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Chapter 1

Introduction

1.1 The Organization of the Thesis

By a nonlinear dynamical system we understand a system of the form:(
_x = f(x) +

Pm

i=1 gi(x)ui +
Pr

i=1 ei(x)qi
def
= f(x) + g(x)u+ e(x)q

y = [h1(x); : : : ; hl(x)]
> def
= h(x)

(1.1)

where x; u; q and y denote the states, inputs, disturbances and outputs, re-

spectively, and g(x) and e(x) are matrices of dimension n �m and n � r with

columns gi(x); i = 1;m and ej(x); j = 1; r respectively. The vector �elds f and

gi; i = 1;m and ej ; j = 1; r and the output functions hi; i = 1; l are assumed to

be smooth, i.e. in�nitely many times continuously di�erentiable. Note that the

system 1:1 is a�ne in the inputs u and the disturbances q.

In order to obtain certain properties of the dynamic of the system, we have

to design a compensator such that when we close the loop, the dynamics of the

new system have the desired properties. Two questions arise:

1) What can we require from the closed-loop system ? (that means what are

the properties that we can ask for the new system ?)

2) When we know what we want, how could we �nd the compensator ? (in

other words, we ask for an algorithm).

A general method for solving the problems is the linear designer of the

compensator. For this we have to follow three steps:

1) Linearization of the nonlinear process.

2) Choice of a linear algorithm and design the compensator.

3) Simulation of the closed-loop and veri�cation of the performances (when the

process is implemented by its nonlinear equations).

But, unfortunately, there are cases when this method does not work. In x1:2

we give a such example and we plead for directly nonlinear algorithms.

3



CHAPTER 1. INTRODUCTION 4

In x1:3 we list a sequence of problems whose solutions are well known. Our

goal is to solve one of these problems, more exactly the LOCAL DISTUR-

BANCE DECOUPLING PROBLEM with STABILITY. An introduction in this

problem is made in x1:4.

In Chap.2 we present two geometric tools: distributions and their dual ob-

jects, codistributions. We give also Frobenius' theorem (in x2:1) and the mean-

ing of these notions as part of the theory of nonlinear systems regarding the

local decomposition (in x2:2).

The fundamental notion of the solution of disturbance decoupling problem

is the controlled invariant distribution. We speak about this in Chap.3. Here

we shall give four algorithms to compute the maximal controlled invariant dis-

tribution included in Ker(dh). The classical way to solve the linear disturbance

decoupling problem with stability is to use the controllability spaces. The non-

linear equivalent is the controllability distribution. In the last section of Chap.3

we discus about it.

Our problem (LDDPS) has two solutions. Both are presented in [vdWe91].

We present these solutions in Chap.4.

The Chap.5 is reserved for the conclusions.

I want to express my deeply felt gratitude to Professor Andrea Bacciotti for

the help in the preparation of this thesis. I never had such interesting discus-

sions about the theory of nonlinear systems as here.

Torino

july,1992
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1.2 Nonlinear versus Linear Control

We shall prove that for a given nonlinear system it does not exist a linear

stabilizer but there is a nonlinear state feedback that stabilizes the closed- loop

system.

This example is due to [Ka89] (see also [Bacc92]).

EXAMPLE 1.1 Let us consider the single-input system:�
_x1 = u

_x2 = x2 � x31
(1.2)

with the state vector x = (x1; x2) 2 R
2
.

A. If we try a linear stabilizer we obtain:�
_x1 = f1x1 + f2x2
_x2 = x2 � x31

where f1; f2 2 R.

The linearization of the system has the form:�
_x1
_x2

�
=

�
f1 f2
0 1

� �
x1
x2

�

and the eigenvalues are 1 and f1 so the system is obviously unstable.

B. We consider the function:

u(x) = �x1 + x2 +
4

3
x
1=3
2 � x31 (1.3)

and:

V (x) =
x41
4
� x1x2 + x

4=3
2

as a candidate Liapunov function.

Along any curve x2 = m3x31 we obtain:

V (x1;m
3x31) = (m4

�m3 +
1

4
)x41 �

37

256
x41

So: V (x1; x2) > 0 for (x1; x2) 6= (0; 0).

On the other hand:

_V (x) = �(x2 � x31)
2
� 0

and the set N
def
= f(x1; x

3
1)jx1 2 Rg = fx 2 Rj _V (x) = 0g does not include any

positive orbit. By using the LaSalle's invariance principle we obtain that (1:3)

is a nonlinear state feedback that stabilizes the closed-loop system. 3

We point out that the compensator is not smooth but is a continuous one. This

example proves that when we have a nonlinear system it is much better (and

sometimes it is the only way) to use nonlinear algorithms to solve the problem.
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1.3 A List of Nonlinear Problems (and Solu-

tions)

This section is written using three references: [Bacc92]; [Is89] and [NiSc90].

The last two books present the geometric theory of nonlinear systems and its

applications. We point out that there exist two kind of solutions: local and

global (there is, also, a third type of solution: semiglobal { see [Su90] for a

negative result). Our thesis consists only in a local study, so that we shall limit

to this case. Also, we discus only about the continuous and not discrete systems.

Now a brie
y presentation of the main nonlinear problems and solutions of

them.

1.3.1 Asymptotic Stabilization via State Feedback

Let us consider a nonlinear dynamical system of the form:�
_x = f(x) + g(x)u

y = h(x)
(1.4)

where u 2 Rm, y 2 Rl and let x0 be an equilibrium point (that means f(x0) = 0

and g(x0) = 0). The problem is to design a state feedback:

u = u(x)

such that x0 becomes an asymptotic equilibrium point.

First we observe that the output equation does not play any role here. Then

we can suppose, without loss of generality, that x0 = 0. The problem is well

posed if f has not in x0 an asymptotic equilibrium point because else the trivial

solution u � 0 is obvious. There are two types of solutions: direct and indirect.

Direct Approach. That means that the design of the feedback is induced

directly from the form of the system. There are two methods given by:

� Artstein-Sontag Theorem

� Jurdjevic-Quinn method.

Both of them use Liapunov functions (see [Bacc92] for details).

Indirect Approaches. That means that �rst we associate to (1:4) a new

system constructed by a certain way and then we design the state feedback using

this new system. There are three families of solutions (after [Bacc92]):

Local approximation: There are two types:

� linearization method (and its generalization to homogeneous Taylor expan-

sion)

� approximation using a non-standard dilation (this idea is due to M. Kawaski).

Equivalence of systems: First, under a certain assumptions, the system

is brought in the normal form using a state feedback and then, if the zero

dynamics is asymptotically stable, one can design very easily the state feedback

that stabilizes the nonlinear system (see [Is89]).
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Reduction of dimension: There are also two types:

� the technique involving center manifold theory;

� decomposition in a cascade connection.

More about these issues can be found in [Bacc92].

1.3.2 Asymptotic Output Tracking

We consider the system described by the equation (1:4) and let yR(t) be the

desired output. The problem is to �nd a feedback control law which is able to

impose on the error:

e(t) = y(t) � yR(t)

a behavior which asymptotically decays to zero as time tends to in�nity.

In [Is89] two ways of approaching this problem are described.

The �rst method uses the relative degree - denoted by r - of the plant and

the solution is proved to be:

u =
1

LgL
r�1
f

h(x)
(�Lr

f
+ y

(r)
R
�

rX
i=1

ci�1(L
(i�1)
f

h(x)� y
(i�1)
R

))

where (ci)i=0;r�1 are real numbers chosen in such away that the error (e(t))

veri�es the following di�erential equation:

e(r) + cr�1e
(r�1) + : : :+ c1 _e + c0e = 0

In the second approach the desired output is assumed to be the output of a

certain dynamic system (called the exosystem):�
yR(t) = �q(w(t))

_w = s(w)

We meet two problems and also two solutions (see [Is89] pg 350):

State feedback regulator problem where is required a state feedback u =

�(x;w) such that �(0; 0) = 0

Error feedback regulator problem where it is required a dynamical system

with the error as its input and the control u as its output:�
_z = �(z; e)

u = �(z)

such that �(0; 0) = 0; �(0) = 0.

In both cases we ask for the asymptotic stability in the �rst approximation

of the closed-loop system at the equilibrium point x0 = 0 and the asymptotic

tracking of the reference.
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1.3.3 Disturbance Decoupling with Stability

The discussion of this problem is postponed to the next paragraph.

1.3.4 Noninteracting Control

We consider again the system described by the equation (1:4). We wish to use

feedback in order to reduce the system in such a form that, from an input-

output point of view, it looks lika an aggregate of independent single-input

single-output channels.

