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Problem Formulation
The phase retrieval problem

Hilbert space H = Cn, Ĥ = H/T 1, frame F = {f1, · · · , fm} ⊂ Cn and

α : Ĥ → Rm , α(x) = (|〈x , fk〉|)1≤k≤m .

β : Ĥ → Rm , β(x) =
(
|〈x , fk〉|2

)
1≤k≤m

.

The frame is said phase retrievable (or that it gives phase retrieval) if
α (or β) is injective.

The general phase retrieval problem a.k.a. phaseless reconstruction:
Decide when a given frame is phase retrievable, and, if so, find an
algorithm to recover x from y = α(x) (or from y = β(x)) up to a
global phase factor.
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Problem Formulation
Lipschitz Reconstruction

Our Problems Today: Assume F is phase retrievable.
1 Are the nonliner maps α, β bi-Lipschitz with respect to appropriate

metrics?

2 Do they admit left inverses that are globally Lipschitz?

3 What are the Lipschitz constants?

Additionally, we want to understand the structure of Lipschitz bounds
(to be defined shortly).
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Metric Space Structures
Topological Structures

Let H = Cn. The quotient space Ĥ = Cn/T 1, with classes induced by
x ∼ y if there is real ϕ with x = eiϕy .

Topologically:
Ĉn = {0} ∪

(
(0,∞)× CPn−1

)
with

˚̂Cn = Ĉn \ {0} = (0,∞)× CPn−1

a real analytic manifold of real dimension 2n − 1.
Another embedding is into the space of symmetric matrices Sym(Cn).
Specifically let

Sp,q(H) = {T ∈ Sym(H) , T has at most p pos.eigs. and q neg.eigs}

Then:
κβ : Ĥ → S1,0 , x̂ 7→= xx∗ , is an embedding.
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Ĉn = {0} ∪
(

(0,∞)× CPn−1
)

with
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Metric Space Structures
The matrix-norm induced metric structure

Fix 1 ≤ p ≤ ∞. The matrix-norm induced distance
dp : Ĥ × Ĥ → R , dp(x̂ , ŷ) = ‖xx∗ − yy∗‖p

with the p-norm of the singular values. In the case p = 2 we obtain

d2(x , y) =
√
‖x‖4 + ‖y‖4 − 2|〈x , y〉|2

Lemma (BZ15)
1 (dp)1≤p≤∞ are equivalent metrics and the identity map

i : (Ĥ, dp)→ (Ĥ, dq), i(x) = x has Lipschitz constant

Lipd
p,q,n = max(1, 2

1
q−

1
p ).

2 The metric space (Ĥ, dp) is isometrically isomorphic to S1,0 endowed
with the p-norm via κβ : Ĥ → S1,0 , x 7→ κβ(x) = xx∗.
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with the p-norm via κβ : Ĥ → S1,0 , x 7→ κβ(x) = xx∗.
Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation Metric Space Structures Main Results Proofs

Metric Space Structures
The natural metric structure

Fix 1 ≤ p ≤ ∞. The natural metric
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ϕ
‖x − eiϕy‖p

with the usual p-norm on Cn. In the case p = 2 we obtain

D2(x̂ , ŷ) =
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with the 2-norm via κα : Ĥ → S1,0 , x 7→ κα(x) = 1

‖x‖xx∗.
Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation Metric Space Structures Main Results Proofs

Metric Space Structures
Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are
NOT equivalent:

Lemma (BZ15)
The identity map i : (Ĥ,Dp)→ (Ĥ, dp), i(x) = x is continuous but it is
not Lipschitz continuous. Likewise, the identity map
i : (Ĥ, dp)→ (Ĥ,Dp), i(x) = x is continuous but it is not Lipschitz
continuous. Hence the induced topologies on (Ĥ,Dp) and (Ĥ, dp) are the
same, but the corresponding metrics are not Lipschitz equivalent.
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Main Results
Lipschitz inversion: α

Theorem (BZ15)

Assume F is a phase retrievable frame for H. Then:
1 The map α : (Ĥ,D2)→ (Rm, ‖ · ‖2) is bi-Lipschitz. Let

√
A0,
√

B0
denote its Lipschitz constants: for every x , y ∈ Ĥ:

A0 min
ϕ
‖x − eiϕy‖2

2 ≤
m∑

k=1
||〈x , fk〉| − |〈y , fk〉||2 ≤ B0 min

ϕ
‖x − eiϕy‖2

2.

