Nonlinear Analysis with Frames

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

July 28-30, 2015 Modern Harmonic Analysis and Applications Summer Graduate Program University of Maryland, College Park, MD 20742

Thanks to our sponsors:

Institute for Mathematics and its Applications

University of Minnesota

Driven to Discover™

SIEMENS

"This material is based upon work supported by the National Science Foundation under Grants No. DMS-1413249, DMS-1501640. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

Problem Formulation

- 2 Metric Space Structures
- Main Results
- Proofs

Table of Contents

- Problem Formulation
- 2 Metric Space Structures
- Main Results
- 4 Proofs

Problem Formulation

The phase retrieval problem

• Hilbert space $H=\mathbb{C}^n$, $\hat{H}=H/T^1$, frame $\mathcal{F}=\{f_1,\cdots,f_m\}\subset\mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m \ , \ \alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}.$$

$$\beta: \hat{H} \to \mathbb{R}^m \ , \ \beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}.$$

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

Problem Formulation

The phase retrieval problem

• Hilbert space $H=\mathbb{C}^n$, $\hat{H}=H/T^1$, frame $\mathcal{F}=\{f_1,\cdots,f_m\}\subset\mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m \ , \ \alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}.$$

$$\beta: \hat{H} \to \mathbb{R}^m \ , \ \beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}.$$

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

• The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from $y = \alpha(x)$ (or from $y = \beta(x)$) up to a global phase factor.

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Problem Formulation Lipschitz Reconstruction

- ullet Our Problems Today: Assume ${\mathcal F}$ is phase retrievable.
 - ① Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
 - Oo they admit left inverses that are globally Lipschitz?
 - What are the Lipschitz constants?

Problem Formulation Lipschitz Reconstruction

- ullet Our Problems Today: Assume ${\mathcal F}$ is phase retrievable.

 - ② Do they admit left inverses that are globally Lipschitz?
 - What are the Lipschitz constants?
- Additionally, we want to understand the structure of Lipschitz bounds (to be defined shortly).

Table of Contents

- Problem Formulation
- 2 Metric Space Structures
- Main Results
- 4 Proofs

Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$.

Topological Structures

Let $H=\mathbb{C}^n$. The quotient space $\hat{H}=\mathbb{C}^n/T^1$, with classes induced by $x\sim y$ if there is real φ with $x=e^{i\varphi}y$.

Topologically:

$$\hat{\mathbb{C}}^n = \{0\} \cup \left((0, \infty) \times \mathbb{CP}^{n-1} \right)$$

with

$$\mathring{\mathbb{C}^n} = \hat{\mathbb{C}^n} \setminus \{0\} = (0, \infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n-1.

Topological Structures

Let $H = \mathbb{C}^n$. The quotient space $\hat{H} = \mathbb{C}^n/T^1$, with classes induced by $x \sim y$ if there is real φ with $x = e^{i\varphi}y$.

Topologically:

$$\hat{\mathbb{C}}^n = \{0\} \cup \left((0, \infty) \times \mathbb{CP}^{n-1} \right)$$

with

$$\mathring{\mathbb{C}}^n = \hat{\mathbb{C}}^n \setminus \{0\} = (0, \infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n-1.

Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$.

Topological Structures

Let $H=\mathbb{C}^n$. The quotient space $\hat{H}=\mathbb{C}^n/T^1$, with classes induced by $x\sim y$ if there is real φ with $x=e^{i\varphi}y$.

Topologically:

$$\hat{\mathbb{C}}^n = \{0\} \cup \left((0, \infty) \times \mathbb{CP}^{n-1} \right)$$

with

$$\mathring{\mathbb{C}}^n = \hat{\mathbb{C}}^n \setminus \{0\} = (0, \infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n-1.

Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$. Specifically let

$$\mathcal{S}^{p,q}(H) = \left\{T \in \mathit{Sym}(H) \ , \ T \ \mathrm{has \ at \ most} \ p \ \mathrm{pos.eigs. \ and} \ q \ \mathrm{neg.eigs} \right\}$$

Then:

$$\kappa_{\beta}: \hat{H} \to \mathcal{S}^{1,0} \ , \ \hat{x} \mapsto = xx^* \ , \ \text{is an embedding.}$$

◆ロト ◆部 ト ◆ 書 ト ◆ 書 ・ か Q (*)

The matrix-norm induced metric structure

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_p: \hat{H} \times \hat{H} \rightarrow \mathbb{R} , \ d_p(\hat{x}, \hat{y}) = \|xx^* - yy^*\|_p$$

with the p-norm of the singular values. In the case p=2 we obtain

$$d_2(x, y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x, y \rangle|^2}$$