Usually, the problem is formulated when the number of inputs (m) coincides

with the number of outputs (l), but one can extend this to systems having the

number of inputs larger than the number of outputs (see [Is89], pg. 264).

The solution of the form:

u = �(x) + �(x)v

with �(x) nonsingular and v the new inputs, exists in a neighborhood U of the

�xed point x0 if the system has a �nite vector relative degree fr1; : : : ; rmg at x0
(that means:

(i) LgjL
k

f
hi(x) = 0 for all 1 � j � n; 1 � i � m; k < ri � 1 and x 2 U .

(ii) [Lg1L
ri�1
f

hi(x0) : : :LgmL
ri�1
f

hi(x0)] 6= [0 : : :0] for all 1 � i � m.

(ii) The matrix:

A(x) =

2
64

Lg1L
r1�1
f

h1(x) � � � LgmL
r1�1
f

h1(x)
...

...

Lg1L
rm�1
f

h1(x) � � � LgmL
rm�1
f

h1(x)

3
75

called the decoupling matrix is nonsingular at x0; see also x3:24). For details see

[Is89] x5:3 or [NiSc90] x8:1; x13:3.
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1.4 Disturbance Decoupling Problem with Sta-

bility

We consider again the system described by the equation (1:1). We say that a

feedback:

u = �(x) + �(x)v u; v 2 Rm; x 2 Rn (1.5)

is a regular static state feedback (or a regular feedback) if �(x) is a nonsingu-

lar matrix for all x. Under this feedback, the nonlinear system will have the

following dynamic:

_x = (f(x) + g(x)�(x)) + g(x)�(x)v = F (x) + G(x)v

We can meet three types of problems. We de�ne these problems as follows (see

[vdWe91]):

Disturbance Decoupling Problem (DDP)What are the conditions that

allow us to �nd a smooth regular static state feedback such that in the closed-loop

system the disturbances q do not in
uence the outputs y ?

Note that the decoupling requirement must hold for all initial points x0 and

all controlled inputs v. A version of this problem is the:

Local Disturbance Decoupling Problem (LDDP) "Local" refers to the

fact that we search for a feedback de�ned on a neighborhood U of a given point

such that the disturbance decoupling requirement holds for all initial point in U

and all controlled inputs v as long as the state trajectories remain within U .

Moreover, we shall want to obtain a stable closed-loop system. We suppose

that f(x0) = 0. We state the problem that will be approached in this study:

Local Disturbance Decoupling Problem with Stability (LDDPS)

Under what conditions can we �nd a smooth regular static state feedback (1:5)

de�ned locally around x = 0 with �(0) = 0 such that in the feedback system the

disturbances q do not in
uence the outputs y, and x = 0 is a locally exponentially

stable equilibrium of the modi�ed drift dynamics _x = f(x) + g(x)�(x) ?

From a well-known theorem it follows that the linearized system:

_z = [
@f

@x
(x0) + g(x0)

@�

@x
(x0)]z

is asymptotically stable at z0 = 0. Then a necessary condition is that the pair

(@f
@x
(x0); g(x0)) is stabilizable.



Chapter 2

Distributions and

Codistributions

2.1 Integrability. Forms of Frobenius' Theo-

rem

2.1.1 De�nitions

Let M be a n-dimensional paracompact and smooth manifold and x 2 M be

an arbitrary point. We shall denote by TxM the tangent space to M at x, by

T �
x
M the cotangent space to M at x, by F(M ) the ring of all smooth real-

valued functions, by TM the tangent bundle, by T �M the cotangent bundle,

by V1(M ) the F(M )-module of smooth vector �elds, by �k(M ) the F(M )-

module of smooth k-forms and by �(M ) the exterior algebra of smooth forms.

For details of de�nitions see [Nara73].

A. We call distribution on M , the mapping:

D : x 2M ! D(x) � TxM

where D(x) is a vector subspace of the tangent space to M at x.

The dimension (or rank) of the distribution is dimD(x). Let L be a F(M )-

module of smooth vector �elds (L � V1(M )). We say that L generates the

distribution L (or the distribution L is generated by L) if:

L(x) = fvjx; v 2 Lg; 8x 2M

In this case we say that L is a C1 (or smooth)-distribution. We shall deal only

with distributions generated by F(M )-modules of smooth vector �elds. We say

that a vector �eld X belongs to the distribution L (and we write X 2 L) if for

10



CHAPTER 2. DISTRIBUTIONS AND CODISTRIBUTIONS 11

every p 2M , Xjp 2 L(p). We denote by smt(L) the set of all vector �elds that

belong to the distribution: smt(L) = fX 2 V1(M )jX 2 Lg.

We say that the distribution L (or the F(M )-module L) is involutive if for

every X;Y 2 L (or X;Y 2 L) we obtain [X;Y ] 2 L (or [X;Y ] 2 L). For

connections between the two types of involutivity see Appendix A.

Let us consider the distribution L and a point x0 2 M . If there exists a

neighborhood of x0 where the distribution has constant dimension, then the

point is called an ordinary point (or regular point), otherwise it is called a sin-

gular point. If the distribution has singular points then we say that it is a

distributions with singularities, otherwise we call it a regular distribution. In

the last case L = smt(L). From the next chapter we shall deal only with

regular distributions.

The distribution L is said to be punctually integrable at x0 2M if there exists

a submanifold Nx0
i

,!M (i being the canonical inclusion) passing through x0
such that:

L(x) = TxNx0; for all x 2 Nx0

(more precisely, we have: i�;x(TxNx0) = L(x)). Nx0 is called an integral man-

ifold of the distribution. The distribution is called locally integrable if for each

point in M there is an integral manifold of the distribution, and it is called

(globally) integrable if there exists a partition of M in integral manifolds of the

distribution.

B. The dual notion of the distribution is codistribution and it is de�ned as

follows. We call codistribution on M , the mapping:

P : x 2M �! P (x) � T �
x
M

where P (x) is a vector subspace of the cotangent space to M at x.

By a C1-(Pfa�an) di�erential system we shall mean a F(M )- module of

smooth 1-forms. We denote it by P. So P � �1(M ). The codistribution P is

called a smooth or C1-codistribution if there is a C1-Pfa�an di�erential system

that generates the codistribution.

For every distribution L we can associate in a canonical way a codistribution

Ort(L) by setting:

Ort(L)(x) = (L(x))?
def
= f!x 2 T �xM j!x(vx) = 0; for all !x 2 P (x)g

and an orthogonal F(M )-module of smooth forms by:

L?
def
= f! 2 �1(M )j!jx(vx) = 0; for all x 2M; vx 2 L(x)g

Conversely, to every codistribution P we can associate a distribution Ker(P )

that is punctually orthogonal with respect to the inner product:

(KerP )(x) = (P (x))?
def
= fvx 2 TxM j!x(vx) = 0; for all !x 2 P (x)g
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and a F(M )-module of smooth vector �elds:

P?
def
= fv 2 V1(M )j !x(vjx) = 0; for all x 2M;!x 2 P (x)g

Obviously: L? � OrtL ; P? = smt(KerP ) � KerP .

We shall say that the codistribution P is punctually, locally or globally

integrable (at x0 2M ) if KerP is punctually, locally or globally integrable. We

observe that if L is a smooth distribution, then OrtL is a smooth codistribution

without singularities too. The converse is also true (for P and KerP ).

For details about codistributions with singularities see Appendix B.

C. For the third form of Frobenius' theorem we shall use a system of partial

di�erential equations of the form:

@y(x)

@xi
= �i(x)y(x) ; 1 � i � m (2.1)

where �1; : : : ;�m are smooth functions de�ned on an open set U in Rm:

�i : U �! Rn�n

x1; : : : ; xm denote the coordinates of a point x inRm, y1; : : : ; yn the coordinates

of a point y in Rn and the solution y denotes a function:

y : U ! V

where V is an open set in Rn.

2.1.2 Statements

For the proofs see [Nara73].

THEOREM 2.1 (Frobenius' Theorem: First Form) Let L be a smooth

regular distribution generated by the F(M )-module of smooth vector �elds L.

Then the following conditions are equivalent:

1) L is locally integrable.

2) L is globally integrable.

3) L is involutive.

4) L is involutive.

5) There exists a coordinates system (y1; : : : ; yn) such that:

f
@

@y1
; : : : ;

@

@yk
g ; k = rank L

is a set of generators of L and:

Nx0 = fyj yk+1 = y0k+1; : : : ; yn = y0ng

is an integral manifold of the distribution passing through the point x0 of the

coordinates (y0
i
)1�i�n. 2
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For the proof that 1) 2 see also the remark fromAppendix A about Sussmann's

paper.

