Deterministic and Stochastic Bounds in the Phase Retrieval Problem

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

November 4, 2015 CSCAMM Seminar

Joint works with:

- Dongmian Zou (UMD)
- Yang Wang (MSU, HKST)

"This material is based upon work supported by the National Science Foundation under Grant No. DMS-1413249. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Table of Contents:

Problem Formulation

- 2 Metric Space Structures
- Main Results
- Proofs

Problem Formulation

The phase retrieval problem

ullet Hilbert space $H=\mathbb{C}^n$, $\hat{H}=H/T^1$, frame $\mathcal{F}=\{f_1,\cdots,f_m\}\subset\mathbb{C}^n$ and

$$\alpha: \hat{H} \to \mathbb{R}^m$$
, $\alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$.

$$\beta: \hat{H} \to \mathbb{R}^m \ , \ \beta(x) = \left(|\langle x, f_k \rangle|^2 \right)_{1 \le k \le m}.$$

The frame is said *phase retrievable* (or that it gives phase retrieval) if α (or β) is injective.

• The general phase retrieval problem a.k.a. phaseless reconstruction: Decide when a given frame is phase retrievable, and, if so, find an algorithm to recover x from $y = \alpha(x)$ (or from $y = \beta(x)$) up to a global phase factor.

Problem Formulation

Lipschitz Reconstruction

Assume \mathcal{F} is phase retrievable.

Our Problems Today:

- **①** Are the nonliner maps α, β bi-Lipschitz with respect to appropriate metrics?
- On they admit left inverses that are globally Lipschitz?
- What are the Lipschitz constants? What is the structure of local Lipschitz bounds?
- What is the average performance of any reconstruction scheme (Cramer-Rao Lower Bounds)?
- 1-3: Worst Case Performance
- 4: Average Case Performance

Topological Structures

Let $H=\mathbb{C}^n$. The quotient space $\hat{H}=\mathbb{C}^n/T^1$, with classes induced by $x\sim y$ if there is real φ with $x=e^{i\varphi}y$.

Topologically:

$$\hat{\mathbb{C}}^n = \{0\} \cup \left((0, \infty) \times \mathbb{CP}^{n-1} \right)$$

with

$$\mathring{\mathbb{C}}^n = \hat{\mathbb{C}}^n \setminus \{0\} = (0, \infty) \times \mathbb{CP}^{n-1}$$

a real analytic manifold of real dimension 2n-1.

Another embedding is into the space of symmetric matrices $Sym(\mathbb{C}^n)$. Specifically let

$$\mathcal{S}^{p,q}(H) = \left\{T \in \mathit{Sym}(H) \ , \ T \ \mathrm{has \ at \ most} \ p \ \mathrm{pos.eigs. \ and} \ q \ \mathrm{neg.eigs} \right\}$$

Then:

$$\kappa_{\beta}: \hat{H} \to \mathcal{S}^{1,0} , \hat{x} \mapsto = xx^* , \text{ is an embedding.}$$

Metric Space Structures

The matrix-norm induced metric structure

Fix $1 \le p \le \infty$. The matrix-norm induced distance

$$d_p: \hat{H} imes \hat{H} o \mathbb{R} \ , \ d_p(\hat{x}, \hat{y}) = \|xx^* - yy^*\|_p$$

with the p-norm of the singular values. In the case p=2 we obtain

$$d_2(x,y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x,y\rangle|^2}$$

Lemma (BZ15)

1 $(d_p)_{1 \le p \le \infty}$ are equivalent metrics and the identity map $i: (\hat{H}, d_p) \to (\hat{H}, d_q)$, i(x) = x has Lipschitz constant

$$Lip_{p,q,n}^d = \max(1, 2^{\frac{1}{q} - \frac{1}{p}}).$$

② The metric space (\hat{H}, d_p) is isometrically isomorphic to $\mathcal{S}^{1,0}$ endowed with the p-norm via $\kappa_\beta: \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_\beta(x) = xx^*$.

Metric Space Structures

The natural metric structure

Fix $1 \le p \le \infty$. The natural metric

$$D_p: \hat{H} \times \hat{H} \to \mathbb{R} , \ D_p(\hat{x}, \hat{y}) = \min_{\varphi} \|x - e^{i\varphi}y\|_p$$

with the usual p-norm on \mathbb{C}^n . In the case p=2 we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

Lemma (BZ15)

1 $(D_p)_{1 \leq p \leq \infty}$ are equivalent metrics and the identity map $i: (\hat{H}, D_p) \rightarrow (\hat{H}, D_q)$, i(x) = x has Lipschitz constant

$$Lip_{p,q,n}^{D} = \max(1, n^{\frac{1}{q} - \frac{1}{p}}).$$

② The metric space (\hat{H}, D_2) is Lipschitz isomorphic to $\mathcal{S}^{1,0}$ endowed with the 2-norm via $\kappa_{\alpha}: \hat{H} \to \mathcal{S}^{1,0}$, $x \mapsto \kappa_{\alpha}(x) = \frac{1}{\|x\|} x x^*$.