2 There is a Lipschitz map ω : (Rm, ‖ · ‖2)→ (Ĥ,D2) so that: (i)
ω(α(x)) = x for every x ∈ Ĥ, and (ii) its Lipschitz constant is
Lip(ω) ≤ 4+3

√
2√

A0
= 8.24√

A0
.
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Main Results
Lipschitz inversion: β

Theorem (BZ15)

Assume F is a phase retrievable frame for H. Then:
1 The map β : (Ĥ, d1)→ (Rm, ‖ · ‖2) is bi-Lipschitz. Let √a0,

√
b0

denote its Lipschitz constants: for every x , y ∈ Ĥ:

a0‖xx∗ − yy∗‖2
1 ≤

m∑
k=1

∣∣∣|〈x , fk〉|2 − |〈y , fk〉|2∣∣∣2 ≤ b0‖xx∗ − yy∗‖2
1.

2 There is a Lipschitz map ψ : (Rm, ‖ · ‖2)→ (Ĥ, d1) so that: (i)
ψ(β(x)) = x for every x ∈ Ĥ, and (ii) its Lipschitz constant is
Lip(ψ) ≤ 4+3

√
2√a0

= 8.24√a0
.
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Main Results
Prior Works

Prior literature:

2012: B.: Cramer-Rao lower bound in the real case;
Eldar&Mendelson : map α in the real case

‖α(x)− α(y)‖ ≥ C‖x − y‖‖x + y‖.

2013: Bandeira,Cahill,Mixon,Nelson: improved the estimate of C .
B.: β bi-Lipschitz in real and complex case.
2014: B.&Yang: Find the exact Lipschitz constant for α in the real
case - the constants A0,B0; B.&Z.:constructed a Lipschitz left
inverse for β; B.: lower Lipschitz constant A0 connected to CRLB’s
for a non-AWGN model.
2015: B.&Z.: Proved α is bi-Lipschitz in the complex case;
constructed a Lipschitz left inverse.
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Proofs
Overview

The proofs involve several steps.

1 Part 1: Injectivity −→ bi-Lipschitz: Upper bounds are not too hard;
lower bounds: relatively easy for β (the ”square” map), but very hard
for α.

2 Part 2: Left inverse construction is done in three steps:
1 The left inverse is first extended to Rm into Sym(H) using Kirszbraun’s

theorem;
2 Then we show that S1,0(H) is a Lipschitz retract in Sym(H);
3 The proof is concluded by composing the two maps.
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Proofs
Part 1: Bi-Lipschitzianity for β

Key Remark (B.Bodmann,Casazza,Edidin - 2007): The nonlinear map β is
the restrictrion of the linear map

A : Sym(H)→ Rm , A(T ) = (〈Tfk , fk〉)1≤k≤m

Specifically: β(x) = A(xx∗).

‖β(x)− β(y)‖ = ‖A(xx∗)− A(yy∗)‖ = ‖A(xx∗ − yy∗)‖

= ‖xx∗ − yy∗‖‖A
( xx∗ − yy∗
‖xx∗ − yy∗‖

)
‖

a0 = min
T∈S1,1,‖T‖1=1

‖A(T )‖ > 0 , b0 = max
T∈S1,1,‖T‖1=1

‖A(T )‖
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Proofs
Part 2: Extension of the inverse for β

Assume β : (Ĥ, d1)→ (Rm, ‖ · ‖2) is bi-Lipschitz:

a0d1(x , y)2 ≤ ‖β(x)− β(y)‖2 ≤ b0d1(x , y)2

Let M = β(Ĥ) ⊂ Rm.
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Proofs
Part 2: Extension of the inverse for β

First identify Ĥ with S1,0(H).
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Proofs
Part 2: Extension of the inverse for β

Then construct the local left inverse ψ1 : M → Ĥ with Lip(ψ1) = 1√a0
.
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Proofs
Part 2: Extension of the inverse for β

Use Kisrbraun’s theorem to extend isometrically ψ2 : Rm → Sym(H).
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Proofs
Part 2: Extension of the inverse for β

Construct a Lipschitz ”projection” π : Sym(H)→ S1,0(H).
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Proofs
Part 2: Extension of the inverse for β

Compose the two maps to get ψ : Rm → S1,0, ψ = π ◦ ψ2.
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Proofs
Part 2: S1,0(H) as Lipschitz retract in Sym(H)

How to obtain π : Sym(H)→ S1,0(H)?

Lemma
Consider the spectral decomposition of the self-adjoint operator A in
Sym(H), A =

∑d
k=1 λm(k)Pk . Then the map

π : Sym(H)→ S1,0(H) , π(A) = (λ1 − λ2)P1

satisfies the following two properties:
1 for 1 ≤ p ≤ ∞, it is Lipschitz continuous from (Sym(H), ‖ · ‖p) to

(S1,0(H), ‖ · ‖p) with Lipschitz constant less than or equal to
3 + 21+ 1

p ;
2 π(A) = A for all A ∈ S1,0(H).

Proof uses Weyl’s inequality and spectral formula on a complex integration
contour by Zwald & Blanchard (2006).
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Proofs
Part 1: Bi-Lipschitzianity of α

The analysis requires a deeper understanding of local behavior.