THEOREM 2.2 (Frobenius' Theorem: Second Form) Let !k+1; : : : ; !n
be smooth 1-forms which are linearly independent at every point , P be the

F(M )-module spanned by these forms and let P denote the associated regular

codistribution. Then the following three conditions are equivalent:

1) P is locally or globally integrable.

2) For every ! 2 P there exist n� k smooth 1-forms: �k+1; : : : ; �n 2 �1(M )

such that:

d! =

nX
j=k+1

�j ^ !j

3) There exist smooth 1-forms �ij 2 �1(M ), k + 1 � i; j � n, such that:

d!i =

nX
j=k+1

�ij ^ !j

THEOREM 2.3 (Frobenius' Theorem: Third Form) We consider the sys-

tem from the paragraph C from the previous subsection. Given a point (x0; y0) 2

U �V there exist a neighborhood U
0
of x0 in U and a unique smooth function:

y : U0
�! V

which satis�es the equations (2:1) and is such that y(x0) = y0 if and only if the

functions �1; : : : ;�m satisfy the conditions:

@�i

@xk
�
@�k

@xi
+ �i�k � �k�i = 0 ; 1 � i; k � m (2.2)

for all x 2 U . 2

For details and proof of this theorem see [Is89], Theorem 2:3, pp. 312{319 or

[Nara73], Theorem 2:11:4, pp. 120{121.

We shall give now a fourth form of Frobenius' theorem that can be found

in [JaRe80] (see [vdWe91]). A set of distributions f�1; : : : ;�rg is called nested

if �1 � �2 � � � ��r. A collection �1 � �2 � � � ��r of nested nonsingular

smooth distributions on M is completely integrable if at each x 2 M there

exists a local chart (U ; ') such that, for i = 1; : : : ; r

�i(y) = spanf
@

@z1
jy; : : : ;

@

@zdi
jyg for all y 2 U (di = dim(�i)):

THEOREM 2.4 (Frobenius' Theorem: Fourth Form) A collection �1 �

�2 � � � ��r of nested nonsingular distributions is completely integrable if and

only if each distribution �i, i = 1; : : : ; r is involutive.

2
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2.2 Invariant Distributions and Codistributions.

Local Decompositions

2.2.1 Invariant Distributions and Codistributions

Let f be a smooth vector �eld and let � be a smooth distribution. We call �

an invariant distribution under the vector �eld f if for any vector �eld X 2 �

we have [f;X] 2 �. We set:

[f;�]
def
= span

F(M )f[f; � ]; � 2 �g

So: � is invariant under the vector �eld f () [f;�] � �. The meaning of

this notion is given by the following lemma (for proof see [Is89], Lemma 6:3):

LEMMA 2.5 Let � be a nonsingular involutive distribution of dimension d

and suppose that � is invariant under the vector �eld f . Then for each point x0

there exist a neighborhood U
0
of x0 and a coordinates transformation z = �(x)

de�ned on U
0
, such that f is represented in new coordinates by:

�f (z) =

2
6666664

f1(z1; : : : ; zd; zd+1; : : : ; zn)

� � �

fd(z1; : : : ; zd; zd+1; : : : ; zn)

fd+1(zd+1; : : : ; zn)

� � �

fn(zd+1; : : : ; zn)

3
7777775

2

A codistribution 
 is said to be invariant under the vector �eld f if the derivative

Lf! 2 
, for all ! 2 
 (i.e. Lf
 � 
, with an analogous notation). Using the

well-known formula:

(Lf!)(� ) = f(!(� )) � !([f; � ])

one can prove the following lemma:

LEMMA 2.6 If a smooth distribution � is invariant under the vector �eld f ,

then the codistribution generated by �? is also invariant under f . If a smooth

codistribution 
 is invariant under the vector �eld f , then the distribution gen-

erated by 
? is also invariant under f . 2

Let � be a smooth distribution, 
 be a smooth codistribution and f1; : : : ; fn
be smooth vector �elds. We shall denote by < f1; : : : ; fnj� > the smallest dis-

tribution (with respect to the inclusion) that includes � and is invariant under

the action of the vector �elds f1; : : : ; fn. We shall denote by < f1; : : : ; fnj
 >

the minimal element of the family of the codistributions that include 
 and are

invariant under the action of the vector �elds f1; : : : ; fn. We point out that the

smoothness guarantees the existence of both structures.



CHAPTER 2. DISTRIBUTIONS AND CODISTRIBUTIONS 15

2.2.2 Local Decompositions

Let us consider again the nonlinear control system described by the equation

1:4.

PROPOSITION 2.7 Let � be a nonsingular involutive distribution of di-

mension d and assume that � is invariant under the vector �elds f; g1; : : : ; gm.

Moreover, suppose that the distribution spanfg1; : : : ; gmg is contained in �.

Then, for each point x0 it is possible to �nd a neighborhood U
0
of x0 and a

local coordinates transformation z = �(x) de�ned on U
0
such that, in the new

coordinates, the control system is represented by equations of the form:8<
:

_�1 = f1(�1; �2) +
Pm

i=1 g1i(�1; �2)ui
_�2 = f2(�2)

y = h(�1; �2)

where �1 = (z1; : : : ; zd) and �2 = (zd+1; : : : ; zn). 2

Remarks

1. Let P =< f; g1; : : : ; gmjspanfg1; : : : ; gmg >. One can prove that if P is

a regular distribution then P is involutive and then we can take � = P (see

Lemma 8:7 from [Is89]).

2. This proposition allows us to obtain the input-state behavior. Suppose

that the inputs ui are piecewise constant functions of time. Set x(0) = x0 and

let x0(t) = exp tf:x0 be the point of U0 reached at time t when no input is

imposed. Then the set of the point reachable at time t is a subset of the slice:

fx 2 U0
j�2(x) = �2(x

0(t))g

3. For details and proof see Proposition 7:1, pp. 53{54 from [Is89]

PROPOSITION 2.8 Let � be a nonsingular involutive distribution of di-

mension d and assume that � is invariant under the vector �elds f; g1; : : : ; gm.

Moreover, suppose that the codistribution spanfdh1; : : : ; dhpg is contained in the

codistribution �?. Then, for each point x0 it is possible to �nd a neighborhood

U
0
of x0 and a local coordinates transformation z = �(x) de�ned on U

0
such

that, in the new coordinates, the control system is represented by equations on

the form: 8<
:

_�1 = f1(�1; �2) +
Pm

i=1 g1i(�1; �2)ui
_�2 = f2(�2) +

Pm

i=1 g2i(�2)ui
y = h(�2)

where �1 = (z1; : : : ; zd) and �2 = (zd+1; : : : ; zn).

Remarks

1. Let Q =< f; g1; : : : ; gmjspanfdh1; : : : ; dhpg >
?. One can prove that if Q

is a regular distribution then Q is involutive and then we can take � = Q (see

Lemma 9:6 from [Is89]).
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2. This proposition allows us to obtain the state-output interaction. For

every pair xa0 and x
b
0 of initial states such that �2(x

a
0) = �2(x

b
0) and for arbitrary

constant picewise constant control (u) we obtain that xa
u
(t) and xb

u
(t), the state

functions under the action of the control u, are always on the same slice:

fx 2 U0
j�2(x) = �2(x

a

u
(t))g

and they produce the same outputs. We say that they are indistinguishable .

As a matter of fact, all the initial states on the same slice are indistinguishable

(the slices are de�ned by setting �2 with a constant value).

3. For details see Proposition 7:2, pp. 54{56 from [Is89].



Chapter 3

Controlled Invariant

Distributions

3.1 General Results

3.1.1 De�nitions

Let us consider the nonlinear system given by 1:4 and a regular feedback control

law of the form given by 1:5:�
_x = f(x) +

Pm

i=1 gi(x)ui
y = h(x)

u = �(x) + �(x)v ; �(x) nonsingular

When we close the loop we obtain the system:�
_x = ~f (x) +

Pm

i=1 ~gi(x)vi
y = h(x)

where: ~f(x) = f(x) +
P

m

i=1 gi(x)�i(x) � f(x) + g(x)�(x) and:

~gi(x) =
Pm

j=1 gj(x)�ji(x). So: ~g(x) = g(x)�(x).

A distribution � is said to be controlled invariant on U if there exists a

regular feedback pair (�; �) de�ned on U with the property that � is invariant

under the vector �elds: ~f; ~g1; : : : ; ~gm (i.e. [ ~f;�] � �; [ ~gi;�] � �; 1 � i � m).

A distribution is said to be locally controlled invariant if for each x 2 U there

exists a neighborhood U0 of x with the property that � is controlled invariant

on U0.

