Ckfk
W (L2;l1). Therefore Sg1;g2;�;� is a well-de�ned and bounded operator

on W (L2
; l
1). Moreover the constant C can be chosen as C = C�;�kg1kW (L1;l1)kg2kW (L1;l1).

Proof of Theorem 5.2

a) Consider g1; g2 2 W (L1; l1) and �; � > 0, f 2W (L2
; l
1). We have:

jcmnj �
X
l2Z

Z (l+1)�

l�

jf(x)j � jg1(x� n�)jdx

�
X
l2Z

kg11[(l�n)�;(l�n+1)�]k1
p
�(

Z (l+1)�

l�

jf(x)j2dx)1=2
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Using now (5.20) or (5.21) and similar inequalities for W (L1; l1) we get:

jcmnj � Ckg1k
W (L1;l1) � kfkW (L2;l1)

Next we prove the convergence as M;N ! 1 (in either order) on intervals of the form [N0

�
;
N0+1
�

].

Since every compact is covered by a �nite union of such intervals, the conclusion of part a) will

then follow immediately. Let us analyze the series
P

m2Z
< f; g

1
mn

> g
2
mn

for �xed n 2 Z on

I = [N0

�
;
N0+1
�

]. We obtain, using the Parseval identity:

k
X
m2Z

< f; g
1
mn

> g
2
mn

� 1Ik2L2(I) =

Z
I

j
X
m

e
2�im�x

cmng
2(x� n�)j2dx

� sup
x2I

jg2(x� n�)j2 � 1
�

X
m

jcmnj2

And again by Parseval identity:

X
m

jcmnj2 =
X
m

j
Z 1

�

0

e
�2�im�x

X
l

f(x+
l

�
)g1(x+

l

�
� n�)dxj2

=
1

�

Z 1
�

0

j
X
l

f(x+
l

�
)g1(x+

l

�
� n�)j2dx

Now by the triangle inequality and Cauchy-Schwarz we obtain:

(
X
m

jcmnj2)1=2 �
1p
�

X
l

kf(�+ l

�
)g1(�+ l

�
� n�)k

L2(0; 1
�
) �

� 1p
�

X
l

kg1(�+ l

�
� n�)k

L1(0; 1
�
)kf(�+

l

�
)k
L2(0; 1

�
) � ~Ckfk

W (L2;l1)kg
1k
W (L1;l1)

Therefore:

k
X
m2Z

< f; g
1
mn

> g
2
mn

� 1IkL2(I) � ~C sup
x2I

jg2(x� n�)j � kg1k
W (L1;l1)kfkW (L2;l1) (5.25)

and:

k
X
n2Z

X
m2Z

< f; g
1
mn

> g
2
mn

� 1IkL2(I) � C2kg2kW (L1;l1)kg
1k
W (L1;l1)kfkW (L2;l1) (5.26)

where C2 is a constant depending on � and � only. (5.25) proves that for every n 2 Z there

is a function hn 2 L
2(I) such that k

P
jmj�M

< f; g
1
mn > g

2
mn � hnkL2(I)

M!1�! 0, i.e. hn =
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P
m

< f; g
1
mn

> g
2
mn

. Moreover,
P

n
khnkL2(I) � 1, therefore there is a fI 2 L

2(I) such that

P
jnj�N

hn
n!1�! fI in L

2(I). Choose an " > 0. Then there is a N
(1)
" > 0 such that for every

N > N
(1)
" , k

P
jnj<N

hn � fIkL2(I) <
"

3
. Also, since g2 2 W (L1; l1), there is a N

(2)
" > 0 such that

P
jnj>N

(2)
"
kg2(� � n�)k

L1(I) < "(3 ~Ckfk
W (L2;l1)kg1kW (L1;l1))

�1. Choose N" = max(N
(1)
" ; N

(2)
" ).

On the other hand, for each jnj � N" there is a M";n such that:

k
X

jmj�M

< f; g
1
mn > g

2
mn � hnkL2(I) �

"

3(2N" + 1)
; for every M �M";n

Choose now M" = maxn=�N";��� ;N"
M";n. We get, for every N > N" and M >M":

k
X
jnj�N

X
jmj�M

< f; g
1
mn

> g
2
mn

� fIkL2(I)

�
X

N"<jnj�N

k(
X

jmj�M

e
2�im��

< f; g
1
mn >)g

2(� � n�)k
L2(I)

+
X

jnj�N"

k
X

jmj�M

< f; g
1
mn > g

2
mn � hnkL2(I) + k

X
jnj�N"

hn � fIkL2(I)

The last two terms are bounded by "

3
. The �rst one is also bounded by "

3
as follows:

X
N"<jnj�N

kg2(� � n�)
X

jmj�M

e
2�im��

< f; g
1
mn

> k
L2(I) �

�
X

N"<jnj�N

kg2(� � n�)k
L1(I)k

X
jmj�M

e
2�im��

< f; g
1
mn > k

L2(I) �

�
X

N"<jnj�N

kg2(� � n�)k
L1(I)(

X
m

j < f; g
1
mn > j2)1=2 �

�
X

N"<jnj

kg2(� � n�)k
L1(I)

~Ckfk
W (L2;l1)kg

1k
W (L1;l1) <

"

3

Hence k
P

jnj�N

P
jmj�M < f; g

1
mn > g

2
mn � fIkL2(I) < ", for every M >M", N > N", which proves

the convergence of the series, regardless of the order of summation.

b) Follows immediately from the construction.

c) For the unconditionallity it is su�cient to consider compacts of the form I = [N0

�
;
N0+1
�

].

Choose an arbitrary " > 0. Take N" such that
P

jnj>N"
kg2(� � n�)k

L1(I)

< "(2 ~Ckfk
W (L2;l1)kg1kW (L1;l1))

�1 and for every jnj � N" �nd M";n such that (
P

jmj>M";n
j <

f; g
1
mn > j2)1=2 < "(2(2N" + 1)kg2k

1
)�1. Then set M" = maxjnj�N"

M";n.
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Let S = [nSn, where Sn = f(m;n) 2 Sg, be the partition of S into subsets of points with the

same index n. Then:

k
X

(m;n)2S

< f; g
1
mn

> g
2
mn
k
L2(I) �

X
jnj>N"

kg2(� � n�)k
L1(I)(

X
(m;n)2Sn

j < f; g
1
mn

> j2)1=2+

+
X

jnj�N"

kg2(� � n�)k
L1(I)(

X
(m;n)2Sn

j < f; g
1
mn

> j2)1=2 (5.27)

and by a similar computation as before:

(
X

(m;n)2Sn

j < f; g
1
mn

> j2)1=2 � (
X
m

j < f; g
1
mn

> j2)1=2 � ~Ckfk
W (L2;l1)kg

1k
W (L1;l1)

Therefore the �rst term in (5.27) is bounded by "

2
. The second term is bounded as follows, for a

�xed jnj � N":

k
X

(m;n)2Sn

j < f; g
1
mn > j2k

L2(I) � (
X

jmj�M"

j < f; g
1
mn > j2)1=2 � "

2(2N" + 1)kg2k1

Therefore the second term in (5.27) is bounded again by "

2
and thus the left-hand side of (5.27) is

bounded by ". This proves that the series that de�nes Sg1;g2;�;�f converges unconditionally in L2
loc
.

For the weak-� convergence, take an arbitrary h 2 W (L2
; l

1). Choose an " > 0. Using a similar

computation as for (5.26) we get:

k
X

jmj�M

X
jnj�N

< f; g
1
mn

> g
2
mn
k
W (L2;l1) � C3kg1kW (L1;l1)kg

2k
W (L1;l1)kfkW (L2;l1)

for any M;N > 0 and C3 depending on �; � only (and thus independent of M , N , f , g1 or g2).

Let N0 > 0 be large enough such that

X
jnj�N0

(

Z (n+1)=�

n=�

jh(x)j2dx)1=2 < "

2kfk
W (L2;l1)(

q
2 + 1

�
+ C3kg1kW (L1;l1)kg2kW (L1;l1))

Now choose N";M" such that for every N > N", M >M",

kf �
X

jmj�M

X
jnj�N

< f; g
1
mn > g

2
mnkL2[�

N0
�
;
N0+1

�
]
� "

2kkk
L2

(5.28)
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This is possible since the series converges for every compact K in L
2(K) to f and W (L2

; l
1) �

W (L2
; l

2) = L
2(R). Then, using Cauchy-Schwarz:

j < h; f �
X

jmj�M

X
jnj�N

< f; g
1
mn

> g
2
mn

> j �
X

jnj>N0

Z (n+1)=�

n=�

jh(x)j � jf(x)

�
X

jmj�M

X
jnj�N

< f; g
1
mn

> g
2
mn

(x)jdx +
Z (N0+1)=�

�N0=�

jh(x)j � jf(x)

�
X

jmj�M

X
jnj�N

< f; g
1
mn

> g
2
mn

(x)jdx

The �rst term is bounded by "

2
because of (5.20,5.21), the second term is bounded again by "

2
because

of (5.28). Thus we get the conclusion and the proof is done. 2

Proof of Theorem 5.3

The conclusion follows immediately from (5.26). 2

REMARK 5.4 If g1; g2 2 W (L1; l1), then g
1 and g

2 are WH Bessel sequence generators. For

general WH Bessel sequence generators, the frame operator Sg1;g2;�;� need not be bounded and

well-de�ned on W (L2
; l
1), however, as the following example shows:

EXAMPLE 5.5 Consider the following partition of the unit interval [0; 1]:

I0 = [0;
1

2
] ; I1 = [

1

2
;
3

4
] ; I2 = [

3

4
;
7

8
] ; : : : ; In = [

2n � 1

2n
;
2n+1 � 1

2n+1
]; : : :

Thus [n�0In = [0; 1] and Il \ Is = ;, for l 6= s. Consider now the set:

S = [n�0(n+ In) = [0;
1

2
] [ [

3

2
;
7

4
] [ [

11

4
;
23

8
] [ � � �

where n + In = [n+ 2n�1
2n

; n+ 2n+1
�1

2n+1 ]. Let the window g
1 be the characteristic function of S, i.e.

g
1 = 1S , and choose g2 = 1[0;1]. For � = � = 1 one can easily check that WHg1;�;� and WHg2;�;�

are both orthonormal bases for L2(R), therefore they are WH Bessel sequences and both hypotheses

A1 and A2 are ful�lled. Therefore Sg1;g2;�;� is a well-de�ned and bounded operator (in fact unitary)

on L2(R).

Consider now the function f 2 W (L2
; l
1) de�ned by: f =

P
n�0 2

(n+1)=21n+In and, additionally,

the function ~f =
P

n�0 2
(n+1)=21In . Note that kfk

W (L2;l1) = 1; moreover, for p < 2 f; ~f 2 L
p;
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however, f; ~f 62 L
2. The coe�cients of f with respect to WHg1;�;� are:

cmn =< f; g
1
mn

>= �n;0

Z 1

0

e
�2�imx ~f(x)dx

Therefore: X
jmj�M

X
jnj�N

cmng
2
mn

(y) = (
X

jmj�M

e
2�imy

Z 1

0

e
�2�imx ~f(x) dx)1[0;1](y)

By Plancherel's theorem, we have therefore:

k
X

jmj�M

X
jnj�N

cmng
2
mn

� k2
L2([0;1]) =

X
jmj�M

j
Z 1

0

e
�2�imx ~f(x) dxj2

M!1�! k ~fk2
L2[0;1] =1

Thus Sg1;g2;�;�f can be de�ned in distributional sense (note (cmn)m2Z2 l
p
0

, 8n and p0 = (1� 1
p
)�1)

but will not be in W (L2
; l
1) (in fact it is not even in L

2
loc
).

REMARK 5.6 The previous example shows that one can have WH Bessel sequences even if

g
1
; g

2 62 W (L1; l1). In fact, one can even �nd g
1
; g

2 62 W (L1; l1) for which Sg1;g2;�;� is a bounded

operator on W (L2
; l
1), as shown in the example below. The condition g

1
; g

2 2 W (L1; l1) in

Theorem 5.2 is therefore not necessary.