Metric Space Structures Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are NOT equivalent:

Lemma (BZ15)

The identity map $i:(\hat{H},D_p)\to(\hat{H},d_p)$, i(x)=x is continuous but it is not Lipschitz continuous. Likewise, the identity map $i:(\hat{H},d_p)\to(\hat{H},D_p)$, i(x)=x is continuous but it is not Lipschitz continuous. Hence the induced topologies on (\hat{H},D_p) and (\hat{H},d_p) are the same, but the corresponding metrics are not Lipschitz equivalent.

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\alpha:(\hat{H},D_2)\to (\mathbb{R}^m,\|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{A_0},\sqrt{B_0}$ denote its Lipschitz constants: for every $x,y\in\hat{H}$:

$$A_0 \min_{\varphi} \|x - e^{i\varphi}y\|_2^2 \leq \sum_{k=1}^m ||\langle x, f_k \rangle| - |\langle y, f_k \rangle||^2 \leq B_0 \min_{\varphi} \|x - e^{i\varphi}y\|_2^2.$$

② There is a Lipschitz map $\omega: (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, D_2)$ so that: (i) $\omega(\alpha(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\omega) \leq \frac{4+3\sqrt{2}}{\sqrt{A_0}} = \frac{8.24}{\sqrt{A_0}}$.

Theorem (BZ15)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

• The map $\beta: (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz. Let $\sqrt{a_0}, \sqrt{b_0}$ denote its Lipschitz constants: for every $x, y \in \hat{H}$:

$$|a_0||xx^* - yy^*||_1^2 \le \sum_{k=1}^m \left| |\langle x, f_k \rangle|^2 - |\langle y, f_k \rangle|^2 \right|^2 \le b_0 ||xx^* - yy^*||_1^2.$$

② There is a Lipschitz map $\psi: (\mathbb{R}^m, \|\cdot\|_2) \to (\hat{H}, d_1)$ so that: (i) $\psi(\beta(x)) = x$ for every $x \in \hat{H}$, and (ii) its Lipschitz constant is $Lip(\psi) \leq \frac{4+3\sqrt{2}}{\sqrt{a_0}} = \frac{8.24}{\sqrt{a_0}}$.

A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k$$
, $1 \le k \le m$,

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k , \quad 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k , \quad 1 \le k \le m,$$

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

• Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$,

$$y_k = |\langle x, f_k \rangle + \mu_k|^p$$
, $1 \le k \le m$.

A general noisy measurement process is given by:

$$y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k$$
, $1 \le k \le m$,

where $(\mu_k)_k, (\nu_k)_k$ are two noise processes.

• AWGN Model: $\mu_k = 0$, p = 2 and $\nu_k \sim \mathbb{N}(0, \sigma^2)$ i.i.d.

$$y_k = |\langle x, f_k \rangle|^2 + \nu_k$$
, $1 \le k \le m$.

• Non-AWGN Model: $\mu_k \sim \mathbb{CN}(0, \rho^2)$, i.i.d. and $\nu_k = 0$,

$$y_k = |\langle x, f_k \rangle + \mu_k|^p$$
, $1 \le k \le m$.

Want:

- 1) Fisher Information Matrix $\mathbb{I} = \mathbb{E}\left[(\nabla_x \log p(y; x)) (\nabla_x \log p(y; x))^* \right].$
- 2) Cramer-Rao Lower Bounds for unbiased estimators.

00000000

Main Results

Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^{m} (f_k f_k^T) x x^T (f_k f_k^T) \quad [Bal12].$$

Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^{m} (f_k f_k^T) x x^T (f_k f_k^T) \quad [Bal12].$$

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k \quad [Bal13, BCMN13].$$

Fisher Information Matrix

$$\mathbb{I}^{AWGN,real}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} |\langle x, f_k \rangle|^2 f_k f_k^T = \frac{4}{\sigma^2} \sum_{k=1}^{m} (f_k f_k^T) x x^T (f_k f_k^T) \quad \text{[Bal12]}.$$