We can rewrite the condition of controlled invariance as follows:

� =< ~f ; ~g1; : : : ; ~gmj� > (3.1)

17
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3.1.2 The Main Results

We set: G = span
F(M )fg1; : : : ; gmg and denote by G the associated distribu-

tion.

THEOREM 3.1 Let � be an involutive distribution. Suppose �; G and �+G

are nonsingular on U . Then � is locally controlled invariant if and only if:

[f;�] � �+ G

[gi;�] � �+ G, for 1 � i � m:

Sketch of Proof (for a complete proof see [Is89], Lemma 2:1, pp. 311{319)

\)" Let � 2 �. We have:

[ ~f; � ] = [f + g�; � ] = [f; � ] +

mX
j=1

[gj; � ]�j �

mX
j=1

(L��j)gj 2 �

[~gi; � ] = [

mX
j=1

gj�ji; � ] =

mX
j=1

[gj; � ]�ji�

mX
j=1

(L��ji)gj 2 �

Then we conclude [f; � ] 2 �+ G; [gj; � ] 2 �+G

\(" Now we use the fact that �; G and �+ G are nonsingular. Let d =

dim� and p = dimG� dim� \G.

We change the set of generators of G using a nonsingular m�m matrix T :

ĝi =

mX
j=1

tjigj

in order to obtain the following relations:

spanfĝp+1; : : : ; ĝmg � � \G

�+G = �� spanfĝ1; : : : ; ĝpg

Let f�1; : : : ; �dg be a set of vector �elds which locally span � around x0. From

the given relations, setting ĝ0 = f , we obtain:

[ĝi; �k] =

pX
j=1

ckjiĝj + �ki ; 0 � i � m ; 1 � k � d

where: �ki 2 � are unique vector �elds.

Using Frobenius' Theorem (Third Form) - Theorem(2:3) - we obtain the

existence of a m�m matrix B̂ and a m � 1 vector â such that:

�L�k b̂hi +

mX
j=1

ck
hj
b̂ji = 0
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�L�k âh +

mX
j=1

ckhjâj + ckh0 = 0

Then we set � = T B̂ and � = T â and we obtain a regular feedback that proves

that � is a controlled invariant distribution. Q:E:D: 2

The notion of controlled invariant distribution is of particular interest in the

problem of using feedback for the purpose of bringing the system in a decoupled

form. To be more exact we state the following result (whose proof is obvious):

THEOREM 3.2 Let us consider the nonlinear dynamical system given by the

equation (1:1). Let � be an involutive and nonsingular controlled invariant

distribution included in:

Ker(dh) =

m\
j=1

Ker(dhj)

If spanfei(x); 1 � i � rg � � then in a neighborhood of each point we can

choose a regular feedback (�; �) and a coordinates system such that the closed-

loop system is represented by equations of the form:8<
:

_x1 = ~f1(x1; x2) + ~g1(x1; x2)v + ~e(x1; x2)w

_x2 = ~f2(x2) + ~g2(x2)v

y = h(x2)

2

A few remarks are necesarry.

Remarks

1) If � is involutive, from ei 2 � we obtain that � is ei-invariant (that

means invariant under the action of the vector �eld ei).

2) In order to solve a class of problem as larger as possible, we look for the

maximal controlled invariant distribution included in Ker(dh). Let � denote a

controlled invariant distribution included in Ker(dh). We recall its properties:

A) There exists a regular feedback pair (�; �) such that for the closed-loop

� is an invariant distribution.

B) � � Ker(dh)

Since a sum of two controlled invariant distributions is also a controlled

invariant distribution (it results from Theorem(3:1)) the family of all smooth

controlled invariant distributions included in Ker(dh) (that we shall denote by

J (f; g;Ker(dh))) has a maximal element, namely the sum of all the members

of the family. The distribution which we are interested in (i.e. the maximal

controlled invariant distribution) must be also involutive. In the next section

we shall give an algorithm that leads us ( under a few conditions of regularity)

to the maximal involutive regular controlled invariant distribution.
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3) The dynamics of the nonlinear system restricted to the leaf of � passing

through (x10; x20) is given by:

_x1 = ~f1(x1; x20) + ~g1(x1; x20)v + ~e(x1; x20)w

4) In the next chapter we shall use another variant of this theorem given by

the following result:

THEOREM 3.3 Let us consider the nonlinear system given by 1:4 and two

nested nonsingular and involutive controlled invariant distributions included in

Ker(dh): �1 � �2 � Ker(dh). If there exists a pair of feedback (�; �) that

renders invariant both distributions then there exist a coordinates system such

that the closed-loop system is represented by:

_z1 = ~f1(z1; z2; z3) +~g11(z1; z2; z3)v
1 +~g12(z1; z2; z3)v

2 +~g13(z1; z2; z3)v
3

_z2 = ~f2(z2; z3) +~g22(z2; z3)v
2 +~g23(z2; z3)v

3

_z3 = ~f3(z3) +~g33(z3)v
3

y = h(z3)

(3.2)

with �1 = spanf @

@z1
g, �2 = spanf @

@z1
; @

@z2
g; z1 = (x1; x2; : : : ; xd1),

z2 = (xd1+1; : : : ; xd2), d1 = dim�1; d2 = dim�2; ~g11 = (g1; g2; : : : ; gk1) 2

�1 \G,

~g2 = (gk1+1; : : : ; gk2) 2 �2n�2) \ G and v = (v1; v2; v3), v1 = (u1; : : : ; uk1),

v2 = (uk1+1; : : : ; uk2), v3 = (uk2+1; : : : ; un) 2

Remarks

1) Even it is a very simple result, the understanding of the solution of the

LDDPS (and also of the local noninteractive control with stability) is condi-

tioned by the understanding of this theorem.

2) We point out that it is crucial that both controlled invariant distributions

have the same feedback that renders them invariant.
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3.2 Algorithms

3.2.1 The D�-Algorithm

The following algorithm is the nonlinear analogous of the linear algorithm for

computing the maximal controlled invariant subspace.

ALGORITHM 1 (D�-Algorithm)

Step 0: D0 := TM

Step k:

Dk := Ker(dh)\fX 2 V 1(M )j[f;X] 2 Dk�1+G; [gi; X] 2 Dk�1+G; 1 � i � mg

With the help of the above algorithm we can obtain the maximal controlled

invariant distribution included in Ker(dh) as is stated in the following proposi-

tion:

PROPOSITION 3.4 ([NiSc90]) If for all k � 0 the distribution Dk and

Dk \G as well as the distribution G have constant dimension on M then:

(i) D0 � D1 � � � � � Dk � Dk+1 � � � �

(ii) Dk
is involutive for K � 0

(iii) �� = Dn
. 2

For proof see Proposition 7:16 from [NiSc90], pp.223{224.

This algorithm has the disadvantage that there is not an e�cient method to

compute the set of vector �elds as in Step k.

3.2.2 The Controlled Invariant Distribution Algorithm

We present now the dual form of the previous algorithm.

ALGORITHM 2 (The Controlled Invariant Distribution Algorithm)

Step 0: 
0 := spanf dh g

Step k: 
k := 
k�1 + Lf (
k�1 \G
?) +

P
m

i=1 Lgi(
k�1 \G
?)

We shall denote by �� the maximal controlled invariant distribution included

in Ker(dh) (that is the maximal element of J (f; g;Ker(dh))).

LEMMA 3.5 ([Is89]) Suppose there exists an integer k� such that 
k�+1 =


k�: Then 
k = 
k� for all k > k�. If 
k� \ G? and 
?
k�

are smooth, then


?
k�

= ��. 2

For proof see Lemma 3:2,x6:3,pp. 322{323 of Isidori's book.

We set:

D� = (
0 +
1 + � � �+ 
k + � � �)?

and we say that D� is �nitely computable if there exists an integer k� such that


k� = 
k�+1. In this case D� = (
k�)
?.
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LEMMA 3.6 ([Is89]) Suppose D� is �nitely computable and G;D�; D� + G

are nonsingular. Then D� is involutive and D� = ��. 2

A case where the above assumptions are veri�ed is provided by the following

lemma:

LEMMA 3.7 ([vdWe91]) Assume that the codistributions G?;
k and 
k \

G? have constant dimension for all k � 0. Then �� = 
?
n
= Ker
n. More-

over, ��; G and �� + G are nonsingular. 2

For proof see [NiSc90], Proposition 7:18,pp.225.