EXAMPLE 5.7 Consider the same partitions as before. Set:

g
1 =
X
n�0

1

(n+ 1)�+
1
2

1n+In

where 0 < � � 1
2
, and g

2 = 1[0;1]. Note that g1 2 W (L1; l2), but g1 62 W (L1; lp) for any

p � (�+ 1
2
)�1; in particular g1 62 W (L1; l1). We start now analyzing Sg1;g2;�;� for � = � = 1. Let

us consider an arbitrary f 2 W (L2
; l
1) and denote by cmn =< f; g

1
mn > the coe�cients of f with

respect to the system WHg1;�;� (they are �nite and bounded by kfk
W (L2;l1)). On the other hand:

k(Sg1;g2;�;�f) � 1[N;N+1]k2L2[N;N+1] =
X
m2Z

jcmN j2

But cmn =< f; g
1
mn >=

R 1
0
e
�2�imx[

P
l
f(x+ l + n)g1(x+ l)]dx. Therefore:

X
m

jcmnj2 =
Z 1

0

j
X
l

f(x+ l +N)g1(x+ l)j2dx
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Note: j
P

l
f(x+ l+N)g1(x+ l)j2 =

P
l�0 jf(x+ l +N)j2 1

(l+1)1+2� 1Il(x), thus:

X
m

jcmnj2 =
X
l�0

1

(l + 1)1+2�

Z
Il

jf(x+ l +N)j2dx �
X
l�0

1

(l + 1)1+2�
kfk2

W (L2;l1)

so that:

kSg1;g2;�;�fkW (L2;l1) � C�kfkW (L2;l1)

which proves that Sg1;g2;�;� is bounded on W (L2
; l
1).

REMARK 5.8 We point out that the series that locally de�nes the operator Sg1;g2;�;� is not

strongly convergent in the W (L2
; l
1)-norm (if it were, we could have written a much shorter proof).

Indeed, for example take g1 = g
2 = 1[0;1] the characteristic function of [0; 1], � = � = 1 and f = 1R

the constant function 1 on the entire real line. Note that kfk
W (L2;l1) = 1. Then, for each N > 0,

P
jnj�N

P
m
< f; g

1
mn

> g
2
mn

= 1[�N;N+1]. Therefore kf �
P

jnj�N

P
m
< f; g

1
mn

> g
2
mn
k
W (L2;l1) =

1 for all N .

Summing �rst over n and then over m still does not lead to strong convergence of the series. For

example take the same WH pair as before and h(x) =
P

m2Z
e
2�imx1[m;m+1](x), i.e. on each interval

[m;m+1], the signal consists of a \pure" harmonic pulse e2�imx. Note that khk
W (L2;l1) = 1. Then,

for each M > 0,
P

jmj�M

P
n
< h; g

1
mn

> g
2
mn

= h � 1[�M;M+1]. Therefore kh �
P

jmj�M

P
n
<

h; g
1
mn

> g
2
mn
k
W (L2;l1) = 1 and the series does not converge strongly in W (L2

; l
1)-sense. However,

as we proved in part c), it converges in the sense of tempered distributions.

Although the converse of Theorem 5.3 is not true, the following result o�ers a necessary condition

to have a bounded WH pair on W (L2
; l
1).

DEFINITION 5.9 A function f : R ! C has persistency length a if there is a � > 0 and a

compact set K congruent to [0; a] mod a, such that for every x 2 K, jf(x)j � �.

THEOREM 5.10 Let (g1; g2;�; �) be the given data. Suppose the following:

1. For every f 2W (L2
; l
1), the series

P
mn

< f; g
1
mn

> g
2
mn

converges unconditionally in L
2
loc

;

2. The frame operators are bounded operators on W (L2
; l
1);
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3. g
2
has persistency length

1
�
.

Then g
1 2 W (L1; l2).

From this theorem we get immediately the following corollary:

COROLLARY 5.11 Suppose that for every f 2 W (L2
; l
1) the series

P
mn

< f; gmn > gmn

converges unconditionally in L
2
loc

, that the frame operator associated to (g; g;�; �) is bounded on

W (L2
; l
1) and that g has persistency length

1
�
. Then g 2W (L1; l2). 2

The proof of Theorem 5.10 is based on the following lemma which is interesting in itself:

LEMMA 5.12 Let g 2 W (L2
; l
1) and �; � > 0 be such that the analysis operator

T : f 7! f< f; gmn > g(m;n)2Z2 is well-de�ned and bounded between W (L2
; l
1) and

l
2;1(Z2) = fc = (cmn)m;n2Z j kck2l2;1 := supn

P
m
jcmnj2 <1g. Then g 2W (L1; l2).

Proof of Lemma 5.12

We know there exists a constant C > 0 such that for every f 2 W (L2
; l
1),
P

m
j < f; gmn > j2 �

Ckfk2
W (L2;l1). Take f = e

�i arg g . Obviously f 2 W (L2
; l
1) and kfk

W (L2;l1) = 1. For m = n = 0,

< f; gmn >=
R1
�1

f(x)g(x)dx =
R1
�1

jg(x)jdx � C. Therefore g 2 L
1(R).

Next we show that g 2 L
1(R). Suppose the contrary, that for every D > 0 there is a mea-

surable subset J of an interval of the form [N0

�
;
N0+1
�

] such that jJ j > 0 and jg(x)j > D for

every x 2 J . Take f = 1p
jJj
e
�i arg g1J . Note that kfk

W (L2;l1) � kfk
L2(R) = 1 and for n = 0,

< f; gmn >=
1p
jJj

R (N0+1)=�

N0=�
jg(x)j1J(x)e�2�im�x

dx. Then:

X
m2Z

j < f; gmn > j2 = 1

�
k 1p

jJ j
g � 1Jk2L2[

N0
�
;
N0+1

�
]
=

1

�jJ j

Z
J

jg(x)j2dx > D
2

which contradicts
P

m
j < f; gmn > j2 � Ckfk

W (L2;l1). Therefore g 2 L
1(R).

Using the Parseval identity we obtain (as in the proof of theorem 5.2):

X
m

j < f; gmn > j2 = 1

�

Z 1
�

0

j
X
l2Z

f(x+ n� +
l

�
)g(x+

l

�
)j2dx

For n = 0 we need to check that
R 1=�
0

j
P

l
f(x+ l

�
)g(x+ l

�
)j2dx � Ckfk

W (L2;l1). To avoid messy

computation (as in the proof of the theorem 5.2, point b) we may take � = 1. For each n 2 Z denote
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by Jn the measurable subset of [n; n+ 1] de�ned by Jn = fx 2 [n; n+ 1] j jg(x)j � 1
2
kgk

L1[n;n+1]g.

If jJnj � ", de�ne Jn;" = Jn; if jJnj > ", then take a subset Jn;" of Jn with jJn;"j = ". Note that,

by the de�nition of Jn, jJn;"j > 0 for all n. Let N" be an integer such that for every jnj < N",

jJn;"j � "

2
. Obviously lim"!0N" = 1. Take f =

P
jnj�N"

1Jn;"e
i arg g. Then kfk2

W (L2;l1) � " and

j
P

l2Z
f(x+ l)g(x+ l)j2 �

P
jnj�N"

jg(x+ n)j21Jn;"(x+ n) which implies:

Z 1

0

j
X
l

f(x+ l)g(x+ l)j2dx � "

8

X
jnj�N"

kgk2
L1[n;n+1]

Using now the boundedness of the analysis operator T , we obtain that

X
jnj�N"

kgk2
L1[n;n+1] � 8C

Since lim"!0N" =1 we get
P

n2Z
kgk2

L1[n;n+1] � 8C which means g 2W (L1; l2). Q.E.D. 2

Now we are prepared to prove the theorem 5.10.

Proof of Theorem 5.10

We know that f 7!
P

m;n
< f; g

1
mn

> g
2
mn

is bounded on W (L2
; l
1) and the series converges

unconditionally in L2
loc
. We claim that f 7!

P
m
< f; g

1
mn

> g
2
mn

is uniformly bounded onW (L2
; l
1)

for every n. To see this we prove �rst that for every compact K there is a constant C(K) such that

for every n, k
P

m
< f; g

1
mn

> g
2
mn
k
L2(K) � C(K)kfk

W (L2;l1).

Indeed, for every �xed f , the sequence
PM

m=�M < f; g
1
mn

> g
2
mn

converges in L2
loc
, for M !1.

Thus it is bounded. On the other hand the partial sums of operators SM;n :=
P

M

m=�M < �; g1
mn

>

g
2
mn

are bounded operators, therefore by the uniform boundedness principle they are also uniformly

bounded, i.e. for every M , k
P

M

m=�M < �; g1
mn

> g
2
mn
k
B(W (L2;l1);L2

K
) � Cn for some C > 0.

Next, for every " > 0 and for every f 2 W (L2
; l
1) with kfk

W (L2;l1) = 1 there is a M0 such that

k
P

jmj>M0
< f; g

1
mn

> g
2
mn
k
L2(K) < ". Hence

k
X
m

< f; g
1
mn

> g
2
mn
k
L2(K) � k

X
jmj�M0

< f; g
1
mn

> g
2
mn
k
L2(K)

+ k
X

jmj>M0

< f; g
1
mn > g

2
mnkL2(K) < "+ Cn
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Since " was arbitrary, we get that f 7! Sn(f) :=
P

m
< f; g

1
mn

> g
2
mn

is a bounded operator

in B(W (L2
; l
1); L2(K)). Next we apply again the uniform boundedness principle to the sequence

of operators Sn. Each is bounded from W (L2
; l
1) to L

2(K) as we have seen. For every �xed

f 2W (L2
; l
1) the series

P
n
Sn(f) converges on L

2(K) therefore each term is bounded by the same

constant. Thus we obtain a constant C(K) such that kSnkB(W (L2;l1);L2(K) < C(K) for every n.

Now we return to the operator f 7!
P

m
< f; g

1
mn

> g
2
mn

on W (L2
; l
1). Notice that

kSnkB(W (L2;l1);L2(K+�)) = kSn+1kB(W (L2;l1);L2(K)) < C(K)

Thus if we takeK = [0; �] we get immediately that k
P

m
< f; g

1
mn

> g
2
mn
k
W (L2;l1) � Ckfk

W (L2;l1)

for every n.

Let K and � > 0 be the compact set, respectively the positive constant from the de�nition of

persistency for g2; remember that K is congruent to [0; 1
�
] modulo 1

�
. Then, for every n:

k
X
m

< f; g
1
mn > g

2
mnkL2(K�+n�)

= kg2(�)
X
m

< f; g
1
mn > e

2�im�(�+n�)k
L2(K�)

� �(
X
m

j < f; g
1
mn > j2)1=2

and thus: (
P

m
j < f; g

1
mn

> j2)1=2 � C

�
kfk

W (L2;l1), for every f 2W (L2
; l
1) and n 2 Z.

Now we apply the previous lemma and obtain the conclusion. Q.E.D. 2

So far we extended the frame operator from L
2(R) to W (L2

; l
1). Next we show that, under

certain conditions, W (L2
; l
1) is equivalent to the space W�(L

2
w
; l
1) introduced earlier. this will

then imply that Sg1;g2;�;� is de�ned as a bounded operator on W�(L
2
w
; l
1) as well. The connection

between the two norms in W (L2
; l
1) and W�(L

2
w
; l
1) is given by the following result:

LEMMA 5.13 Suppose the weight w : R ! R+ satis�es the following condition

(C) w 2 W (L1; l1) and w has persistency length � (5.29)

Then the norm k � k
W (L2;l1) is equivalent to k � k

W�(L2
w;l

1) and thus the two Banach spaces are

identical: W (L2
; l
1) =W�(L

2
w; l

1).
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Proof

The only thing we have to prove is that there are constants D2 > D1 > 0 such that for every f ,

D1kfk2W�(L2
w;l

1) � kfk2
W (L2;l1) � D2kfk2W�(L2

w;l
1).

As pointed out before in (5.20) and (5.21), we may choose any translation step in dealing with

the norm k � k
W (L2;l1). For convenience we choose �. Then kfk

2

W (L2;l1) � sup
n

R
�

0
jf(x+ n�)j2dx.

On the one hand, for f 2W (L2
; l
1) we obtain:

Z 1

�1

w(x)jf(x + n�)j2dx =
X
k

Z
�

0

w(x + k�)jf(x+ (k + n)�)j2dx �

�
X
k

sup
x2[0;�]

w(x+ k�)

Z �

0

jf(x+ (k + n)�)j2dx � kwk
W (L1;l1) sup

n

Z (n+1)�

n�

jf(x)j2dx

Therefore there is a D1 > 0 such that D1kfk2W�(L2
w;l

1) � kfk2
W (L2;l1). Hence W (L2

; l
1) �

W�(L
2
w; l

1).