The matrix-norm induced metric structure

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_p: \hat{H} \times \hat{H} \to \mathbb{R} , \ d_p(\hat{x}, \hat{y}) = \|xx^* - yy^*\|_p$$

with the p-norm of the singular values. In the case p=2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x,y\rangle|^2}$$

Lemma (BZ15)

1 $(d_p)_{1 \le p \le \infty}$ are equivalent metrics and the identity map $i: (\hat{H}, d_p) \to (\hat{H}, d_q), \ i(x) = x$ has Lipschitz constant

$$Lip_{p,q,n}^d = \max(1, 2^{\frac{1}{q} - \frac{1}{p}}).$$

2 The metric space (\hat{H}, d_p) is isometrically isomorphic to $\mathcal{S}^{1,0}$ endowed with the p-norm via $\kappa_{\beta}: \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\beta}(x) = xx^*$.

The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$D_p: \hat{H} \times \hat{H} \to \mathbb{R} , \ D_p(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_p$$

with the usual p-norm on \mathbb{C}^n . In the case p=2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$D_p: \hat{H} \times \hat{H} \to \mathbb{R} \ , \ D_p(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_p$$

with the usual p-norm on \mathbb{C}^n . In the case p=2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

Lemma (BZ15)

1 $(D_p)_{1 \leq p \leq \infty}$ are equivalent metrics and the identity map $i: (\hat{H}, D_p) \rightarrow (\hat{H}, D_q)$, i(x) = x has Lipschitz constant

$$Lip_{p,q,n}^{D} = \max(1, n^{\frac{1}{q} - \frac{1}{p}}).$$

② The metric space (\hat{H}, D_2) is Lipschitz isomorphic to $\mathcal{S}^{1,0}$ endowed with the 2-norm via $\kappa_{\alpha}: \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\alpha}(x) = \frac{1}{\|x\|} x x^*$.

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Metric Space Structures Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i:(\hat{H},D_p)\to(\hat{H},d_p)$, i(x)=x is continuous but it is not Lipschitz continuous. Likewise, the identity map $i:(\hat{H},d_p)\to(\hat{H},D_p)$, i(x)=x is continuous but it is not Lipschitz continuous. Hence the induced topologies on (\hat{H},D_p) and (\hat{H},d_p) are the same, but the corresponding metrics are not Lipschitz equivalent.

Table of Contents

- Problem Formulation
- 2 Metric Space Structures
- Main Results
- 4 Proofs

Main Results Lipschitz inversion: α

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\alpha:(\hat{H},D_2)\to (\mathbb{R}^m,\|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{A_0},\sqrt{B_0}$ denote its Lipschitz constants: for every $x,y\in \hat{H}$:

$$A_0 \min_{\varphi} \|x - e^{i\varphi}y\|_2^2 \leq \sum_{k=1}^m \|\langle x, f_k \rangle| - |\langle y, f_k \rangle|^2 \leq B_0 \min_{\varphi} \|x - e^{i\varphi}y\|_2^2.$$

② There is a Lipschitz map $\omega: (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, D_2)$ so that: (i) $\omega(\alpha(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\omega) \leq \frac{4+3\sqrt{2}}{\sqrt{A_0}} = \frac{8.24}{\sqrt{A_0}}$.

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\beta: (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{a_0}, \sqrt{b_0}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$||a_0||xx^* - yy^*||_1^2 \le \sum_{k=1}^m \left| |\langle x, f_k \rangle|^2 - |\langle y, f_k \rangle|^2 \right|^2 \le b_0 ||xx^* - yy^*||_1^2.$$

② There is a Lipschitz map $\psi: (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, d_1)$ so that: (i) $\psi(\beta(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\psi) \leq \frac{4+3\sqrt{2}}{\sqrt{a_0}} = \frac{8.24}{\sqrt{a_0}}$.

| **4ロト4部ト4ミト4ミト | ミーク**90

Main Results

000

Problem Formulation

Prior literature:

Main Results Prior Works

Prior literature:

• 2012: **B.**: Cramer-Rao lower bound in the real case; **Eldar&Mendelson**: map α in the real case

$$\|\alpha(x) - \alpha(y)\| \ge C\|x - y\|\|x + y\|.$$

- 2013: **Bandeira, Cahill, Mixon, Nelson**: improved the estimate of C. **B.**: β bi-Lipschitz in real and complex case.
- 2014: **B.&Yang**: Find the exact Lipschitz constant for α in the real case the constants A_0 , B_0 ; **B.&Z.**:constructed a Lipschitz left inverse for β ; **B.**: lower Lipschitz constant A_0 connected to CRLB's for a non-AWGN model.
- 2015: **B.&Z.**: Proved α is bi-Lipschitz in the complex case; constructed a Lipschitz left inverse.