A point x0 is called a regular point of controlled invariant distribution algo-

rithm if in a neighborhood of x0 the distribution G (or codistribution G?) and

the codistributions 
k and 
k \ G? for all k � 0 are nonsingular. Then the

previous lemma can be stated as follows:

LEMMA 3.8 ([Is89]) If x0 is a regular point of the controlled invariant dis-

tribution algorithm then �� = 
?n and it is involutive. 2

3.2.3 The Structure Algorithm

We shall use the matrix notations: an 1-form will be identi�ed with a row

vector and a set of 1-forms with the rows of a matrix. We shall also identify a

di�erential system with the codistribution generated or with a set of generators

and a F(M )-module of smooth vector �elds with its distribution associated or

with a set of generators.

We shall compute 
k+1 using the nonlinear structure algorithm. First we

suppose that 
k is spanned by the exact 1-forms:

dc1; : : : ; dc�k

Let dc denote the matrix having dci's as rows.

The Evaluation of 
k \G
?

Let N denote the following �k �m matrix of functions:

Nij = dci(gj) = Lgj ci

We see that the elements of N span dc(G). We put rk = rankN and we

suppose that the �rst r rows of N are independent. Then we partition N and

dc according with the above agreement:

N =

2
4 �N

� � �

~N

3
5 grk

g�k � rk

dc =

2
4 d�c

� � �

d~c

3
5 (3.3)

We obtain that there exists a (�k � rk) � rk matrix M such that:

~N +M �N = 0
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And then:


k \G
? = spanfd~ci +

rkX
j=1

Mijd�cj j rk + 1 � i � �kg

where: ~ci = ci, �cj = crk+j and the �rst subscript of M runs from rk + 1 to �k.

The Evaluation of Lf (
k \G
?) and Lgj (
k \G

?)

We have now:

Lv(d~ci+

rkX
j=1

Mijd�cj) = d(Lv~ci+

rkX
j=1

MijLv�cj)+(Hdc)i�

rkX
j=1

d�cj(v)dMij (3.4)

where H = LvM . For v = f we denote H0 = LfM and for v = gj we put

Hj = LgjM; 1 � j � m. Also we denote by Mi the transpose of the i's row of

the matrix M :

Mi =

2
64

Mi1

...

Mirk

3
75

Using the relation (3:4) with the particular notation just introduced , we obtain

for Lf (
k \G
?) a set of generators written in the matrix notation as follows:

d[(d~c+Md�c)(f)] +H0d�c�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]T dM�k

3
5

or:

d[ ~Mdc(f)] +H0d�c�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]T dM�k

3
5

where: ~M = [M I�k�rk ]. Analogously, for Lgj (
k \ G?) we obtain as a set of

generators the matrix:

Hjd�c�

2
4 [d�c(gj)]

TdMrk+1

� � �

[d�c(gj)]
TdM�k

3
5

The Evaluation of 
k+1

Let NewC denote the set of generators of 
k+1 computed using the relation

de�ning of 
k+1:


k+1 = 
k + Lf (
k \G
?) +

mX
j=1

Lgj (
k \G
?)
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Then:

NewC =

2
66664

set of generators of 
k

set of generators of Lf (
k \G
?)

set of generators of Lg1 (
k \G
?)

� � �

set of generators of Lgm (
k \G
?)

3
77775

We may use elementary operations on the rows of the matrix and we obtain:

NewC =

2
6666666666666666664

dc =

�
d�c

d~c

�

d[ ~Mdc(f)] +H0d�c�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]T dM�k

3
5

H1d�c�

2
4 [d�c(g1)]

TdMrk+1

� � �

[d�c(g1)]
TdM�k

3
5

� � �

Hmd�c�

2
4 [d�c(gm)]

TdMrk+1

� � �

[d�c(gm)]
TdM�k

3
5

3
7777777777777777775

�

�

2
666666664

dc

d[ ~Mdc(f)]�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]T dM�k

3
5

[d�c(G)]TdMrk+1

� � �

[d�c(G)]TdM�k

3
777777775
=

2
666666664

dc

d[ ~Mdc(f)]�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]TdM�k

3
5

�NTdMrk+1

� � �

�NTdM�k

3
777777775

Since �N has full row rank we can still write:

NewC �

2
666666664

dc

d[ ~Mdc(f)]�

2
4 [d�c(f)]T dMrk+1

� � �

[d�c(f)]T dM�k

3
5

dMrk+1

� � �

dM�k

3
777777775
�

2
66664

dc

d[ ~Mdc(f)]

dMrk+1

� � �

dM�k

3
77775

Let d denote a column-vector constructed from the elements of the matrix M

(the length of d is �k(�k � rk)). Since dc(f) = Lf c the previous formula can be

written in the following form:

NewC � d

2
4 c

~M �Lf c

d

3
5
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We can observe that the set of generators of 
k+1 is also made from exact 1-

forms. Since 
0 = dh is obviously generated by exact forms, we obtain that

every 
k is involutive and also, if they are nonsingular distributions, integrable.

In order to obtain a simple form for computing M and ~Mdc(f) we use the

following algorithm:

ALGORITHM 3 (The Structure Algorithm)

Step 0: c = h ; �0 = l

Step k:

1: �k+1 =

�
Lf c Lg1c � � �Lgmc

c 0

�
g�k
g�k

2: Tk+1�k+1 =

�
c0k+1 Ak+1

ck 0

�
grk

where Tk+1 is a nonsingular matrix and Ak+1 is a full row rank matrix with m

columns and rk rows.

3. We partition

Tk+1 =

2
66664

�

� � �

~M

� � �

�

3
77775
grk

g�k

and we denote by d the column-vector obtained from the elements of ~M excepting

the constant functions.

4: c :=

�
ĉ

d

�

5. �k+1 = dim c � 2�k � rk + 2�k(�k � rk)

PROPOSITION 3.9 If x0 is a regular point for the controlled invariant dis-

tribution algorithm then the structure algorithm ends in the most n steps and

the codistribution spanned by dcn equals (��)?. Moreover, the regular state

feedback that proves this is given by:�
An�+ c0n = 0

An� = [Irn 0]

Proof

We have already proved that if x0 is a regular point for the controlled in-

variant distribution algorithm then 
n is spanned by a set of exact 1-forms and

from Lemma(3:8) it follows that (��)? = spanfdcig.
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For the second part we see that the given relations are equivalent with:�
(Lg�c)�+ Lf

�(c) = 0

(Lg�c)� = [Irn 0]

where c is the column-vector of functions obtained at the nth step and �c,~c are the

partition of this vector according with the relations 3:3. If ~f = f+g� and ~g = g�

denote the modi�ed dynamic then:

L ~f (dc) = d(L ~f c) = d

�
Lf �c+ (Lg�c)�

Lf ~c+ (Lg~c)�

�
=

= d

�
0

Lf ~c�M (Lg�c)�

�
= d

�
0

Lf ~c+M �Lf �c

�
= d

�
0

~M � Lf c

�
2 
n

And:

L~g(dc) = d(L~gc) = d

�
Lg�c

Lg~c

�
�) = d(

�
0
~N

�
�) =

= d

�
0

�M (Lg�c)�

�
= �d

�
0

one column of M

�
2 
n

Q.E.D. 2

Remark In the second step of the algorithm, the matrix Tk+1 can be ob-

tained as a product of a suitable re
ectors in order to obtain a Gauss echelon-

form for Ak+1.

3.2.4 The Ker-Algorithm

With stronger assumptions than in the previous algorithm we can obtain a new

form of this. First a de�nition:

Consider the smooth nonlinear system 1:4. The (vector) relative degree

(r1(x); : : : ; rl(x)) is the vector of the smallest integer such that:(
LgjL

k

f
hi(x) = 0 ; for all j = 1; : : : ;m; k < ri(x)� 1

LgjL
ri(x)�1
f

hi(x) 6= 0 ; for some j

and ,moreover, the decoupling matrix, de�ned by (A(x))ij = LgjL
ri(x)�1
f

hi(x)

has full row rank at x.

PROPOSITION 3.10 Consider the smooth nonlinear system 1:4. If it has

a �nite and constant relative degree on a neighborhood of the point x0, namely

(r1; : : : ; rl), then the maximal controlled invariant distribution included in Ker(dh)

is given by:

�� =

l\
i=1

ri�1\
k=0

Ker dLkfhi (3.5)
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Moreover, a regular state feedback solving the LDDP follows from the equations:

A(x)�(x) + b(x) = 0

A(x)�(x) = [Il 0]

where b(x) is de�ned by: (b(x))i = Lri
f
hi(x), i = 1; : : : ; l 2

Remark The relation 3:5 can be rewritten in the following form:

(��)? = spanfdLkfhi; 1 � i � l; 0 � k � ri � 1g

For details of proof see [Is89], Lemma 3:13,pp.334{335.
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3.3 Controllability Distributions

3.3.1 De�nitions

A distribution � is said to be a controllability distribution on Ur if it is invo-

lutive and there exist a feedback pair (�; �) de�ned on U and a subset I of the

index set f1; : : : ;mg with the property that �\ G = spanf~gi; i 2 Ig, and � is

the smallest distribution which is invariant under the vector �elds ~f ; ~g1; : : : ; ~gm
and contains ~gi for all i 2 I.