For the other inequality let � > 0 and K be the constant and the compact set from the de�nition

of persistency length of w. Then w(x) � �, for every x 2 K. For every f 2 W�(L
2
w
; l
1) we have:

Z 1

�1

w(x)jf(x + n�)j2dx � �

Z
K

jf(x+ n�)j2dx = �

Z
�

0

jf(x+ (n+ lx)�)j2dx

where lx is the integer associated to x 2 [0; �] such that x + lx� 2 K; lx is bounded by jlxj � N�

since K is compact. We partition [0; �] = [jjj�N�
Sj where Sj = fy 2 [0; �]jly = jg. Let u =

supn
R (n+1)�

n�
jf(x)j2dx and n0 be an integer such that

R
�

0
jf(x + n0�)j2dx � 1

2
u. Then there is a

jjj � N� such that
R
Sj
jf(x+ n0�)j2dx � u

2(2N�+1)
. For n1 = n0 � j we get:

Z 1

�1

w(x)jf(x + n1�)j2dx � �

Z
Sj

jf(x+ n0�)j2dx �
�

2(2N� + 1)
sup
n

Z (n+1)�

n�

jf(x)j2dx

Thus there is a D2 > 0 such that D2kfk2W�(L2
w;l

1) � kfk2
W (L2;l1). Therefore W�(L

2
w; l

1) �

W (L2
; l
1) and the norms are equivalent. Q.E.D. 2

REMARK 5.14 A consequence of this theorem is that if w1, w2 both satisfy (C) thenW�(L
2
w1
; l
1)

and W�(L
2
w2
; l
1) are equivalent.

This lemma together with Theorem 5.3 shows that if g1; g2 2W (L1; l1) and the weight w satis�es
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condition (C) then Sg1;g2;�;� is bounded on W�(L
2
w
; l
1). The lifting from L

2(R) to W (L2
; l
1) or

W�(L
2
w
; l
1) is shown in �gure 5.4.




6

L
2(R) - L

2(R)

6




Sg1;g2;�;�

-
L
2(
;W�(L

2
w
; l
1))

k
L
2(
;W (L2

; l
1))

L
2(
;W�(L

2
w
; l
1))

k
L
2(
;W (L2

; l
1))

Sg1;g2;�;�

6

,

Figure 5.4: The Lifting Scheme in the Stationary Case

The picture is now the following. We would like to work with f 2 L
2
w
, because f 2 L

2(R) is not

possible for stationary signals. However, extending Sg1;g2;�;� to L2
w
is tricky because L2

w
is not well-

adapted to the study of translations. Therefore, we introduce W�(L
2
w
; l
1) instead. We can impose

the slightly stronger restriction f 2W�(L
2
w
; l
1); on this smaller space Sg1;g2;�;� is well de�ned. We

still measure our approximation error in L2
w
:

J(g1; g2;�; �) = Ekf � Sg1;g2;�;�fk2w (5.30)

This is �nite and bounded:

J((g1; g2;�; �)) �
Z



d�(!) sup
n

kTn� (1� Sg1;g2;�;�)f!k2w

� (1 + kSg1;g2;�;�kB(W�(L2
w;l

1)))kfk
2

L2(
;W�(L2
w;l

1))

because Sg1;g2;�;� commutes with the translates Tn
�
f = f(��n�). Note that kSg1;g2;�;�kB(W�(L2

w;l
1)) =

C�;�;wkg1kW (L1;l1)kg2kW (L1;l1) which turns the previous relation into:

J((g1; g2;�; �)) � (1 + C�;�;wkg1kW (L1;l1)kg
2k
W (L1;l1))kfk

2

L2(
;W�(L2
w;l

1)) (5.31)

All the above are summarized by the following theorem:
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THEOREM 5.15 Suppose g
1
; g

2 2 W (L1; l1), and suppose that w : R ! R+ is a nonnegative-

valued function in w 2 W (L1; l1) with persistency length �. Then, for every stochastic model

f 2 L
2(
;W (L2

; l
1)), the approximation error given by a WH pair ((g1; g2;�; �)) is bounded above

as in (5.31). 2

REMARK 5.16 One may wonder, after all, whether there is a realization of a stationary stochastic

model on W (L2
; l
1). The answer is positive as the following example shows. In this example we

assume a mild condition on the autocovariance function, namely R 2 L
2(R).

EXAMPLE 5.17 Suppose R 2 L
2(R) where R(u) = E[f(t)f(t � u)]. Then the Fourier transform

of R is positive, R̂ � 0. De�ne the following probability space:


 = R � f�1; 1gd�(!; q) = 1

2
p
2�R(0)

R̂(qj!j)d! =

(
1

2
p
2�R(0)

R̂(j!j)d! ; q = +1

1

2
p
2�R(0)

R̂(�j!j)d! ; q = �1

Consider now the stationary stochastic model:

f : 
!W (L2
; l
1) ; f!;q(x) = R(0)eiqj!jx+i

�

2
sgn(!)

Then, some direct computations show that:

Ef(x) =
X
q

Z 1

�1
d�(!; q)f!;q(x) = 0

E[f(t)f(s)] =
X
q

Z 1

�1
d�(!; q)f!;q(t)f!;q(s) = R(t� s)

5.2 The Optimization Problems

In this section we analyze certain optimization problems. Earlier we introduced di�erent stochastic

models. Both nonstationary and stationary models have �rst and second order statistics given by:

Ef(�) = 0

E[f(t)f(s)] = R(t; s) (5.32)
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The criterion that we want to minimize has the following form:

J(g1; g2;�; �) = Ekf �
X
m;n

< f ; g
1
mn

> g
2
mn
k2
X

(5.33)

where X is either L2(R) (for �nite energy, nonstationary signals) or L2
w
(R) (for bounded power,

stationary signals). We therefore have to minimize (5.33) subject to the assumptions A1 and A2

made about the windows g1 and g2. We can look for the in�mum of (5.33) under di�erent additional

assumptions. The following statements represent four problems that we formulate and solve in this

section:

Problem 1 (suboptimal 1)

We �x �; � and g
1 and search for g2 that minimizes (5.33) subject to the assumption A2, i.e.

inf
g2; A2 holds

J(g1; g2;�; �) ; �; � and g
1 given (5.34)

Problem 2 (suboptimal 2)

We �x �; � and g
2 and look for g1 that minimizes (5.34) subject to the assumption A2, i.e.

inf
g1; A2 holds

J(g1; g2;�; �) ; �; � and g
2 given (5.35)

Problem 3 (optimal)

We �x only �; � and we look for g1; g2 subject to A2 that minimize (5.33), i.e.

inf

g1;g2

A2 holds

J(g1; g2;�; �) ; �; � are �xed (5.36)

Problem 4 (optimal-tight)

We �x �; � and we look for g1 = g
2 = g subject to A2, that minimizes (5.33), i.e.

inf
g;A2 holds

J(g; g;�; �) ; �; � are �xed (5.37)

Notice that the criterion is quadratic in g
1
; g

2. Thus the �rst two optimization problems should

not be (and in fact are not) di�cult to solve. However, once they are solved, the (suboptimal)

criterion becomes highly nonlinear in the remaining function g
1 or g2. Despite of this nonlinear

form, we shall be able to solve the optimal problems and to parametrize all the solutions.



CHAPTER 5. APPROXIMATION OF STOCHASTIC SIGNALS 70

Since our method is based on the Zak transform, we make one additional assumption, namely

we ask that the sampling ration 1
��

be a rational number. Thus A1 is replaced by:

A10: � � � =
p

q
> 1 ; with p; q 2 N ; integers (5.38)

The computation proceeds in two steps. In the �rst step we do not need the Zak transform and

consequently neither A10. The second step will make use of the Zak transform.

We point out that, beside the constraint A2 we may require some other qualitative constraints

like the time-frequency localization of the windows g1 and/or g2.

For the nonstationary model f 2 L
2(
;L2(R)) we obtain:

J(g1; g2;�; �) = E

"Z 1

�1
dx(f(x) �

X
m;n

< f ; g
1
mn

> g
2
mn

(x))

(f(x) �
X
m;n

< g
1
mn; f > g2mn(x))

#
= T1 � T2 � T3 + T4 (5.39)

where:

T1 = E

Z 1

�1
dxf(x)f(x) =

Z 1

�1
R(x; x)dx

T3 = �T2 = E

X
m;n

Z 1

�1

Z 1

�1
dx dyf(x)g1

mn
(x)g2

mn
(y)f(y) =

= E

X
m;n

Z 1

�1

Z 1

�1
dx dyf(x)f(y)g1(x� n�)g2(y � n�)e2�im�(y�x) =

=
1

�

X
m;n

Z 1

�1
dxR(x +

m

�
; x)g2(x� n�)g1(x +

m

�
� n�)

T4 = E

X
m;n

X
m0;n0

Z 1

�1

Z 1

�1

Z 1

�1
dx dy dz f(y)g1

mn
(y)g2

mn
(x)g2

m0n0(x)g
1
m0n0(z)f(z) =

=
1

�2

X
m;n

X
m0;n0

Z 1

�1
dxR(x+

m

�
; x+

m
0

�
)g1(x+

m

�
� n�)g2(x� n�)g2(x� n0�)g1(x+

m
0

�
� n

0
�)
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Note that in the computation of T2, T3, T4 we used the Parseval formula and next we took the

expectation (thus we avoided the use of the Poisson summation formula).

Similarly, for the stationary model f 2 L
2(
;W (L2

; l
1)) we obtain:

J(g1; g2;�; �) = E

Z 1

�1
dxw(x)jf(x) �

X
m;n

< f; g
1
mn

> g
2
mn

(x)j2

= T5 � T6 � T7 + T8 (5.40)

where:

T5 = R(0)

Z 1

�1
w(x)dx

T7 = �T6 =
1

�

X
m;n

R(
m

�
)

Z 1

�1
dxw(x)g2(x� n�)g1(x+

m

�
� n�)

T8 =
1

�2

X
m;n

X
m0;n0

R(
m�m

0

�
)

Z 1

�1
dxw(x)g1(x+

m

�
� n�)

g
2(x� n�)g2(x� n0�)g1(x +

m
0

�
� n

0
�)

In the next few pages, we shall manipulate these expressions J(g1; g2;�; �) to write them in a

di�erent form. To do this we use the Zak transform. As we mentioned before, we assume �� = p

q
> 1

with p and q relatively prime. The Zak transforms of the two windows g1; g2 are denoted by G
1,

respectively G2 and are de�ned as follows:

G
1(t; s) =

p
�

X
k2Z

e
2�ikt

g
1(�(s + k)) ; G

2(t; s) =
p
�

X
k2Z

e
2�ikt

g
2(�(s + k))

The inversion formulae in time and frequency domain are:

g(x) =
1p
�

Z 1

0

G(t;
x

�
)dt ; ĝ(�) =

r
�

2�

Z 1

0

e
�i�s�

G(���

2�
; s)ds (5.41)

For more information on Zak transform we refer the reader to [Jans82, Jans88]. We recall the two

quasi-periodicity relations of a Zak transform G(t; s):

G(t+ 1; s) = G(t; s) G(t; s+ 1) = e
�2�it

G(t; s) (5.42)
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We also denote by �1(t; s) the p� q matrix whose (j; k) entry is G1(t+ k

q
; s+ j

q

p
), j = 0; : : : ; p� 1,

k = 0; : : : ; q � 1, i.e.

�1(t; s) =

2
66664

G
1(t; s) G

1(t+ 1
q
; s) � � � G

1(t+ q�1
q
; s)

G
1(t; s+ q

p
) G

1(t+ 1
q
; s+ q

p
) � � � G

1(t+ q�1
q
; s+ q

p
)

...
...

...

G
1(t; s+ (p� 1) q

p
) G

1(t+ 1
q
; s+ (p� 1) q

p
) � � � G

1(t+ q�1
q
; s+ (p� 1) q

p
)

3
77775
(5.43)

Similarly, the (j; k) entry of the p� q matrix �2(t; s) is given by G2(t+ k

q
; s+ j

q

p
).

Next we plug the Zak transforms G1
; G

2 into the expressions of the terms T1; : : : ; T8.