1 The global lower and upper Lipschitz bounds:

A0 = inf
x ,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x , y)2 , B0 = sup
x ,y∈Ĥ

‖α(x)− α(y)‖2
2

D2(x , y)2

2 The type I local lower and upper Lipschitz bounds at z ∈ Ĥ:

A(z) = lim
r→0

inf
x ,y∈Ĥ

D2(x ,z)<r
D2(y ,z)<r

‖α(x)− α(y)‖2
2

D2(x , y)2 , B(z) = lim
r→0

sup
x ,y∈Ĥ

D2(x ,z)<r
D2(y ,z)<r

‖α(x)− α(y)‖2
2

D2(x , y)2

3 The type II local lower and upper Lipschitz bounds at z ∈ Ĥ:

Ã(z) = lim
r→0

inf
x∈Ĥ

D2(x ,z)<r

‖α(x)− α(z)‖2
2

D2(x , z)2 , B̃(z) = lim
r→0

sup
x∈Ĥ

D2(x ,z)<r

‖α(x)− α(z)‖2
2

D2(x , y)2
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‖α(x)− α(y)‖2
2

D2(x , y)2 , B(z) = lim
r→0

sup
x ,y∈Ĥ

D2(x ,z)<r
D2(y ,z)<r

‖α(x)− α(y)‖2
2

D2(x , y)2

3 The type II local lower and upper Lipschitz bounds at z ∈ Ĥ:

Ã(z) = lim
r→0

inf
x∈Ĥ

D2(x ,z)<r

‖α(x)− α(z)‖2
2

D2(x , z)2 , B̃(z) = lim
r→0

sup
x∈Ĥ

D2(x ,z)<r

‖α(x)− α(z)‖2
2

D2(x , y)2
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‖α(x)− α(y)‖2
2

D2(x , y)2 , B0 = sup
x ,y∈Ĥ
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Proofs
Part 1: Bi-Lipschitzianity of α

We need to analyze the real structure of Ĥ.

Let ϕ1, · · · , ϕm, ζ ∈ R2n, Φ1, · · · ,Φm ∈ Sym(R2n), J ∈ R2n×2n defined by:

Φk = ϕkϕ
T
k +Jϕkϕ

T
k JT , ϕk =

[
real(fk)

imag(fk)

]
, J =

[
0 −In
In 0

]
, ζ =

[
real(z)

imag(z)

]
.

Key relations: 〈z , fk〉 = 〈ζ, ϕk〉+ i〈ζ, Jϕk〉, |〈z , fk〉| =
√
〈Φkζ, ζ〉.

Consider the following objects:

R : R2n → Sym(R2n) , R(ξ) =
m∑

k=1
Φkξξ

T Φk , ξ ∈ R2n

S : R2n → Sym(R2n) , S(ξ) =
∑

k:Φkξ 6=0

1
〈Φkξ, ξ〉

Φkξξ
T Φk , ξ ∈ R2n
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Proofs
Lipschitz bounds for α

Theorem (BZ15)
Assume F is phase retrievable for H = Cn and A,B are its optimal frame
bounds. Then:

1 For every 0 6= z ∈ Cn, A(z) = λ2n−1 (S(ζ)) (the next to the smallest
eigenvalue);

2 A0 = A(0) > 0;
3 For every z ∈ Cn, Ã(z) = λ2n−1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
(the next to

the smallest eigenvalue);
4 Ã(0) = A, the optimal lower frame bound;
5 For every z ∈ Cn, B(z) = B̃(z) = λ1

(
S(ζ) +

∑
k:〈z,fk〉=0 Φk

)
(the

largest eigenvalue);
6 B0 = B(0) = B̃(0) = B, the optimal upper frame bound;
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Proofs
Lipschitz bounds for β

Theorem (cont’d)
7 For every 0 6= z ∈ Cn, a(z) = ã(z) = λ2n−1(R(ζ))/‖z‖2 (the next to

the smallest eigenvalue);
8 For every 0 6= z ∈ Cn, b(z) = b̃(z) = λ1(R(ζ))/‖z‖2 (the largest

eigenvalue);
9 a0 = min‖ξ‖=1 λ2n−1(R(ξ)) is also the largest constant to that
R(ξ) ≥ a0(‖ξ‖2I − JξξT JT );

10 b(0) = b̃(0) = b0 = max‖ξ‖=1 λ1(R(ξ)) is also the 4th power of the
frame analysis operator norm T : (Cn, ‖ · ‖2)→ (Rm, ‖ · ‖4):
b0 = ‖T‖4

B(l2,l4) = max‖x‖2=1
∑m

k=1 |〈x , fk〉|4;
11 ã(0) is given by ã(0) = min‖z‖=1

∑m
k=1 |〈z , fk〉|4.
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Thank you!

Questions?
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