A distribution is said to be a a local controllability distribution if for each

x0 2 U there exists a neighborhood U
0 of x0 with the property that � is a

controllability distribution on U0.

It is clear that, by de�nition, a (local) controllability distribution is (locally)

controlled invariant. Therefore it is interesting to search extra conditions for a

complete characterization of a local controllability distribution. First we prove

a result as 3:1.

LEMMA 3.11 Let � be an involutive distribution. Then � is a (local) control-

lability distribution if and only if it is a (local) controlled invariant distribution

and:

� =< ~f ; ~g1; : : : ; ~gmj�\G > (3.6)

Proof

\)00
It is obvious.

\(00
Let

� \G = spanf�gigi2I

where �gi =
P

m

j=1 ~gjhji and Card I = rank(�\G) = r.

Then we choose (��; ��) of the form:

�� = �
�� = � � �H

where �H is a m � m matrix obtained from (hji)1�j�m;1�i�r by adding m � r

columns from the canonical basis in order to obtain a nonsingular matrix. Let

us suppose �H of the form:

�H =

�
(hij) 0

Im�r

�

Then the modi�ed dynamics in the new pair of feedback (��; ��) is given by:

f; �g1; : : : ; �gr; gr+1; : : : ; gm.

Since �g1; : : : ; �gr 2 � it is very easy to prove that � is also �g1; : : : ; �gr-

invariant. Now the proof is complete. Q.E.D. 2
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Remark Note that �� is a possible nonlinear analogue for R�, the largest

controllability subspace in the kernel of the output mapping. It is well-known

(see [Wo79], Proposition 5:2, pp. 104) that for linear systems the dynamics

restricted to R� are controllable (so, in particular, stabilizable). For nonlin-

ear systems there is no direct relation between controllability distributions and

stabilizability. In fact, in the following example it is shown that the dynamics

of a system restricted to the leaf of a controllability distribution through an

equilibrium point of the drift vector �eld (f) need not to be stabilizable.

EXAMPLE 3.12 (see [vdWe91]) Consider the system (1:4) with n = 5;m =

2; l = 1 and:

f(x) = x4
@

@x4
; g1(x) =

@

@x2
; g2(x) = x2

@

@x1
+ (1 + x1)

@

@x4
+

@

@x5

h(x) = x5

A direct computation shows that:

�� = spanf
@

@x1
;
@

@x2
;
@

@x3
;
@

@x4
g

(the relative degree is 1). Then, using one of the two algorithms that will follow

in next subsections or direct from de�nition, we obtain:

�� = spanf
@

@x1
;
@

@x2
;
@

@x4
g

The leaf of �� that passes through the origin is given by:

N = fx 2 R5
jx3 = 0; x5 = 0g

The dynamics of the system restricted to this leaf are given by:8<
:

_x1 = 0

_x2 = u1
_x4 = x4

Clearly, these dynamics are unstabilizabe ! 3

3.3.2 The Controllability Distribution Algorithm

Let � be a �xed distribution.

ALGORITHM 4 (Controllability Distribution Algorithm)

Step 0: S0 = � \G

Step k:

Sk := � \ (LfSk�1 +

mX
j=1

LgjSk�1 +G) (3.7)
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LEMMA 3.13 (see [Is89],pp. 338) The sequence 3:7 is nondecreasing. If

there exists an integer k� such that Sk� = Sk�+1 then Sk = Sk� for all k > k�.

2

We set:

S(�) = (S0 + S1 + � � �+ Sk + � � �)?

If the algorithm 4 ends in a �nite number of steps (that means there exists

K� as in Lemma(3:13)) then we say that S(�) is �nitely computable and then

S(�) = Sk� .

An "intrinsic" characterization of a local controllability distribution is given

by the following theorem (see [Is89],pp. 340{341, for proof)

THEOREM 3.14 Let � be an involutive distribution. Suppose �; G;�+ G

are nonsingular and that S(�) is �nitely computable. Then � is a local con-

trollability distribution if and only if:

[f;�] � �+ G

[gi;�] � �+ G; 1 � i � m

S(�) = �

2

3.3.3 The ��-Algorithm

Let us suppose the nonlinear system given by 1:4. As in the case of controlled

invariant distributions we look for the largest local controllability distribution

included in Ker(dh). Since every (local) controllability distribution is also a

(local) controlled invariant distribution, the problem is equivalent to look for

the largest local controllability distribution included in �� that is the maximal

local controlled invariant distribution included in Ker(dh).

We have the following lemma (from [Is89]):

LEMMA 3.15 Suppose ��; G and G+�� are nonsingular and S(��) is �nitely

computable and nonsingular. Then S(��) is the largest local controllability dis-

tribution included in Ker(dh). 2

If we use instead of (f; gj) the modi�ed vector �elds under the action of a pair

of feedback (�; �) which renders �� invariant, we obtain a new form of the

controllability distribution algorithm.

ALGORITHM 5 (The ��-Algorithm) Step 0:

1: Compute ��, the maximal controlled invariant distribution included in

Ker(dh) (which is involutive).

2: Establish (�; �) a pair of feedback which renders �� invariant.

3: Modify �, if it is necessary, in order to obtain:

�\G = spanf�gi; i 2 Ig
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4: Set S0 = spanf�gi; i 2 Ig

Step k:

Sk = Sk�1 + L �fSk�1 +

mX
i=1

L�giSk�1 2

If the assumptions of Lemma (3:15) are ful�lled then S(��) = ��. Moreover,

if every Sk is nonsingular then �� = Sn



Chapter 4

The Solutions of the

LDDPS

4.1 General Presentation

The both solutions that we shall present in this chapter are borrowed from

[vdWe91]. We suppose that the equilibrium point is x0 = 0 (the origin) and we

require only f(x0) = 0.

The �rst solution uses the stabilizability distributions. This notion will be

introduce in the next section, but we can give now the basic idea. Let us consider

the decomposed form given by Theorem (3:3) (relation (3:2)) with �2 = ��.

Suppose that the following conditions are accomplished:

1) spanfeig � �1

2) There exists a regular feedback of the form:

v1 = �1(z1; z2; z3) + �1(z1; z2; z3)w1

with �1(0) = 0 such that the linearized dynamics restricted to the leaf of �1

passing through the equilibrium point x0 = 0:

_�1 = (
@ ~f1

@z1
+ ~g11

@�1

@z1
(0)�1

is asymptotically stable.

3) There exists a regular feedback of the form:�
v2
v3

�
=

�
�2(z2; z3)

�3(z2; z3)

�
+ �2(z2; z3)

�
w2

w3

�

with �2(0) = 0; �3(0) = 0 such that the linearized dynamics restricted to the

32
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leaf of the distribution Rn=�1 passing through the equilibrium point x0 = 0:

�
_�2
_�3

�
=

"
@ ~f2
@z2

+ ~g22
@�2

@z2
+ ~g23

@�3

@z2

@ ~f2
@z3

+ ~g22
@�2

@z3
+ ~g23

@�3

@z3

~g33
@�3

@z2

@ ~f3
@z3

+ ~g33
@�3

@z3

# ������
(0)

�
�2
�3

�

is asymptotically stable.

Then applying the both feedbacks we obtain the solution of the LDDPS. The

problem is now to obtain a convenable splitting of the system as in Theorem

(3:3). In order to solve a large class of problems as possible, we look for the

maximal distribution �1 (that will be denoted by ��
s
) with the properties given

by the hypothesis of Theorem (3:3) and the point 2) from the above discussion.

This way is followed in [WeNi89]. Unfortunately, the existence result on ��s
does not give a method to construct this distribution in practice. Motivated

by this remark, Leo van der Wegen in 1989 (see [vdWe89]) proposes another

approach to solve the LDPPS.

Let us consider again Theorem (3:3) but this time with �1 = ��. Suppose

the following conditions are ful�lled:

1) spanfeig � �2

2) There exists a regular feedback of the form:�
v1
v2

�
=

�
�1(z1; z2; z3)

�2(z1; z2; z3)

�
+ �1(z1; z2; z3)

�
w1

w2

�

with �1(0) = 0; �2(0) = 0 such that the dynamics of the closed- loop system

restricted to the leaf of the distribution �2 passing through the origin is asymp-

totically stable.