5.2.1 The Nonstationary Model - Computations with Zak Transform

For the nonstationary model we obtain:

T3 =
1

�

X
m;n

Z 1

�1
dx

Z 1

0

dt1

Z 1

0

dt2R(x+
m

�
; x)G2(t1;

x

�
� n)G1(t2;

x

�
+

m

��
� n)

Performing summation over n, via Parseval identity, we get t1 = t2 = t and only one integral (in

t) from 0 to 1 (we denote this, symbolically by \�(t1 � t2) in a weak sense "; note again that we

do not use the Poisson summation formula, which would yield the same result but under stronger

conditions). We make a change of variable x = �(s+ k), 0 � s � 1, k 2 Z and we get:

T3 =
1

�

X
m

X
k

Z 1

0

ds

Z 1

0

dtR(�(s+ k +m
q

p
); �(s+ k))G2(t; s+ k)G1(t; s+ k +m

q

p
)

With m = m1p+ r, 0 � r < p we obtain:

T3 =
1

�

Z 1

0

ds

Z 1

0

dt

X
m1;k

p�1X
r=0

R(�(s+ k +m1q + r
q

p
); �(s+ k))e2�itm1qG

2(t; s)G1(t; s+ r
q

p
)

Let

�r1;r2(t; s) =
X
m

e
2�imqt

X
k

R(�(s+ k +mq + r1
q

p
); �(s+ k + r2

q

p
)) (5.44)



CHAPTER 5. APPROXIMATION OF STOCHASTIC SIGNALS 73

and denote by M the p � p matrix whose (r1; r2) entry is �r1;r2(t; s), 0 � r1; r2 � p � 1. Note the

following properties of the functions �r1;r2(t; s):

�r1+p;r2+p(t; s) = �r1;r2(t; s) ; �r1;r2(t; s+
q

p
) = �r1+1;r2+1(t; s)

�r1;r2(t+
1

q
; s) = �r1;r2(t; s) ; �r1;r2(t; s+ 1) = �r1;r2(t; s)

�r1+p;r2(t; s) = e
�2�iqt

�r1;r2(t; s) ; �r1;r2+p(t; s) = e
2�iqt

�r1;r2(t; s) (5.45)

�r1;r2(t; s) = �r2;r1(t; s) ) �Mt =M

i.e. for �xed (t; s) M(t; s) is self-adjoint as a matrix (we shall also use M� for �Mt(t; s)).

Then, the previous expression of T3 turns into:

T3 =
1

�

Z 1

0

ds

Z 1

0

dt G
2(t; s)

p�1X
r=0

G1(t; s+ r
q

p
)�r;0(t; s)

Notice now that the integrand is 1-periodic in s. Then:

T3 =
1

�p

p�1X
k=0

Z k
q

p
+1

k
q

p

ds

Z 1

0

dt G
2(t; s)

p�1X
r=0

G1(t; s+ r
q

p
)�r;0(t; s) =

=
1

�p

Z 1

0

ds

Z 1

0

dt

p�1X
k;r=0

G
2(t; s+ k

q

p
)G1(t; s+ (r + k)

q

p
)�r+k;k(t; s)

Remark now that we can replace r+k by r, running from 0 to p�1 again, becauseG1(t; s+ l
q

p
)�l;k(t; s)

is p-periodic in l. Then:

T3 =
1

p�

Z 1

0

ds

Z 1

0

dt

p�1X
k;r=0

G
2(t; s+ k

q

p
)G1(t; s+ r

q

p
)�r;k(t; s)

Similarly we obtain that the integrand is q

p
-periodic in s. Therefore it is 1

p
-periodic in s ( 1

p
is the

greatest common divisior between 1 and q

p
in 1

p
Z). Then using that �'s are 1

q
-periodic in t:

T3 =
1

�

Z 1=p

0

ds

Z 1=q

0

dt

q�1X
l=0

p�1X
k;r=0

G
2(t+

l

q
; s+ k

q

p
)G1(t+

l

q
; s+ r

q

p
)�r;k(t; s)

=
1

�

Z 1=p

0

ds

Z 1=q

0

dt T rf�2(t; s)�1�(t; s)M(t; s)g (5.46)
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For T4 we obtain:

T4 =
1

��2

X
m;n

X
m0;n0

Z 1

�1
dx

Z 1

0

dt1

Z 1

0

dt2

Z 1

0

dt3

Z 1

0

dt4 R(x+
m

�
; x+

m
0

�
)

G1(t1;
x

�
+m

q

p
� n)G2(t2;

x

�
� n)G2(t3;

x

�
� n0)G1(t4;

x

�
+m

0 q

p
� n

0)

Performing the summation over n and n
0 we get �(t1 � t2)�(t3 � t4) in weak sense. Next for

x = �(s+ k), m = m1p+ r1, m
0 = m

0

1p+ r2 we get:

T4 =
1

��

X
m1;m1

0;k

Z 1

0

ds

Z 1

0

dt1

Z 1

0

dt4

p�1X
r1;r2=0

R(�(s+ k +m1q + r1
q

p
); �(s+ k +m

0

1q + r2
q

p
))

G1(t1; s+ r1
q

p
)G2(t1; s)G2(t4; s)G

1(t4; s+ r2
q

p
)e2�im1qt1e

�2�im
0

1
qt4

Notice that after we perform the summation over k in R(�; �), the sum will depend on m1�m
0

1 only.

Thus we get �r1;r2(t1; s)
P

m
0

1

exp(2�im
0

1(qt1 � qt4)). Replacing t1 = �1 +
l1

q
, t4 = �2 +

l2

q
and using

the Parseval relation again we get:

T4 =
1

��2q

Z 1

0

ds

Z 1=q

0

dt

q�1X
l1;l2=0

p�1X
r1;r2=0

�r1;r2(t; s)G
1(t+

l1

q
; s+ r1

q

p
)G2(t+

l1

q
; s)

G2(t+
l2

q
; s)G1(t+

l2

q
; s+ r2

q

p
)

Using 1-periodicity in s of the integrand we obtain:

T4 =
1

�2�qp

Z 1

0

ds

Z 1=q

0

q�1X
l1;l2=0

p�1X
r1;r2;r=0

�r+r1;r+r2(t; s)G
1(t+

l1

q
; s+ (r + r1)

q

p
)

G
2(t+

l1

q
; s+ r

q

p
)G2(t+

l2

q
; s+ r

q

p
)G1(t+

l2

q
; s+ (r + r2)

q

p
)

Next we notice that the integrand is q

p
-periodic in s and r + r1, r + r2 can be replaced by r1,

respectively r2 again. Hence the integrand is 1
p
-periodic in s and we end up with:

T4 =
1

�2�q

Z 1=p

0

ds

Z 1=q

0

dt

q�1X
l1;l2=0

p�1X
r1;r2;r=0

G
2(t+

l1

q
; s+ r

q

p
)G1(t+

l1

q
; s+ r1

q

p
)

�r1;r2(t; s)G
1(t+

l2

q
; s+ r2

q

p
)G2(t+

l2

q
; s+ r

q

p
) =

1

�p

Z 1=p

0

ds

Z 1=q

0

dt T rf�2�1�M�1�2
�g(5.47)



CHAPTER 5. APPROXIMATION OF STOCHASTIC SIGNALS 75

For T1 we get immediately that:

Z 1

0

ds

Z 1=q

0

dt�r;r(t; s) =
1

�q

Z 1

�1
R(x; x)dx =

1

�q
T1

Thus:

T1 = �q

Z 1=p

0

ds

Z 1=q

0

dt T rfMg (5.48)

Putting together (5.46), (5.47) and (5.48) we obtain:

J(g1; g2;�; �) = �q

Z 1=p

0

ds

Z 1=q

0

dt T rf(I � 1

p
�2�1

�
)M(I � 1

p
�1�2

�
)g (5.49)

where �1 = �1(t; s), �2 = �2(t; s), M =M(t; s) and I is the p� p identity matrix.

5.2.2 The Stationary Model - Computations with Zak Transform

For the stationary model we can rewrite J(g1; g2;�; �) in a similar way. We obtain (see 5.40):

T7 =
1

�

X
m;n;k

R(
m

�
)

Z 1

0

ds

Z 1

0

dt1

Z 1

0

dt2w(�(s + k))G2(t1; s+ k � n)G1(t2; s+ k +m
q

p
� n)

=
1

�

Z 1

0

ds

Z 1

0

dt

p�1X
r=0

X
m0

e
2�im0

qt
R(

m
0
p+ r

�
)
X
k

w(�(s + k))G2(t; s)G1(t; s+ r
q

p
)

Let us denote:

�r1;r2(t) =
X
m

e
2�imqt

R(
mp+ r1 � r2

�
) (5.50)

and

W (s) =
X
k

w(�(s + k)) (5.51)

We point out that (5.50) is consistent with (5.44). Since � does not depend on s we have �r1+1;r2+1(t) =

�r1;r2(t). Notice again the integrand is 1-periodic in s and � is 1
q
-periodic in t. Then:

T7 =
1

�p

Z 1

0

ds

Z 1=q

0

dt

p�1X
r;r1=0

q�1X
l=0

W (s+ r1

q

p
)G2(t+

l

q
; s+ r1

q

p
)

G1(t+
l

q
; s+ (r + r1)

q

p
)�r+r1;r1(t)
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Again the integrand is q

p
-periodic in s (and also 1

p
-periodic) and we can replace r+ r1 by r1. In the

end we get:

T7 =
1

�

Z 1=p

0

ds

Z 1=q

0

dt T rfW(s)�2(t; s)�1
�
(t; s)M(t)g (5.52)

where W =W(s) is a p� p diagonal matrix whose (r; r) entry is W (s+ r
q

p
), r = 0; : : : ; p� 1, i.e

W(s) =

2
6664

W (s)

W (s+ q

p
)

. . .

W (s+ (p� 1) q
p
)

3
7775 (5.53)

and M(t) is the p� p matrix whose (r1; r2) entry is �r1;r2(t). For T8 we get:

T8 =
1

�2�

X
m;n

X
m0;n0;k

R(
m�m

0

�
)

Z 1

0

ds w(�(s + k))

Z 1

0

dt1

Z 1

0

dt2

Z 1

0

dt3

Z 1

0

dt4

G1(t1; s+ k � n+m
q

p
)G2(t2; s+ k � n)G2(t3; s+ k � n0)G1(t4; s+ k � n

0 +m
0 q

p
)

Repeating the scheme as before we get:

T8 =
1

�2�2q

Z 1=p

0

ds

Z 1=q

0

dt T rfW�2�1
�
M�1�2

�g (5.54)

Since
R 1=p
0

ds
R 1=q
0

dt T rfWMg = 1
q�
R(0)

R1
�1 w(x)dx we get:

T5 = �q

Z 1=p

0

ds

Z 1=q

0

dt T rfWMg

Therefore, the criterion (5.40) becomes:

J(g1; g2;�; �;R;w) = �q

Z 1=p

0

ds

Z 1=q

0

dt T rfW(I � 1

p
�2�1

�
)M(I � 1

p
�1�2

�
)g (5.55)

Notice that for (t; s) 2 [0; 1
q
]� [0; 1

p
] the entries of the matrices �1 and �2 are independent. Moreover,

if we denote by L2([0; 1
q
]�[0; 1

p
]; C p�q ) the Hilbert space of the p�q matrix - valued functions de�ned

on the rectangle [0; 1
q
]� [0; 1

p
] endowed with the scalar product

< �1;�2 >=

Z 1=p

0

ds

Z 1=q

0

dt T rf�1�2�g ; 8�1;�2 2 L
2([0;

1

q
]� [0;

1

p
]; C p�q )

then g 2 L
2(R) 7! � 2 L

2([0; 1
q
]� [0; 1

p
]; C p�q ) is a unitary map.
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5.2.3 Miscelaneous Results

We have now recast J(g1; g2;�; �) into the forms (5.49) and (5.55) and we can use these to analyze

the optimization problems (5.34){(5.37). But �rst we need to make a couple of comments about the

matrices W and M as well about the assumption A2.

The condition (C) (see Lemma 5.13) implies there are two positive constants 0 < A1 � B1 <1

such that:

A1 �W(s) � B1 (5.56)

for every s 2 [0; 1
p
]. About the matrix M we can only claim it is nonnegative for every (t; s).

However, if we want to get an uniform bound as in (5.56) we need to require some extra conditions.

LEMMA 5.18 For the nonstationary case, for every (t; s), M(t; s) � 0 (as a matrix). If in the

stationary case R is continuous and in W (L1; l1) then for every (t; s), M(t; s) � 0 as well.