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Table of Contents

- Problem Formulation
- 2 Metric Space Structures
- Main Results
- Proofs

Problem Formulation

The proofs involve several steps.

Proofs Overview

The proofs involve several steps.

• Part 1: Injectivity \longrightarrow bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α .

Proofs Overview

The proofs involve several steps.

- Part 1: Injectivity \longrightarrow bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α .
- 2 Part 2: Left inverse construction is done in three steps:
 - The left inverse is first extended to \mathbb{R}^m into Sym(H) using Kirszbraun's theorem;
 - **2** Then we show that $S^{1,0}(H)$ is a Lipschitz retract in Sym(H);
 - 3 The proof is concluded by composing the two maps.

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann, Casazza, Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$A: Sym(H) \to \mathbb{R}^m \ , \ A(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$$

Specifically:
$$\beta(x) = \mathbb{A}(xx^*)$$
.

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann, Casazza, Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$A: Sym(H) \to \mathbb{R}^m$$
 , $A(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$

Specifically: $\beta(x) = \mathbb{A}(xx^*)$.

$$||\beta(x) - \beta(y)|| = ||A(xx^*) - A(yy^*)|| = ||A(xx^* - yy^*)||$$
$$= ||xx^* - yy^*|| ||A\left(\frac{xx^* - yy^*}{||xx^* - yy^*||}\right)||$$

Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann, Casazza, Edidin - 2007): The nonlinear map β is the restrictrion of the linear map

$$A: Sym(H) \to \mathbb{R}^m$$
 , $A(T) = (\langle Tf_k, f_k \rangle)_{1 \le k \le m}$

Specifically: $\beta(x) = \mathbb{A}(xx^*)$.

$$||\beta(x) - \beta(y)|| = ||A(xx^*) - A(yy^*)|| = ||A(xx^* - yy^*)||$$
$$= ||xx^* - yy^*|| ||A\left(\frac{xx^* - yy^*}{||xx^* - yy^*||}\right)||$$

$$a_0 = \min_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\| > 0 \ , \ b_0 = \max_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\|$$

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Main Results

Problem Formulation

Part 2: Extension of the inverse for β

Assume $\beta: (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$a_0d_1(x,y)^2 \le \|\beta(x) - \beta(y)\|^2 \le b_0d_1(x,y)^2$$

Part 2: Extension of the inverse for β

Assume $\beta: (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$a_0 d_1(x, y)^2 \le \|\beta(x) - \beta(y)\|^2 \le b_0 d_1(x, y)^2$$

Let $M = \beta(\hat{H}) \subset \mathbb{R}^m$.

Part 2: Extension of the inverse for β

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Problem Formulation

Part 2: Extension of the inverse for β

Then construct the local left inverse $\psi_1:M\to \hat{H}$ with $Lip(\psi_1)=\frac{1}{\sqrt{a_0}}$.

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Problem Formulation

Part 2: Extension of the inverse for β

Use Kisrbraun's theorem to extend isometrically $\psi_2 : \mathbb{R}^m \to \mathit{Sym}(H)$.

Radu Balan (UMD)

Part 2: Extension of the inverse for β

Construct a Lipschitz "projection" $\pi: \mathit{Sym}(H) \to \mathcal{S}^{1,0}(H)$.

) Q (*

Radu Balan (UMD) Phase Retrieval July 28-30, 2015

Part 2: Extension of the inverse for β

Compose the two maps to get $\psi : \mathbb{R}^m \to \mathcal{S}^{1,0}$, $\psi = \pi \circ \psi_2$.

Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

How to obtain $\pi: \mathit{Sym}(H) \to \mathcal{S}^{1,0}(H)$?

Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: \mathit{Sym}(H) o \mathcal{S}^{1,0}(H) \ , \ \pi(A) = (\lambda_1 - \lambda_2) P_1$$

satisfies the following two properties:

- for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(S^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1 + \frac{1}{p}}$:
- **2** $\pi(A) = A$ for all $A \in S^{1,0}(H)$.

Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: \mathit{Sym}(H) o \mathcal{S}^{1,0}(H) \;\; , \;\; \pi(A) = (\lambda_1 - \lambda_2) P_1$$

satisfies the following two properties:

- for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(S^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1 + \frac{1}{p}}$:
- **2** $\pi(A) = A$ for all $A \in S^{1,0}(H)$.

Proof uses Weyl's inequality and spectral formula on a complex integration contour by Zwald & Blanchard (2006).

Problem Formulation

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

1 The global lower and upper Lipschitz bounds:

$$A_0 = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} , \ B_0 = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

• The global lower and upper Lipschitz bounds:

$$A_0 = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} , \ B_0 = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

② The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

1 The global lower and upper Lipschitz bounds:

$$A_0 = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} , \ B_0 = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

② The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

3 The type II local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$\tilde{A}(z) = \lim_{r \to 0} \inf_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,z)^2} , \ \tilde{B}(z) = \lim_{r \to 0} \sup_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,y)^2}$$

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H} .