3) There exists a regular feedback of the form:

v3 = �3(z3) + �3(z3)w3

with �3(0) = 0, that renders asymptotically stable the dynamics of the linearized

closed-loop system restricted to the leaf of the distribution Rn=�2, passing

through the origin.

Again the both feedbacks solve the LDDPS. Unlike the �rst solution, here

we look for the smallest distribution �2 (that will be denoted by (�p)�) with

the above properties. We point out that this distribution depends essentially

of the disturbance vector �elds (ei) and from this reason it is a "more oriented

problem" solution. Fortunately, there exists an algorithm to compute (�p)�.
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4.2 First Solution

4.2.1 Stabilizability Distributions

We consider the nonlinear system given by (1:4) having at x0 = 0 an equilib-

rium point (that means f(0) = 0). A distribution � is called a stabilizability

distribution if :

1) � is a nonsingular involutive controlled invariant distribution;

2) the dynamics of the linearized closed-loop system restricted to the leaf of

� passing through x0 = 0 is asymptotically stable.

Since the de�nition of a stabilizability distribution is independent of the

disturbance q in (1:1), we take q � 0 in the rest of the subsection. We look

for the maximal stabilizability distribution included in Ker(dh) (which will

be denoted by ��
s
) that is rendered invariant by the same feedback as the

distribution ��. We point out that is very important that ��s has the same

"friend" as �� ("friend" means the pair of feedback that renders invariant the

distribution). The following example shows that if �1 � �� is a controlled

invariant distribution, it does not imply that �1 has the same friend as ��:

EXAMPLE 4.1 Let us consider the nonlinear system (1:4) with:

n = 4;m = 2; l = 1 and:

f(x) =

2
664

�2x1
�x2 + x4
x3 � x2x3

3x4

3
775 ; g1(x) =

2
664

1

�1

1

1

3
775 ; g2(x) =

2
664

0

0

1

�1

3
775h(x) = x4 (4.1)

In this case Lg1 = 1 and Lg2 = �1, hence r1 = r2 = 1 and:

�� = spanf
@

@x1
;
@

@x2
;
@

@x3
g

It is obviously that �� is invariant under f and g1; g2 but:

�1 = spanf
@

@x1
;
@

@x2
g � ��

is not:

[f;
@

@x2
] =

@

@x2
+ x3

@

@x3
=

x3

2
g1 +

x3

2
g2 + 2

@

@x2
�

@

@x1
2 �1 +G

and it is controlled invariant (by Theorem (3:1)). Moreover, the dynamics of

the linearized closed-loop system restricted to the leaf passing through the origin

is asymptotically stable. Let:

u1 =
x2x3

2
+w1 ; u2 =

x2x3

2
+ w2
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then:

~f =

2
664

x2x3

2
� 2x1

�
x2x3

2 � x2 + x4
x3
3x4

3
775 ; ~g1 = g1 ; ~g2 = g2

and:

[ ~f; @

@x1
] = 2 @

@x1
2 �1

[ ~f; @

@x2
] = �

x3

2
@

@x1
+ (x32 + 1) @

@x2
2 �

Hence �1 is ( ~f; ~g)-invariant. The restricted system is obtained by setting x3 = 0

and x4 = 0: �
_x1 = �2x1
_x2 = �x2

It is already in linear form and , obviously, it is asymptotically stable. Hence

�1 is a stabilizability distribution.

Remark We have:

�� \G = spanf
@

@x1
�

@

@x2
+ 2

@

@x3
g

So : �� =< f; g1; g2jspanf
@

@x1
�

@

@x2
+ 2

@

@x3
g >= ��:

Moreover, �� is a stabilizability distribution because, if we setting:

u1 = �x3 +w1 ; u2 = �x3 + w2

in (4:1), we obtain:

�f =

2
664

�2x1 � x3
�x2 � x3 + x4
�x3 � x2x3

3x4

3
775 ; �g1 = g1 ; �g2 = g2

that also renders invariant �� = ��, and the linearized system evolving on the

leaf of �� that passes through the origin:

_� =

2
4 �2 0 �1

0 �1 �1

0 0 �1

3
5 � +

2
4 1

�1

2

3
5w

is , obviously, asymptotically stable. 3

Now we try to �nd conditions that ensure us of the existence and unicity of the

maximal stabilizability distribution. Since in the linear case the controllability

distribution is a stabilizability distribution (see [Wo79]) it is reasonable to ask for

the same thing in the nonlinear case. We have already seen that, in the nonlinear
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case, not every controllability distribution is also a stabilizability distribution

(see Example (3:12) ). Then it is necessary to assume two conditions:

A1. �� and G are nonsingular on a neighborhood U of the origin and

dimG = m.

A2. The linearization of the dynamics (1:4) restricted to the leaf L0 of �
�

through x0 = 0 is stabilizable.

In order to obtain a decomposed form as given by Theorem (3:3), we are led

to assume the following condition:

A3. �� and �� +G are nonsingular on U .

It is known that if (�; �) is a friend of ��, it is also of �� (see [Is89]).

Then we may apply Theorem (3:3) with �1 = ��,�2 = �� and such that the

linearized system restricted to the leaf L0 (of �
� that passes through the origin)

is already asymptotically stable. Using also A1 and A3 we obtain:

_x1 = f̂1(x1; x2; x3) +ĝ11(x1; x2; x3)u
1 +ĝ12(x1; x2; x3)u

2

_x2 = f̂2(x2; x3) +ĝ22(x2; x3)u
2

_x3 = f̂3(x3) +ĝ32(x3)u
3

(4.2)

with �� = spanf @

@x1
g, �� = spanf @

@x1
; @

@x2
g , ĝ11 = (g1; : : : ; gs) 2 G \ �� =

G \ ��. We point out that: G \ (��n��) = ; and this is the reason for

what we do not have three terms in ĝ. We have supposed that f̂1 is already

asymptotically stable (that means: �[
@f̂

1(x1;0;0)
@x1

jx1=0] � C�). Let W denote

the set of all stabilizable distributions that are (f̂ ; ĝ)-invariant and include ��.

This set is not empty because �� � W . Since (ĝ12; ĝ22; ĝ32)T has full column

rank and (ĝ32) has full row rank we conclude that the class of feedbacks that

render invariant �� (and also ��) is:

u1 = �1(x1; x2; x3) +�1w
1

u2 = �2(x3) +�2w
2 (4.3)

with �1(0) = 0, �2(0) = 0. Now we can prove the following lemma:

LEMMA 4.2 Let �1 be a stabilizability distribution that includes ��. Then

�1 is (f̂ ; ĝ)-invariant.

Proof

We have: �� � �1 � ��. Since �1 is controlled invariant:

[f̂ ;�1] � �1 + Im(ĝ11) + Im(ĝ2)

[ĝ;�1] � �1 + Im(ĝ11) + Im(ĝ2)

But [f̂ ;�1]; [ĝ;�1] has no components on
@

@x3
and Im(ĝ11) � �� � �1. Q.E.D.

2
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By using this lemma we may consider the sum of all members of W and the

involutive closure of it:

�
f̂ ;ĝ

= inv close
X

�i2W

�i

as the candidate to the maximal stabilizability distribution that includes ��.

The problem is if it is also a stable distribution, that means the restriction of

the linearized dynamics to Q0 (that is its leaf passing through the origin) is

asymptotically stable. (Note that if there exists a feedback that stabilizes the

linearized dynamics restricted to Q0, then this dynamics was also born stable

- see A2, the construction of f̂ and ĝ and the form of equation (4:3)). We are

able to prove the following result:

LEMMA 4.3 Assume that �
f̂ ;ĝ

is nonsingular. Then �
f̂ ;ĝ

is a stabilizability

distribution. Moreover, in every pair of coordinates as in equation 4:2 �
f̂ ;ĝ

is

a stable distribution. (So �
f̂ ;ĝ

does not depend on the choice of the feedback.)

Proof

Let M0 denote the maximal stable manifold of the vector �eld f̂ (stable man-

ifold means an invariant manifold under the action of the vector �eld f̂ and

every trajectory initialized on it tends to the equilibrium point; we know that

there exists a unique maximal stable manifold - see Hartmann's theorem). Since

every �i 2 W is also a stable distribution (see the above note), it follows then

�ijM0
� TM . Then �

f̂ ;ĝ
jM0

� TM0. Since it is nonsingular and involutive

we obtain that its integral manifold that passes through the origin is included in

M0. 2

Justi�ed of this lemma, it is reasonable to require the following condition:

A4. The distribution �
f̂ ;ĝ

is nonsingular.