Proof

Take z1; : : : ; zp�1 2 C arbitrarily complex numbers. We have to prove that:

< z;Mz >=

p�1X
r1;r2=0

zr1 �zr2�r1;r2 � 0

In the nonstationary case a straightforward computation shows that:

< z;Mz >=

q�1X
l=0

E[j
p�1X
r=0

zr

X
m

e
2�imqt

f(�(s + l +mq + r
q

p
))j2] � 0 (5.57)

In the stationary case, we use the Fourier transform of R and the Poisson summation formula (see

[Gro96]) to obtain:

< z;Mz >=

p
2��

p

X
m

[j
p�1X
r=0

zre
i�r=�j2R̂(�)]j�= 2�m

p
� 2�

�
t � 0 (5.58)

Thus (5.57) and (5.58) prove the assertion. 2

Concerning the uniform boundedness, the following result gives su�cient conditions forM to be

bounded:
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THEOREM 5.19

1. Consider the nonstationary stochastic model (5.9). Assume R 2W (L1(2); l1(Z2)) where:

W (L1(2); l1(Z2))

:= fF : R2 ! C j kFk
W (L1(2);l1(Z2)) :=

X
m;n2Z

ess sup
0�x;y�1

jF (x +m; y + n)j <1g

Then:

a) For every �; � > 0 with � � � 2 Q there is a constant B2(�; �) independent of R such that:

M(t; s) � B2(�; �)kRkW (L1(2);l1(Z2)) ; 8t; s

b) Assume the function x 7! R(x; x) has persistency length �. Then there is a �0 > 0 such

that for every 0 < � < �0 with �� 2 Q there is a constant A2(�; �) such that:

M(t; s) � A2(�; �) ; 8t; s

2. Consider the stationary stochastic model (5.14). Assume R 2W (L1; l1). Then:

a) For every �; � > 0 with �� 2 Q there is a constant B2(�; �) independent of R such that:

M(t; s) � B2(�; �)kRkW (L1;l1) ; 8t; s

b) There is a �0 > 0 such that for every 0 < � < �0 and � > 0 with �� 2 Q there is a constant

A2(�; �) such that:

M(t; s) � A2(�; �) ; 8t; s

Proof

In order to obtain the upper bound we need to prove the uniform boundedness of �r1;r2(t; s).

For the nonstationary model:

j�r1;r2(t; s)j �
X
m;k

jR(�(s+ k +mq + r1
q

p
); �(s+ k + r2

q

p
))j � B2(�; �)kRkW (L1(2);l1(Z2))
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with the constant B2(�; �) obtained from adapting the norm onW (L1(2); l1(Z2)) to the translation

step �.

For the stationary case, we obtain:

j�r1;r2(t)j �
X
m

jR(mp+ r1 � r2

�
j �

X
m

jR(m
�
)j � B2(�)kRkW (L1;l1)

For part b) we write:

M =M
0 +

X
m6=0

e
2�imqt

2
64

�
m

00 � � � �
m

0;p�1
...

...

�
m

p�1;0 � � � �
m

p�1;p�1

3
75

In the nonstationary case, the diagonal elements of M0 are:

M
0
rr

=
X
k

R(�(s+ k + r
q

p
); �(s+ k + r

q

p
)) � � > 0

for � > 0 from the de�nition of of persistency length of x 7! R(x; x). Notice that:

X
m6=0

j�m
r1;r2

j =
X
m6=0

X
k

jR(�(s+ k +mq + r1
q

p
); �(s+ k + r2

q

p
))j

� B3

X
m 6=0

X
k

ess sup
0�x;y�1

jR(x+ k +m�q; y + k)j = U

But �q = p

�
� 1

�0
. Thus the di�erence between the two arguments is at least 1

�0
and

U � B3

X
m;k

jm�kj� 1

�0

ess sup
�x;y�1

jR(x+m; y + k)j

If we choose �0 small enough, we can make U smaller than �

2p
. Then M is a diagonally dominant

matrix and the lower bound follows immediately.

In the stationary case we prove that M is a diagonally dominant matrix for � small enough, in

the following way. Firstly,

Mrr = �rr(t) =
X
m

e
2�imqt

R(
mp

�
) � R(0)�

X
m 6=0

jR(m
�
)j

and for r1 6= r2:

�r1;r2(t) �
X
m

jR(mp+ r1 � r2

�
)j �

X
m 6=0

jR(m
�
)j
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Thus for �0 chosen such that for every � < �0,
P

m 6=0 jR(m� )j < 1
2p
R(0) we obtain the statement.

Q.E.D. 2

In the optimization problems (5.34){(5.37) we look for optimizers that satisfy the assumption

A2, namely the sets fg1
mn

;m;n 2 Zg and fg2
mn

;m;n 2 Zg to be s-Riesz bases. In terms of the

matrices �1 and �2 this condition turns into an algebraic easily veri�able relation as the following

proposition shows:

PROPOSITION 5.20 The set fgmn;m;n 2 Zg with gmn(x) = e
2�im�x

g(x � n�), �� = p

q
> 1 is

a s-Riesz basis if and only if there are constants 0 < A � B <1 such that:

A � 1

p
��� � B (5.59)

for every (t; s) 2 [0; 1
q
] � [0; 1

p
]. The matrix � is de�ned similarily to (5.43). The optimal s-Riesz

basis bounds are the largest A and smallest B that satisfy (5.59), i.e.:

Aoptimal = inf
t;s

1

p
�min(�(t; s)

��(t; s)) ; Boptimal = sup
t;s

1

p
�max(�(t; s)

��(t; s)) (5.60)

where �min(M) denotes the smallest eigenvalue of the matrix M , and �max(M) the largest one.

The standard biorthogonal s-Riesz basis generator ~g is given by:

~� = p�(���)�1 (5.61)

Proof

Let f 2 L
2(R). Then using a similar computation as before gives:

< f; Sg;g;�;�f >=
X
m;n

j < f; gmn > j2 = 1

p

Z 1=p

0

ds

Z 1

0

dtk���k2

where:

� = �(t; s) = [F (t; s) F (t; s+
q

p
) � � � F (t; s+ (p� 1)

q

p
)]t

and F (t; s) is the Zak transform of f . Since f 2 L
2(R) 7! � 2 L

2([0; 1] � [0; 1
p
]; C p ) is a unitary

operator, (5.59) and (5.60) follow immediately.
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On the other hand, making similar computations as for the terms T3, T4 we get:

kf �
X

m;n

< f; gmn > ~gmnk2 = kfk2 �
X

m;n

< f; ~gmn >< gmn; f >

�
X

m;n

< f; gmn >< ~gmn; f > +
X

m;n

X

m0;n0

< f; gmn >< ~gmn; ~gm0n0 >< gm0n0 ; f >

and next:

kf � Sg;~g;�;�fk2 = p

Z 1=p

0

ds

Z 1

0

dtk(I � 1

p
~���)�k2

Now it is easy to see that Sg;~g;�;� is an orthogonal projection in L2(R) if and only if 1
p
~��� is an

orthogonal projection in C p . And this happens if and only if ~� is given by (5.61). Q.E.D. 2

5.2.4 Optimization Algorithm

Now we are ready to analyze the optimization problems (5.34){(5.37). The relations (5.49) and

(5.55) give a decomposition of the criterion in terms of �nite dimensional matrices, and in both

cases we have to minimize a trace. In the nonstationary model, this is:

Trf(I � 1

p
�2�1

�
)M(I � 1

p
�1�2

�
)g (5.62)

whereas in the stationary case it has the following form:

TrfW(I � 1

p
�2�1

�
)M(I � 1

p
�1�2

�
)g (5.63)

Notice that if we denote by X1 =
1p
p
W�1=2�1, X2 =

1p
p
W1=2�2 and � =W1=2MW1=2 then (5.63)

turns into:

j(X1; X2) = Trf(I �X2X
�
1 )�(I �X1X

�
2 )g (5.64)

In the nonstationary case we set X1 = 1p
p
�1, X2 = 1p

p
�2 and � = M and (5.62) becomes also

(5.64).

The optimization problems stated at the beginning of thi section turn into the following four

problems:

Problem 1' (suboptimal 1')
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Given X1 with A1 � X�
1X1 � B1 for every (t; s), �nd the in�mum of (5.64) over X2 subject to

0 < A2 � X�
2X2 � B2 <1 for every (t; s) with A2; B2 independent of (t; s).

Problem 2' (suboptimal 2')

Given X2 with A2 � X�
2X2 � B2 for every (t; s), �nd the in�mum of (5.64) over X1 subject to

0 < A1 � X�
1X1 � B1 <1 for every (t; s) with A1; B1 independent of (t; s).

Problem 3' (optimal')

Given �, �nd the in�mum of (5.64) over X1 and X2 subject to 0 < A1 � X�
1X1 � B1 < 1,

0 < A2 � X�
2X2 � B2 <1 for every (t; s) with A1; A2; B1; B2 independent of (t; s).

Problem 4' (optimal'-tight)

Given �, solve the Problem 3' under the additional constraint X1 = X2.

Notice that Problem 4' is not exactly equivalent to the Problem 4 stated before, however the

di�erence will involve a simple rescaling as we shall see in a moment.

The following lemma solves these problems:

LEMMA 5.21 Consider the optimization problem:

j� = inf Trf(I �X2X
�
1 )�(I �X1X

�
2 )g (5.65)

a) For �xed X1 and given � > 0, the optimizer X2 is uniquely given by:

X
opt

2 = �X1(X
�
1�X1)

�1 (5.66)

and the optimum value of (5.65) is given by:

j� = Trf���X1(X
�
1�X1)

�1X�
1�g (5.67)

If 0 < A � � � B <1 and 0 < A1 � X�
1X1 � B1 <1 then

AA1

(BB1)2
� (X

opt

2 )�Xopt

2 � BB1

(AA1)2
(5.68)

b) For �xed X2 and given �, the optimizer X1 is uniquely given by:

X
opt

1 = X2(X
�
2X2)

�1 (5.69)
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and the optimum of (5.65) is then:

j� = Trf��X2(X
�
2X2)

�1X2�g (5.70)

If 0 � A2 � X�
2X2 � B2 <1, then:

1

B2

� (X
opt

1 )�Xopt

1 � 1

A2

(5.71)

c) For a given �, the optimizers X1, X2 of (5.65) are given by:

Xo

1 = F � L (5.72)

Xo

2 = F � L��1 (5.73)

where F is the p� q matrix whose columns are the �rst q eigenvectors of �, i.e.

F = [f1j : : : jfq ] ; �fj = �jfj and �1 � �2 � : : : � �q � : : : �p (5.74)

and L is an arbitrary invertible q � q matrix. The optimum of (5.65) is then:

j� =

pX
j=q+1

�j (5.75)

If we choose L such that kLk � b and kL�1k � a then:

1

a2
� (Xo

1 )
�Xo

1 � b2 ;
1

b2
� (Xo

2 )
�Xo

2 � a2 (5.76)

d) If � is given, then the optimizers X = X1 = X2 of (5.65) are:

X = F � U (5.77)

where F is as in (5.74) and U is an arbitrary unitary matrix. The optimal value is given again by

(5.75) and X�
1X1 = X�

2X2 = Iq�q (the q � q identity matrix).

Proof

a) It is easy to check that for X2 = X
opt

2 + Z we get:

j(X1; X
opt

2 + Z) = j(X1; X
opt

2 ) + TrfZX�
1�X1Z

�g � j(X1; X
opt

2 )
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Thus the minimum j is obtained for Z = 0, hence (5.66). Remark that if � > 0 and X�
1X1 > 0,

then the minimizer is unique. (5.67) and (5.68) are obtained by straightforward computations.

b) As before, for X1 = X
opt

1 + Z we obtain:

j(X
opt

1 + Z;X2) = j(X
opt

1 ; X2) + TrfX2Z
��ZX�

2g � j(X
opt

1 ; X2)

The conclusions are obtained similarily.

c) We have to look for the minimum of (5.67) over X1 or, equivalently, the minimum of (5.70)

over X2. The �rst way is more algebraically di�cult; the second way, however, takes us more easily

to the result.

First we note that P2 = X2(X
�
2X2)

�1X�
2 is the orthogonal projection onto RanX2. Hence, what

we look for is a rank q = dimRanX2 orthogonal projection P2 that maximizes the TrfP2�g. Let
f1; : : : ; fp be a set of orthonormal eigenvectors of � whose eigenvalues are �1 � : : : � �p. Then:

TrfP2�g =
pX

j=1

< fj ; P2�fj >=

pX
j=1

�j < fj ; P2fj >=

pX
j=1

pj�j

where 0 � pj � 1 and
P

p

j=1 pj = q. Then the largest value is achieved for p1 = � � � = pq = 1 and

pq+1 = � � � = pp = 0, which means P2 is the projection onto spanff1; : : : ; fqg. This gives (5.73) and
(5.74). (5.72) is obtained from (5.69). The other part of the conclusion is straightforward.

d) The conclusion is immediately drawn from the part c). Q.E.D. 2

REMARK 5.22 In the stationary case, if W (s) 6� 1 then X1 = X2 gives �
1 =W�2. In terms of

Zak transform this means G1(t; s) =W (s) �G2(t; s) and in the time-domain this implies:

g1(x) = g2(x)W (
x

�
) (5.78)

In a physical implementation, (5.78) is equivalent with a prescaling of the signal by W (x
�
).