Main Results

Proofs

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H} .

Let $\varphi_1, \cdots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \cdots, \Phi_m \in \mathit{Sym}(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k} \varphi_{k}^{\mathsf{T}} + J \varphi_{k} \varphi_{k}^{\mathsf{T}} J^{\mathsf{T}}, \varphi_{k} = \begin{bmatrix} real(f_{k}) \\ imag(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} real(z) \\ imag(z) \end{bmatrix}$$

Key relations:
$$\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle, \ |\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}.$$

Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of \hat{H} .

Let $\varphi_1, \dots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \dots, \Phi_m \in \mathit{Sym}(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k} \varphi_{k}^{\mathsf{T}} + J \varphi_{k} \varphi_{k}^{\mathsf{T}} J^{\mathsf{T}}, \varphi_{k} = \begin{bmatrix} real(f_{k}) \\ imag(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} real(z) \\ imag(z) \end{bmatrix}$$

Key relations: $\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle$, $|\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}$. Consider the following objects:

$$\mathcal{R}: \mathbb{R}^{2n} \to \mathit{Sym}(\mathbb{R}^{2n}) \quad , \quad \mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k} \; , \; \xi \in \mathbb{R}^{2n}$$

$$\mathcal{S}: \mathbb{R}^{2n} \to \mathit{Sym}(\mathbb{R}^{2n}) \quad , \quad \mathcal{S}(\xi) = \sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\langle \Phi_{k} \xi, \xi \rangle} \Phi_{k} \xi \xi^{T} \Phi_{k} \; , \; \xi \in \mathbb{R}^{2n}$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト り へ ○

July 28-30, 2015

Lipschitz bounds for α

Theorem (BZ15)

Assume $\mathcal F$ is phase retrievable for $H=\mathbb C^n$ and A,B are its optimal frame bounds. Then:

- For every $0 \neq z \in \mathbb{C}^n$, $A(z) = \lambda_{2n-1}(S(\zeta))$ (the next to the smallest eigenvalue);
- $A_0 = A(0) > 0;$
- **3** For every $z \in \mathbb{C}^n$, $\tilde{A}(z) = \lambda_{2n-1} \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the next to the smallest eigenvalue);
- $\tilde{A}(0) = A$, the optimal lower frame bound;
- **3** For every $z \in \mathbb{C}^n$, $B(z) = \tilde{B}(z) = \lambda_1 \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the largest eigenvalue);
- $B_0 = B(0) = \tilde{B}(0) = B$, the optimal upper frame bound;

Lipschitz bounds for β

Theorem (cont'd)

- For every $0 \neq z \in \mathbb{C}^n$, $a(z) = \tilde{a}(z) = \lambda_{2n-1}(\mathcal{R}(\zeta))/\|z\|^2$ (the next to the smallest eigenvalue);
- **3** For every $0 \neq z \in \mathbb{C}^n$, $b(z) = \tilde{b}(z) = \lambda_1(\mathcal{R}(\zeta))/\|z\|^2$ (the largest eigenvalue);
- $a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi))$ is also the largest constant to that $\mathcal{R}(\xi) \geq a_0(\|\xi\|^2 I J\xi\xi^T J^T);$
- ① $b(0) = \tilde{b}(0) = b_0 = \max_{\|\xi\|=1} \lambda_1(\mathcal{R}(\xi))$ is also the 4th power of the frame analysis operator norm $T: (\mathbb{C}^n, \|\cdot\|_2) \to (\mathbb{R}^m, \|\cdot\|_4)$: $b_0 = \|T\|_{B(I^2, I^4)}^4 = \max_{\|x\|_2=1} \sum_{k=1}^m |\langle x, f_k \rangle|^4$;
- ① $\tilde{a}(0)$ is given by $\tilde{a}(0) = \min_{\|z\|=1} \sum_{k=1}^{m} |\langle z, f_k \rangle|^4$.

(ロ) (部) (注) (注) 注 の(0)

July 28-30, 2015

Thank you!

Questions?

Problem Formulation

References

- R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. **20** (2006), 345–356.
 - R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., **15** (4) (2009), 488–501.
- R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
- R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
 - R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469–488.

- A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106–125.
- Y. C. Eldar, S. Mendelson, *Phase retrieval: Stability and recovery guarantees*, available online: arXiv:1211.0872.
- M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.
- L. Zwald, G. Blanchard, *On the convergence of eigenspaces in kernel Principal Component Analysis*, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.