Now the following result is a consequence of the foregoing:

COROLLARY 4.4 Assume that A1,A2,A3 and A4 hold. Then there exists a

unique maximal stabilizability distribution that contains �� and is included in

Ker(dh). 2

We shall denote it by ��s. In fact ��s = �
f̂ ;ĝ

.

4.2.2 The First Solution of the LDDPS

Now the solution of the local disturbance decoupling problem with stability

(LDDPS) follows straightforward. For convenience we choose new coordinates

x = (z1; z2) such that:

��s = spanf
@

@z1
g
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Instead of equations (4:2), this yields

_z1 = �f1(z1; z2) + �g1(z1; z2)v + �e1(z1; z2)q

_z2 = �f2(z2) + �g2(z2)v + �e2(z1; z2)q

y = �h(z2)

(4.4)

where we have considered also the disturbance term. We make now two as-

sumptions:

A5. The dynamics of the linearized system restricted to the leaf of Rn=��s
passing through the origin is stabilizable.

A6. spanfeig � ��
s
.

Then �e2 = 0 and, from A5, we can choose a linear feedback:

v = Gz2 + w (4.5)

such that: �(@
�f2

@z2
j0 + �g2(0)G) � C�. So the LDDPS is solved. We are able to

state the following theorem:

THEOREM 4.5 Consider the system (1:1). Assume that A1 up to A5 hold.

Then the LDDPS for (1:1) is solvable if and only if A6 holds. 2

For proof of the only assertion (if it is necessary) see [WeNi89], Theorem 2.1.

For end this section we sum up the discussion:

1. First choose a feedback such that the system is brought into the form

given by (4:2) with f̂1(x1; 0; 0) asymptotically stable.

2. Determine, if it possible, ��
s
.

3. Change, if it needs, the coordinates in order to obtain the form (4:4).

4. Compute the feedback (4:5) and verify A6.
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4.3 The Second Solution

4.3.1 The (�p)
�
-Algorithm

This second solution o�ers an algorithm to solve the problem. The idea of this

solution is very simple. We look for the smallest controlled invariant distribution

included in Ker(dh) that contains spanfeig. Since we try to have an unique

distribution, we have to require that this distribution contains also ��. Actually,

the problem is to �nd the smallest controlled invariant distribution included in

Ker(dh) that contains spanfeig and ��.

First we have to assume that:

B1. spanfeig � �� on a neighborhood U of x0 = 0.

in order to be able to solve at least the LDDP. And that:

B2. dimG = m and �� is constant dimensional on U .

Choose a regular static state feedback:

u = �(x) + �(x)v ; �(0) = 0 ; �(x) invertible on U

such that for the feedback modi�ed system we have that �� is invariant under
~f = f + g� and ~gi = (g�)i, i = 1; : : : ;m.

We carry on the following algorithm (see [vdWe91], Algorithm 4.2.1):

ALGORITHM 6 (The (�p)�-Algorithm)

Step 0: �0 = �� + spanfeig

Step k: �k+1 = �k + [ ~f;�k] +
Pm

i=1[~gi;�k]; k = 1; 2; : : :

Let �0 denote the sum of all distributions �k:

�0 = �0 +�1 + � � �+�k + � � �

Note that if all distributions �k are constant dimensional, then the algorithm

converges in at most n steps. Let �
p

~f;~g
denote the involutive closure of �0.

Assume that:

B3. �
p

~f;~g
is constant dimensional on U .

We are able to prove that �
p

~f;~g
though a priori depends on the choice of the

feedback (�; �), in fact it does not depend on this feedback. The proof is very

close of that from Lemma (4:3) . We state, only, a theorem that sum up some

results:

THEOREM 4.6 (see [vdWe91], Theorem 4.2.2, pp 61, for proof) Consider the

system 1:1. Assume that B1,B2 and B3 hold. Then �
p

~f;~g
is independent of

the choice of the feedback (�; �) that renders invariant ��. Moreover, �
p

~f;~g
is

the smallest constant dimensional locally controlled invariant distribution in the

kernel of the output mapping that contains �� and the disturbance vector �elds

feig.
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2

In that it follows we shall denote this distribution by (�p)�. Then (�
p)� = �

p

~f;~g
.

4.3.2 The Second Solution of the LDDPS

The solution of the LDDPS in terms of (�p)� is now straightforward:

THEOREM 4.7 Consider the smooth system (1:1). Assume that B1,B2 and

B3 hold and that:

B4. The dynamics of the system in closed-loop, restricted to the leaf of

(�p)� through x0 = 0 can be exponentially stabilized:

B5. The linearization of the closed-loop system dynamics restricted to Rn=(�p)�
is stabilizable.

Then the local disturbance decoupling problem with stability for (1:1) is solv-

able. On the other hand, if the LDDPS for (1:1) is solvable by making a regular

distribution � invariant, then the dynamics of the system restricted to the leaf

of the � through x0 = 0 can be stabilized exponentially and the linearization of

the dynamics restricted to Rn=� is stabilizable. 2

A few remark are necessary.

Remarks

1) The distributions � and (�p)� in the above theorem are stabilizability

distributions.

2) The conditions B5 and A5 (from the previous section) are implied by:

C1. The linearization of the (1:1) around x0 = 0 is stabilizable.

In fact, there is a result for the linear system by the following form:

PROPOSITION 4.8 Suppose a linear dynamics given by:

_x = Ax +Bu ; x 2 Rn

with:

A =

�
A11 A12

0 A22

�
B =

�
B1

B2

�

A11 stable and (A;B) stabilizable. Then the pair (A22; B22) is also stabilizable.

2

Now, using this result the proof of the above assertion is obviously.
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Conclusions

Several design problems in linear systems theory have been treated fruitfully

by the geometric approach. Motivated by the success of the geometric theory

, researchers in nonlinear systems theory tried to translate several geometric

concepts to a nonlinear context, using di�erential geometric tools. This led, for

instance, to the de�nition of (local) controlled invariance and the solution of a

local version of the Disturbance Decoupling Problem.

In this thesis the Local Disturbance Decoupling Problem with Stability for

nonlinear systems is considered. This problem consists in �nding conditions

under which there exists a locally de�ned regular static state feedback that

decouples the outputs from the disturbances and exponentially stabilizes the

equilibrium of the modi�ed drift dynamics of the feedback systems. For systems

for which the linearization of the dynamics around an equilibrium is stabilizable,

two methods are proposed to solve this problem.

In the �rst method the stabilizability distributions for nonlinear systems are

introduced and it is shown that under certain regularity assumptions the max-

imal stabilizability distribution ��s in the kernel of the output mapping exists

and that the LDDPS is solvable if and only if the disturbance vector �elds are

contained in ��s. This distribution forms a nonlinear analogue of the maxi-

mal stabilizability subspace V�s for linear systems. But, while in the linear case

the dimension of V�
s
is always equal with the dimension of the maximal stable

manifold of the dynamics restricted to the largest locally controlled invariant

distribution in the kernel of the output mapping, in the nonlinear case the di-

mension of ��s should be strictly less than the dimension of the stable invariant

manifold. This is a nonlinear phenomenon.

A second more \ oriented problem"method for the smallest locally controlled

invariant distribution (�p)� in the kernel of the output mapping containing the

disturbance vector �elds as well as the largest local controllability distribution

in ��. If the linearization of the dynamics of the system restricted to the leaf

of (�p)� through the equilibrium is stabilizable, then the LDDPS is solvable.

41
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Since stabilizability of the linearization of the nonlinear system around an

equilibrium point is a necessary condition for solvability of the LDDPS, one

may wonder if solvability of the Disturbance Decoupling Problem with Stability

(DDPS) for the linearization is su�cient for solvability of the LDDPS for the

nonlinear system. The answer is negative as can easily be seen from an example

(for instance, Example 5.2.1, pp 74, from [vdWe91]).

The solutions presented here are locally and in nonsingular cases. The open

problems that remains to be studied are:

1) What does it happen if the nonsingularity conditions are not ful�lled ?

2) What are the supplementary conditions that solve the global problem ?

About the �rst problem we suggest that a point of departure should be the

two Appendices of this thesis.

The second problem has not yet any complete solution either for the LDDPS

or for any other nonlinear problem. Recently, some articles have been published

on (semi)global stabilization of nonlinear control systems (see [Su90]) which

show some limitations to this globalization. Our opinion is that the solution of

the global problem can be achieved only using algebraic tools. To be more exact,

the di�erential geometric tools have not the \force" to solve the singularities.

By this reason it is possible that if one �nd an algebraic solution of the �rst

problem, this should be used also for the second problem. By this way the two

problems can be uni�ed by a unique solution.
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