This lemma completely solves the �rst two suboptimal problems. For the optimal problems (5.36)

and (5.37) we have to choose invertible L and unitary U for every (t; s). Despite this apparently

simple requirement, the (practical) optimal problem is far from a \good" solution. What we mean

by a \good" solution is a pair of well-localized windows in time-frequency domain. As a bad example

of what may happen, consider the following example:
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EXAMPLE 5.23 Consider the weight w = 1[0;�] (which gives W(s) = Ip�p for every s) and the

autocovariance function R̂(�) given by:

R̂(�) = jH(i�)j2 ; H(s) =
158:1s(s2 + 60s+ 3002)

(s2 + 20s+ 1002)(s2 + 200s+ 10002)
(5.79)

If we choose L(t; s) = Iq�q for every (t; s) 2 [0; 1
q
) � [0; 1

p
) then for the optimal g1 = g2 = gopt we

get the solutions shown in Figures 5.5, 5.6 and 5.7 for three sampling ratios: p

q
= 2; 5; 7. We notice

how poorly localized in time-frequency domain they are.

The boundary conditions are the main obstruction in choosing freely the invertible L. Indeed,

the Zak transform obeys the conditions (5.42). However, in terms of the matrix �, the boundary

conditions have a very messy form. The relation t 7! t+ 1
q
is simple, however when we try to connect

� at s+ 1
p
to the matrix at s we get a very messy albeit linear relation, that cannot be written as a

matrix product.

Unfortunately, the optimal solution cannot be well-localized in time-frequency domain. A Balian-

Low type phenomenon happens with the optimal solution. We shall prove next an amalgam nonlo-

calization theorem, similar to the one that holds for WH Riesz basis generators (see [BHW95]).

THEOREM 5.24 Suppose �; � > 0, �� = p

q
2 Q and the stochastic model is given such that the

matices M(t; s) (in the nonstationary case) or W(s) and M(t) (in the stationary case) are bounded,

invertible, with bounded inverse, for a.e. (t; s). Then, if (g1; g2) denotes an optimizer of (5.36), none

of the functions g1; ĝ1; g2; ĝ2 belongs to W (C0; l
1) (i.e. g1; ĝ1; g2; ĝ2 2 L2(R) nW (C0; l

1)) where:

W (C0; l
1) := ff j f continuous and f 2W (L1; l1)g (5.80)

Proof

Note �rst that M(t; s), respectively W(s) and M(t), are 1-periodic in t and 1-periodic in s, by

construction. Thus �(t+ 1; s) = �(t; s), �(t; s+1) = �(t; s) which implies the same periodicity for

the eigenvectors, so that F (t+1; s) = F (t; s), F (t; s+1) = F (t; s). Next, since G1(t+1; s) = G1(t; s)

and G1(t; s+ 1) = e�2�itG1(t; s) we obtain for �1(t; s):

�1(t+ 1; s) = �(t; s) ; �1(t; s+ 1) = �1(t; s) �D(t)
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Figure 5.5: The optimal solution for p = 2, q = 1 and L(t; s) = I
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Figure 5.6: The optimal solution for p = 5, q = 1 and L(t; s) = I
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Figure 5.7: The optimal solution for p = 9, q = 1 and L(t; s) = I
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where D(t) is a q � q diagonal matrix whose (r; r)-entry is given by e�2�i(t+
r�1

q
), r = 1; 2 : : : q.

In the nonstationary case �1(t; s) =
p
pF (t; s) � L(t; s), whereas in the stationary case �1(t; s) =

p
pW 1=2(s) � F (t; s) � L(t; s). In either case we obtain for L(t; s) the following relations:

L(t+ 1; s) = L(t; s) ; L(t; s+ 1) = L(t; s) �D(t) (5.81)

If we denote f(t; s) = det L(t; s), (5.81) implies the following:

f(t+ 1; s) = f(t; s) ; f(t; s+ 1) = f(t; s) � e�2�iqt (5.82)

Let us return now to g1. Because �1��1 = pL�F �FL (by construction) and F �F = Iq�q we see that

det(�1��1) = pq det(L�L). It then follows from Proposition 5.20 that there are constants a; b > 0

such that 0 < a � jf(t; s)j � b < 1, for a.e. (t; s). Suppose now g1 2 W (C0; l
1). Then G1(t; s) is

continuous at every (t; s). This can happen only if all entries in L(t; s) are continuous. Thus f(t; s)

should be continuous which, together with 0 < a � f(t; s) � b < 1 implies there is a continuous

real-valued function '(t; s) such that f(t; s) = jf(t; s)j � ei'(t;s). If this is so, then (5.82) implies:

'(t+ 1; s) = '(t; s) + 2�N ; '(t; s+ 1) = '(t; s)� 2�qt+ 2�M (5.83)

for some �xed integers M;N 2 Z. Evaluating ' on the four corners of the unit square in the

(t; s)-plane we obtain:

0 = ('(0; 0)� '(0; 1)) + ('(0; 1)� '(1; 1)) + ('(1; 1)� '(1; 0)) + ('(1; 0)� '(0; 1))

= �2�M � 2�N � 2�q + 2�M + 2�N = �2�q

Contradiction! The contradiction comes from the assumption g1 2 W (C0; l
1). Similarly we prove

the statement for the other three functions ĝ1; g2; ĝ2. 2

This theorem proves that we cannot expect to �nd well-localized optimal solutions. Instead we

might look for suboptimal windows that decay fast in time-frequency domain. In section 5.4 we

present examples that achieve a distortion within 3% larger than the optimal value.

We end this section by establishing an asymptotic formula for the optimal J� given by:

J� = �q

Z 1=p

0

ds

Z 1=q

0

dt

pX
j=q+1

�j(t; s) (5.84)
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Assume the stationary case with w = 1[0;�]. This implies W(s) = Ip�p for every s. Furthermore,

we assume the support of R is included in [� 1
�
; 1
�
]. Then we get �r1;r2(t) = R(0)�r1;r2 . Thus

M(t) = R(0)Ip�p, for every t. Plugging into (5.84), we obtain:

J� = �q

Z 1=p

0

ds

Z 1=q

0

dtR(0)(p� q) = �R(0)(1� q

p
) (5.85)

This corresponds to the graph in Figure 5.2. Note the continuous transition from �R(0)

= E
R
�

0
jf(x)j2dx to 0, unlike the deterministic case in Figure 5.1.

5.3 Distortion and Rate

In this section we start analyzing the one-channel compression problem using windowed Fourier

transform. The block diagram is drawn in Figure 5.8.

(< �; gmn >)mn

Analog
Encoder

Q�

Quantizer

2

Digital
Encoder

Channel/
Memory

- - - -

bmndmn
cmnf

3

Digital
Decoder

-

b
0

mn
P

m;n
d

0

mn
g]
mn

-

d
0

mn

Analog
Decoder

-

frecon

Figure 5.8: The one-channel compression block diagram

The analog encoder is a bank of �lters that compute the coe�cients cmn =< f; gmn > of the

signal f , with respect to the vectors gmn. Next the coe�cients are passed through the quantizer Q�.

We quantize separately the real and imaginary part of the coe�cients. The quantizer is assumed

to have a uniform interlevel distance �. Thus l = Q�(x) means x 2 [(l � 1
2
)�; (l + 1

2
)�), so that

l = b x
�
+ 1

2
c. Hence dmn, the quantization output, carries the interlevel label to which the real or

imaginary part of cmn belongs: dmn = Q�(cmn). The digital encoder is an entropic encoder, based

on the variance of cmn; it converts the meaningful labels into sequences of bits bmn = D(dmn),

for (m;n) 2 S, where S is the set of meaningful coe�cients (we shall return later to how S is to

be determined). Next comes the channel (in a transmission problem) or the memory block (in a

pure compression problem). In any case we assume this block to be ideal, i.e. b
0

mn = bmn. The
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digital decoder simply inverts the digital decoder: d
0

mn
= D�1(b

0

mn
). The last block is the analog

decoder which reconstructs the original signal f based on the information it has gotten, namely the

coe�cients (labels) d
0

mn. For reconstruction we use a Weyl-Heisenberg synthesis operator with the

window g#. Thus frecon =
P

m;n
d
0

mn
g#
mn

and putting all these relations together we get:

frecon =
X

(m;n)2S

Q�(< f; gmn >)g
#
mn

(5.86)

Our goal is to analyze the reconstruction error kf � freconk
X
and to estimate the memory capacity

(the number of bits used) or the channel rate, based on a certain stochastic model.

First we have to choose which coe�cients are going to be encoded. As we mentioned before, the

digital encoder will convert into a binary sequence only those coe�cients whose variances are larger

than a threshold. Note that the variances can be computed a priori once we know the statistics

of the signal. Therefore the entire scheme can be designed based on this statistics. It is shown

(see [Dav72]) that the most economic way of encoding a discrete sequence of quantized zero-mean

random variables (xi)i is to allocate to each variable xi a number of bits Ri in the following way: if

E[jxij2] < �2

12
then Ri = 0, otherwise it is given by:

E[jxij2] = �2

12
22Ri (5.87)

Thus the total number of bits used by the entropic encoder would be:

Ntotal =
1

2

X
i;E[jxij2]��2=12

log2(
12

�2
E[jxij2] (5.88)

Next we analyze this scheme for the two stochastic models presented before (nonstationary and

stationary). We assume from now on that we deal with real-valued signals and the window g is

normalized to 1 in L2-sense, i.e. kgk
L2(R) = 1.

5.3.1 The Nonstationary Model: The Memory Capacity

In this model the signal has �nite energy, f 2 L2(R). The variance of the coe�cient cmn is given

by:

�2
mn

:= E[jcmnj2] =
Z 1

�1

Z 1

�1
R(x; y)e�2�im�xg(x� n�)e2�im�yg(y � n�)dx dy (5.89)
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Since we deal with real-valued signals (as we already have), the variances of the real and respectively

imaginary part of cmn are given by:

�2
mn

:=E[jRe(cmn)j2] = 1

4

Z Z
R(x; y)(e�2�im�xg(x� n�) + e2�im�xg(x� n�))

(e�2�im�yg(y � n�) + e2�im�yg(y � n�))dx dy (5.90)

�2mn
:=E[jIm(cmn)j2] = 1

4

Z Z
R(x; y)(e�2�im�xg(x� n�)� e2�im�xg(x� n�))

(e�2�im�yg(y � n�)� e2�im�yg(y � n�))dx dy (5.91)

Notice that �2mn + �2mn = �2mn. We have the following result:

LEMMA 5.25 Suppose g 2 L2(R) and
R1
�1R(x; x)dx < 1. Then for every " > 0 there are

M"; N" > 0 such that for every (m;n) 2 Z2 n ([�M";M"]� [�N"; N"]) we have �2
mn

< ".

Proof

Fix " > 0. Since jR(x� y)j �pR(x; x)
p
R(y; y) we obtain

�2
mn

�
Z
(R(x; x))1=2jg(x� n�)jdx

The translation operator Tt, f 7! f(� � t) = Ttf , on L2(R) is weakly convergent to zero when

t ! 1. Therefore there is a N" such that for every jnj > N" and m 2 Z, �2
mn

< ". On the

other hand, for every �xed n, a Riemann-Lebesgue lemma argument proves the existence of a

Mn;" such that �2mn < ", for every jmj > Mn;". Choose M" = maxjnj�N"
Mn;". Then for every

(m;n) 62 [�M";M"]� [�N"; N"], �
2
mn < ". Q.E.D. 2

This lemma proves that only a �nite number of coe�cients will be encoded. Notice also that

E[jRe(cmn)j2] � E[jcmnj2], E[jIm(cmnj2] � E[jcmnj2]. Then the total number of bits used by the

entropic encoder is (asymptotically) given by:

Memory =
1

2

X
m;n

�2mn � �2=12

log2(
12

�2
�2mn) +

1

2

X
m;n

�2mn � �2=12

log2(
12

�2
�2mn) (5.92)
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5.3.2 The Stationary Case: The Rate

In the stationary model, signals are assumed to be in W (L2; l1). An easy computation shows that

for R 2 L2(R), g 2 L4=3(R) and real-valued signals, the variances of the coe�cient cmn, Re cmn and

Im cmn, respectively, are:

�2
mn

= E[jcmnj2] =
p
2�

Z 1

�1
d�R̂(�)jĝ(� � 2�m�)j2 �

p
2�kRk

L2
kĝk2

L4
(5.93)

�2mn = E[jRe(cmn)j2] =
p
2�

4

Z 1

�1
d�R̂(�)je2�imn�� ĝ(� � 2�m�)

+ e�2�imn�� ĝ(�� � 2�m�)j2 (5.94)

�2
mn = E[jIm(cmn)j2] =

p
2�

4

Z 1

�1
d�R̂(�)je2�imn�� ĝ(� � 2�m�)

� e�2�imn�� ĝ(�� � 2�m�)j2 (5.95)

The scheme works in the following way: in a � time interval, say [N�; (N+1)�), the transmitter has

to send the meaningful coe�cients cm;N (or cm;N�d for some �xed delay d > 0). The meaningful

coe�cients are those given by �2
mn

� �2

12
or �2

mn
� �2

12
(when each real and imaginary part is

quantized separately). Using again the weakly convergence to zero of the translation operator Tt

when t!1, there exists a M > 0 such that for every jmj > M , �2
mn

� �2

12
. Thus we have to send

only a �nite number of quantized values. This yields the following rate:

Rate =
1

2�

X
m;n

�2mn � �2

12

log2(
12

�2
�2
mn

) +
1

2�

X
m;n

�2mn � �2

12

log2(
12

�2
�2
mn

) (5.96)

Later we shall return to this formula to establish the asymptotic behaviour when �! 0.

Returning to the analysis of the general scheme 5.8, we have to analyze the distortion given by

this compression scheme. The distortion measures the reconstruction error as:

Distortion = Ekf � freconk2
X
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Let S1 = f(m;n)j�2
mn

� �2

12
g, S2 = f(m;n)j�2

mn
� �2

12
g. Then the reconstructed signal has the

following form:

frecon =
X

(m;n)2S1

Q�(Re(< f; gmn >))g
#
mn + i

X
(m;n)2S2

Q�(Im(< f; gmn >))g
#
mn

Then:

p
Distortion � (Ekf �

X
m;n

cmng
#
mn
k2
X
)1=2

+ (Ek
X

(m;n)62S1

Re(< f; gmn >)g
#
mn

+ i
X

(m;n) 62S2

Im(< f; gmn >)g
#
mn
k2
X
)1=2

+ (Ek
X

(m;n)2S1

(Re(< f; gmn >)�Q�(Re(< f; gmn >)))g
#
mn (5.97)

+ i
X

(m;n)2S2

(Im(< f; gmn >)�Q�(Im(< f; gmn >)))g
#
mn
k2
X
)1=2

=
p
J +

p
J" +

p
Jq

where J represents the stochastic approximation error due to the incompleteness of the set fgmn;m;n 2
Zg in L2(R); J" is the truncation error and represents those coe�cients that are excluded from en-

coding; Jq is the quantization error and is due to the uncertainty introduced by the quantizer. Our

problem is to bound and control each term. The stochastic error has been studied in the previous

section. We analyze now the other two terms.

5.3.3 The Nonstationary Model: General Relations

We start with the quantization error. Suppose g# is a s-Riesz basis generator with Riesz basis

bounds A#, B#. Then:

Jq � B#(
X

(m;n)2S1

E[jRe(< f; gmn >)�Q�(Re(< f; gmn >))j2]

+
X

(m;n)2S2

E[jIm(< f; gmn >)�Q�(Im(< f; gmn >))j2]

For an arbitrary distribution of < f; gmn >, the di�erence jRe(< f; gmn >) � Q�(Re(< f; gmn >

))j � �
2
which implies E[jRe(< f; gmn >)�Q�(Re(< f; gmn >))j2] � �2

4
. The same relation holds

true for the imaginary part too. However, if we assume the signal f is gaussian, the upper bound
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becomes �2

12
instead of �2

4
. The same thing is obtained if we assume the < f; gmn > is uniformly

distributed on each quantization interlevel. Anyway in general we obtain:

Jq � B#�2

4
(#S1 +#S2) (5.98)

More information on the autocovariance function is required to progress further from this point.

For the truncation error, we use the same estimate with the help of the upper bound of the

s-Riesz basis generated by g#. Then:

J" � B#(
X

(m;n)62S1

E[jRe(cmn)j2] +
X

(m;n) 62S2

E[jIm(cmn)j2] (5.99)

Suppose we have a symmetric distribution of the real and imaginary part of the coe�cients. Then

we can replace (5.99) by:

J" � 2B#
X

(m;n)62S

E[jcmnj2] ; S = f(m;n);E[jcmnj2] � �2

12
g (5.100)

Suppose S = [�M;M ]� [�N;N ] for some M;N > 0. Then, using (5.89) we obtain:

J" � B#

�

X
m

Z 1

�1
dx R(x; x+

m

�

X
jnj�N

g(x� n�)g(x+
m

�
� n�)

+
B#

�

Z Z
dx dy R(x; y)

X
jmj�M

e2�im�(y�x)
X
jnj<N

g(x� n�)g(y � n�) (5.101)

This is all we can say for this case. Future work will study the upper bounds (5.98) and (5.101)

under some additional assumptions. An aparently interesting assumption is to assume the following

factorization of the autocovariance function: R(t; s) = u(t� s)v( t+s
2
) for some u and v 2 L1(R).

5.3.4 The Stationary Model: Asymptotic Analysis

For the stationary model, we establish �rst an upper bound similar to the s-Riesz basis bound, The

following lemma gives this bound:

LEMMA 5.26 Suppose g; w 2W (L1; l1). Then T �g : l2;1 ! L2
w de�ned by T �g (c) =

P
m;n2Zcmngmn

is well de�ned and bounded by:

kT �g k2B(l2;1;L2
w
) � 1

�

X
n

k
X
k

w(�+ k

�
)jg(�+ k

�
� n�)j2k

L1(0; 1
�
)

� C�;�kwkW (L1;l1)kgkW (L1;l1)kgk1 (5.102)
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Proof

Take (cmn)m;n2Z2 l2;1. Recall kck2
l2;1

= sup
n

P
m
jjcmnj2. Then:

kT �g ck2w =

Z 1

�1
w(x)j

X
n

(
X
m

cmne
2�im�x)g(x� n�)j2dx

�
X
n

Z
w(x)j

X
m

cmne
2�im�xj2jg(x� n�)j2dx

�
X
n

Z 1=�

0

dx(
X
k

w(x +
k

�
)jg(x+ k

�
� n�)j2)j

X
m

cmne
2�im�xj2

�
X
n

k
X
k

w(� + k

�
jg(�+ k

�
� n�)j2k

L1(0; 1
�
)

1

�

X
m

jcmnj2;

from which we obtain (5.102). Q.E.D. 2

Let us denote B2;1 =
P

n
kP

k
w(� + k

�
)jg#(� + k

�
� n�)j2k

L1(0; 1
�
). Then for the quantization

error we get a result similar to (5.98):

Jq � B2;1�2

4
sup
n

(#S1n +#S2n) (5.103)

where S1n = f(m;n) 2 S1g, S2n = f(m;n) 2 S2g. Assuming symmetry between the distribution of

real and imaginary parts of the coe�cients cmn we get:

Jq � 2B2;1�2

4
(#S) (5.104)

where S = fmjE[jcmnj2] � �2=12g. We give now a rough evaluation of the cardinality of S based

on (5.93) and the following assumptions: R̂(�) is concentrated in a band of size 2bR (2 because R̂

is even in frequency domain - recall we assumed real-valued signals) and the support of ĝ is much

narrower than 2bR. Then the number of coe�cients is roughly constant and it is given by:

#S � 2b

2��
=

b

��

Thus:

Jq � bB2;1

2��
�2 � C �2 (5.105)

which says that Jq decays to 0 as �2 when �! 0.



CHAPTER 5. APPROXIMATION OF STOCHASTIC SIGNALS 95

For the truncation error, using the previous lemma again we obtain a �rst estimate similar to

(5.99) where instead of B#we have to use B2;1:

J" � B2;1(sup
n

X
m62S1n

E[jRe(cmn)j2] + sup
n

X
m62S2n

E[jIm(cmn)j2])

Next, assuming again a symmetry in the distribution of the real and imaginary part we obtain:

J" � 2B2;1 sup
n

X
m62S

E[jcmnj2] = 2B2;1
X
m 62S

�2mn

with S = fmj�2mn >
�2

12
g. Assuming S = [�M;M ] we obtain:

J" � 2
p
2�B2;1

X
jmj�M

Z 1

�1
R̂(�)jĝ(� � 2�m�)j2d� (5.106)

The assumptions made before to obtain (5.105) would now give J" = 0. Thus if we assume that

both the autocovariance function and the window are band-limited, we get rid of the truncation

error provided we take into account all the (�nite) non-zero coe�cients.

Another (more realistic) model of R and g is to assume that both decay in frequency domain as:

jR̂(�)j � C1

(1 + j�j)a ; jĝ(�)j � C2

(1 + j�j)b (5.107)

with a; b > 1. The assumption on R̂ is particularily useful when we assume that our signal is the

output of a linear system excited by white noise. Then R̂(�) = jH(i�)j2 where H(s) is the linear

system transfer function. We shall give an asymptotic estimation of the rate and the truncation and

quantization errors.

We start by estimating the variance �2mn:

�2mn =
p
2�

Z 1

�1
jR̂(� + �m�)j � jĝ(� � �m�)j2d�

� C 0
Z 1

�1

d�

(1 + j� + �m�j)a(1 + j� � �m�j)2b

� C 0

(�m�)2b

Z 0

�1

d�

(1 + j� + �m�j)a +
C 0

(�m�)a

Z 1

0

d�

(1 + j� � �m�j)2b

� C 0

(�m�)2b

Z 1

�1

d�

(1 + j�j)a +
C 0

(�m�)a

Z 1

�1

d�

(1 + j�j)2b �
C

mr
(5.108)
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where r = min(a; 2b) and an estimate of C is:

C = 2C1C2

p
2�(

1

(a� 1)(��)2b
+

1

(2b� 1)(��)a
)

Next we estimate M� such that for jmj > M�, �
2
mn

< �2

12
. Using (5.107) we obtain for M� the

following estimate:

M� =
(12C)1=r

�2=r
(5.109)

Therefore we have to encode at most 2M�+1 coe�cients. This gives the following estimate for the

quantization error Jq (see (5.104):

Jq � 2B2;1�2

4
(2M� + 1) � Cq�

2(1� 1

r
) (5.110)

with an estimate of Cq given by Cq = (12C)1=rB2;1.

For the truncation error we use the following estimate (see (5.106)):

J" � 2
p
2�B2;1

X
jmj�M�

C

mr
� ~C 00

Z 1

M�

dx

xr
=

C 00

Mr�1
�

Using now (5.109) we obtain:

J" � C"�
2(1� 1

r
) (5.111)

with an estimate of C" given by C" = 2C
p
2�B2;1=(r � 1). We notice that J" and Jq are both of

the same order in �. Moreover, for a > 1 and b > 1
2
they both decay to zero as � ! 0. Thus by

choosing a su�ciently small � we can make J" + Jq < J . The moral of this computation was to

show that asymptotically (i.e. for � ! 0), the dominant term in the distortion (5.97) is given by

the stochastic approximation error J . We end this section by �nding an asymptotic approximation

of the rate, under the same assumptions as before. We use (5.96) and again we replace �mn and

�mn by �mn and we get:

Rate � 1

�

X
jmj�M�

log2(
12

�2
�2
mn

) =
2

�

X
1�m�M�

(log2
12C

�2
� r log2m)
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Note that M� has been chosen so that log2
12C
�2 = r log2M�. Then, when we approximate the sum

by an integral we get:

Rate � 2r

�

Z
M�

1

(log2M� � log2 x)dx �
2r

� ln 2
M�

Thus:

Rate � (12C)1=r2r

� ln 2
��2=r (5.112)

We notice that on each coe�cient we spent an average of 2r
ln 2

bits. We also notice that the upper

bound of the rate goes to1 when �! 0, a very natural conclusion since we are going to send more

and more coe�cients.

5.4 Case Study

Here are the numerical results for the suboptimal problem. We used a stationary 4-pole Markov

process given by (see also (5.79))

R̂(�) = jH(i�)j2 ; H(s) =
158:1s(s2 + 60s+ 3002)

(s2 + 20s+ 1002)(s2 + 200s+ 10002)

with the characteristic function of [0; �] as weight. Here � = 0:1, as in the example 5.23. In �gure

5.9 we represent the autocovariance function.

We took the gaussian:

g1(x) = e�1000x
2

(5.113)

as the �rst window. Its plot is given in �gure 5.10.
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Figure 5.9: The autocovariance function of the stationary process
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Figure 5.10: The gaussian window
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We used Lemma 5.21, (5.66), to �nd the optimal g2 that minimizes the distortion (5.55). The

following table summarizes the numerical results. Note the maximal distortion (obtained for �� =1
or g2 = 0) is Jmax = R(0) = 134:4:

p=q Ag1 � 102 Bg1 � 102 J Jopt (J � Jopt)=Jopt
6=5 0.5149 8.333 22.71 21.57 5.2%

5=4 0.6509 8 26.98 26.09 3.4%

4=3 0.9002 7.5 33.22 32.46 2.3%

3=2 1.444 6.669 43.68 42.76 2.15%

5=3 1.983 6.01 52.35 51.2 2.2%

2=1 2.827 5.136 66.27 64.92 2.07%

3=1 3.815 4.109 92.51 83.95 10.1%

4=1 3.907 4.02 98.74 97.49 1.2%

5=1 3.91 4.017 107.3 104.5 2.6%

6=1 3.91 4.017 117.5 106.2 10.6%

7=1 3.91 4.017 119.4 108.8 9.74%

8=1 3.91 4.017 107.2 106.2 0.94%

9=1 3.91 4.017 121 111.5 8.5%

10=1 3.91 4.017 127.9 113.5 12.68%

Table 5.1: Numerical results for the suboptimal problem with gaussian window

Next we represent the solutions of the suboptimal problem when g1 is the gaussian (5.113).
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Figure 5.11: The gaussian g1 given by (5.113) (top) and the suboptimal g2 found in time domain

for various choices of p and q: Middle left: p = 2; q = 1; Middle right: p = 3; q = 1; Bottom left:

p = 6; q = 1; Bottom right: p = 9; q = 1.
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Figure 5.12: (continued) Top left: p = 10; q = 1; Top right: p = 3; q = 2; Middle left: p = 4; q = 3;

Middle right: p = 5; q = 3; Bottom left: p = 5; q = 4; Bottom right: p = 6; q = 5
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Figure 5.13: The gaussian g1 given by (5.113) (top) and the suboptimal g2 found in frequency

domain for various choices of p and q: Middle left: p = 2; q = 1; Middle right: p = 3; q = 1; Bottom

left: p = 6; q = 1; Bottom right: p = 9; q = 1.
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Figure 5.14: (continued) Top left: p = 10; q = 1; Top right: p = 3; q = 2; Middle left: p = 4; q = 3;

Middle right: p = 5; q = 3; Bottom left: p = 5; q = 4; Bottom right: p = 6; q = 5
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In the next �gure we compare the distortion for optimal and sub-optimal cases. In the suboptimal

case we used the gaussian window de�ned in (5.113) for g1, and we found the optimal g2 for this

�xed f1.
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Figure 5.15: The Optimal and Suboptimal Distortions versus 1
��

We note that signi�cant di�erences (higher than 3%) between the optimal and suboptimal dis-

tortions, appear only for half of the de�cit ratios we examined, namely for 1
��

= 5
6
; 4
5
; 1
3
; 1
6
; 1
7
; 1
9
; 1
10
.

Next we shall show a design procedure to �nd better suboptimal solutions. We set it as our task to

�nd well-localized solutions in time-frequency domain that achieve a distortion that is less than 3%

above the optimal value.
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Step1. In the �rst step we �nd a couple of optimal solutions to give a \hint" where the optimal

solution should lay in the time-frequency domain. To do this we use the Projection Algorithm based

on the following choice for L(t; s) in (5.72) and (5.73):

L =
1p
p
F �W�1=2�nice (5.114)

where �nice is the matrix (5.43) associated to a well-localized function gnice. The optimal window

g1 obtained in this way, represents the projection of the \nice" function gnice into the eigenspace

spaned by the �rst q eigenvectors of �, (see 5.74).

We start with two chices for the function gnice. Both of these are \bump" functions, plotted in

Figures 5.16 and 5.17 and de�ned by:

gbump1(x) =
1p
�

(
1 ; jxj � �

4

e�10�(jxj�
�

4
)2 ; jxj > �

4

gbump2(x) =

8><
>:

1 ; jxj � �

4

1 + cos(�(
jxj
�
� 1

4
)) ; �

4
< jxj � 3�

4

0 ; jxj > 3�
4
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Figure 5.16: The bump gbump1 window in time and frequency domain
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Figure 5.17: The bump gbump2 window in time and frequency domain
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Next we perform the projection onto the eigenspace spanned by the �rst q eigenvectors of �.

This results in a function g1. For both choices of gnice, the spaces spanned by the fg1
mn

;m;n 2 Zg
are the same, but the g1 themselves need not be, and in fact are not. Figures 5.18, 5.19 show the

plots of g1 starting from either gbump1 or gbump2 , as well as the plots of the corresponding optimal

g2; their Fourier transforms can be found in Figures 5.20, 5.21.
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Figure 5.18: The optimal windows for p = 3, q = 1 in time domain with the bump gbump1
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Figure 5.19: The optimal windows for p = 3, q = 1 in time domain with the bump gbump1
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Figure 5.20: The optimal windows for p = 3, q = 1 in frequency domain with the bump gbump1
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Figure 5.21: The optimal windows for p = 3, q = 1 in frequency domain with the bump gbump2
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Step 2. These are obviously not very good chices for g1, g2, even if they are \optimal" from the

point of view of our criterion. It is not even clear that they give rise to s-Riesz bases. Let us look a

little closer at their behaviour. For instance, if we concentrate on the \big wiggles" in g
1 obtained

from g
bump2 , then we see that they correspond to rather sharp frequency cut-o�s, as shown in Figure

5.22

60 70 80 90 100 110 120 130 140
−10

−8
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−4

−2

0

2

4
x 10

−3

Figure 5.22: Zoomin-out the optimal ĝ1 for p = 3 and q = 1

The frequency band is about [65 : : : 125].

In this step we shall try to construct other (non-optimal) g1 that approximate this behaviour,

and �nd the corresponding g
2. As Figure 5.22 shows, the optimal ĝ1 is concentrated mostly on

the band [�125 : : : � 65] [ [65 : : :125]. Let us now design a well-localized window that satis�es

this localization constraint. However, an analytic computation with Zak transform shows that this

interval is too small for g1 to give rise to a s-Riesz basis with a well-localized biorthogonal (note

2�� = 188:5 and 2��
3

> 60 = 125 � 65). To �x this problem, we allow ourselves to construct 2

symmetric lobes inside the \forbidden" band [�65 : : :65]. Rather than constructing strict cut-o�s,

we choose a (more convenient) gaussian form for the lobes within [�125;�65][ [65; 125] as well as

for the \inside lobes". Exploring numerically the parameter space for these gaussians, we found that
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the following choice gives the best ratio of the Riesz basis bounds:

g
1(x) = cos(80x)e�

11
2
x
2

2 + 0:1 cos(
��

3
x)e�

3
2
x
2

2 (5.115)

For this window, the suboptimal solution g
2 of the problem 1 (5.34) is obtained using again (5.66).

These two functions are plotted in Figure 5.23 and 5.24.
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Figure 5.23: The suboptimal solutions g1 and g
2 in time domain

−100 0 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
First window

0 100 200 300 400
−0.05

0

0.05

0.1

0.15

0.2

0.25

Second window

Figure 5.24: The suboptimal solutions g1 and g
2 in frequency domain

The distortion achieved by this pair is J1 = 84:64 which is with 0:82% larger than the optimal

value of 83:95. However, this solution is still not very good: g2 has too many oscilations and spikes.

We correct this in the next step.
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Step 3. Finally, we replace the g
2 that �ts optimally with the g

1 designed in Step 2, with a

\nicer" window in such a way not to signi�canly increase the distortion. We do this by �ltering

out the high-frequency components. We choose the cut-o� frequency as fmax = 125 similar to the

allowed band in the second step. The function g
2 obtained in this way is graphed in Figure 5.25.

Using (5.55) we can compute the distortion when we use the functions g1 of Figure 5.23 (5.24) and

g
2 of Figure 5.25. We obtain for the distortion the value J2 = 84:642 which is only 0:82% larger

than the optimal value. The Riesz basis bounds for this window are A2 = 0:794 and B2 = 4:895

whereas the Riesz basis bounds for g1 (5.115) are A1 = 0:0227 and B1 = 0:1399.
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Figure 5.25: The window g
2 after �ltering out the high frequency components

This case study shows that we can design reasonable windows g1 and g
2 that will perform almost

optimally from the rate-distortion point of view, even when our �rst gaussian guess gives results

that are relatively far from optimal.

Our study of the distortion that results from using incomplete WH sets originated from a multiple

description compression problem. In this framework, we consider the decomposition of a signal into

a (possibly redundant) WH system, that is however split into two subsystems, each of which is an

incomplete WH set. The coe�cients corresponding to both these subsets are then sent over separate

channels. At the other end, the receiver reconstructs from the two sets of coe�cients if both channels

function, or from only one set, if one channel is disfunctional. In this type of situation, it is important
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to choose the WH set such that the distortion is as small as possible if only one channel is used.

The problem of �nding such an appropriate g1 is exactly what we have addressed in this chapter.

It is intresting to note that for such a multiple description framework, it is advantageous to use a

redundant frame for the original WH system. This is therefore a situation in which redundancy is

useful even when one tries to optimize the rate/distortion, a fact that seems counterintuitive. We

shall address this question in detail elsewhere.



Chapter 6

Conclusions

In this thesis I presented some aspects of the coherent sets theory in Hilbert space and some ap-

plications in signal processing. The general theory focused on three important types of coherent

sets: Fourier sets, Weyl-Heisenberg sets and wavelet sets. A Hilbert coherent set is based on a

square-integrable unitary representation of a locally compact group. Once we are given such a

representation, one chooses a generator (an admissible vector of the Hilbert space) and a discrete

subset of the locally compact group. Then the coherent set (associated to the given generator and

the discrete subset) is given by discretizing the continuous orbit passing through the generator, with

respect to the discrete subset.

Fourier sets are associated with the sampling theory. In this case the Hilbert space is the Paley-

Wiener space of band-limited functions. Signal oversampling represents an overcomplete Fourier set

in the space of band-limited signals, which means a frame. The irregular sampling is equivalent

to nonharmonic Fourier series. Thus the analysis of Fourier sets is intimately connected with the

theory of nonharmonic Fourier series and irregular sampling.

Weyl-Heisenberg sets are obtained from a function (called window) by translations and modula-

tions given by a discrete subset of the time-frequency plane. The continuous transform is known in

practice as the windowed Fourier transform.

Wavelet sets are obtained starting again from a function (called wavelet) and then translating

and dilating it with parameters taken from a discrete subset of the time-scale plane.

113
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My analysis concentrates around three problems: stability, localization and density.

In chapter 2 I present a geometric theory of frames, emphasizing certain equivalence relations.

Within an equivalence class, a distance between equivalent frames is introduced. This geometric

study is also used in the next chapter.

In the next chapter I analyze two stability results; one is an extension of Kadec' 1
4
-stability

theorem for nonharmonic Fourier series from Riesz bases to frames. The other result generalizes an

observation by Daubechies and Tchamitchian. They showed for Meyer's orthogonal wavelet that

the Riesz basis property is preserved under small perturbations of the translation parameter. I have

extended this stability property to more general wavelets. This result also shows the time-scale (or

time-frequency) density of the discrete set has no connection with the behavior of the wavelet set

(as opposed to the Weyl-Heisenberg case when the density plays a fundamental role).

In chapter 4 I study the localization of the wavelet generator. An uncertainty inequality is

proved where the lower bound of 1

2
(as in the case of the classical Heisenberg uncertainty principle)

is replaced by 3

2
. This bound comes from the zeroth order vanishing moment property of the wavelet.

In the last chapter I present an application of the Weyl-Heisenberg Riesz bases for their span in

a signal processing problem. The problem is to �nd the best approximation of a stochastic signal by

Weyl-Heisenberg expansions. This approximation represents the equivalent of the Karhunen-Lo�eve

expansions in the Weyl-Heisenberg coherent set framework. I further analyze di�erent sources of

error (distortion) when using a Weyl-Heisenberg set in an encoding-decoding scheme. For su�ciently

small quantization interlevel, the total distortion is mainly given by the stochastic approximation

computed before. Some numerical simulations accompany this study.
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