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \sum_{k=1}^{m} \Phi_k \xi \xi^* \Phi_k \quad [Bal13, BCMN13].$$

$$\mathbb{I}^{nonAWGN,cplx}(x) = \frac{4}{\rho^4} \sum_{k=1}^{m} \left(G_1 \left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2} \right) - 1 \right) \Phi_k \xi \xi^* \Phi_k$$
$$= \frac{4}{\rho^2} \sum_{k=1}^{m} G_2 \left(\frac{\langle \Phi_k \xi, \xi \rangle}{\rho^2} \right) \frac{1}{\langle \Phi_k \xi, \xi \rangle} \Phi_k \xi \xi^* \Phi_k \quad [Bal15].$$

where

$$G_1(a) = \frac{e^{-a}}{8a^3} \int_0^\infty \frac{I_1^2(t)}{I_0(t)} t^3 e^{-\frac{t^2}{4a}} dt \quad , \quad G_2(a) = a(G_1(a) - 1).$$

AWGN vs. non-AWGN: Comparisons and Identifiability

Let B be the frame upper bound.

Lemma

$$\frac{\sigma^2}{\rho^4} \left(G_1(\frac{B\|x\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{AWGN,cplx}(x) \leq \mathbb{I}^{nonAWGN,cplx}(x) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{AWGN,cplx}(x)$$

Main Results

00000000

AWGN vs. non-AWGN: Comparisons and Identifiability

Let B be the frame upper bound.

Lemma

$$\frac{\sigma^2}{\rho^4} \left(G_1(\frac{B\|x\|^2}{\rho^2}) - 1 \right) \mathbb{I}^{AWGN,cplx}(x) \leq \mathbb{I}^{nonAWGN,cplx}(x) \leq \frac{\sigma^2}{\rho^4} \mathbb{I}^{AWGN,cplx}(x)$$

Main Results 00000000

Theorem

The following are equivalent:

- The frame F is phase retrievable:
- ② For every $0 \neq x \in \mathbb{C}^n$, $rank(\mathbb{I}^{nonAWGN,cplx}(x)) = 2n-1$;
- **3** For every $0 \neq x \in \mathbb{C}^n$, $rank(\mathbb{I}^{AWGN,cplx}(x)) = 2n 1$;

The Cramer-Rao Lower Bound

Fix
$$z_0 \in \mathbb{C}^n$$
, $||z_0|| = 1$, let $\zeta_0 = [real(z_0) \ imag(z_0)]^T$ and set $\Omega_{z_0} = \{ \xi \in \mathbb{R}^{2n} \ , \ \langle \xi, \zeta_0 \rangle) \geq 0, \langle \xi, J\zeta_0 \rangle) = 0 \}.$

Let $\Pi_{z_0} = 1 - J\zeta_0\zeta_0^*J^*$ with J the symplectic form matrix.

Theorem

Assume a measurement model $y_k = |\langle x, f_k \rangle + \mu_k|^p + \nu_k$ with $\xi = [real(x) \ imag(x)]^T \in \mathring{\Omega}_{z_0}$. Then the covariance of any unbiased estimtor $\omega : \mathbb{R}^m \to \mathbb{C}^n$ is bounded below by

$$Cov[\omega(y); \xi] \ge (\Pi_{z_0} \mathbb{I}(\xi) \Pi_{z_0})^{\dagger}$$
.

If one chooses the global phase so that $\langle \omega(y), x \rangle \geq 0$ then

$$Cov[\omega(y); \xi] \geq (\mathbb{I}(\xi))^{\dagger}$$
.

Main Results Prior Works

Prior literature:

• 2012: **B.**: Cramer-Rao lower bound in the real case; **Eldar&Mendelson**: map α in the real case

$$\|\alpha(x) - \alpha(y)\| \ge C\|x - y\|\|x + y\|.$$

- 2013: **Bandeira, Cahill, Mixon, Nelson**: improved the estimate of C. **B.**: β bi-Lipschitz in real and complex case.
- 2014: B.&Yang: Find the exact Lipschitz constant for α in the real case the constants A₀, B₀; B.&Z.:constructed a Lipschitz left inverse for β.
- 2015: **B.&Z.**: Proved α is bi-Lipschitz in the complex case; constructed a Lipschitz left inverse. **B.**: lower Lipschitz constant A_0 connected to CRLB of a non-AWGN model.

0000000

Problem Formulation

Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$.

Problem Formulation

Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$.

The lower Lipschitz bound for β map is:

$$a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi)).$$

The Fisher information matrix for the AWGN model:

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \mathcal{R}(\xi).$$

Key relationship between deterministic and stochastic bounds

The central object: $\mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_k \xi \xi^T \Phi_k$.

The lower Lipschitz bound for β map is:

$$a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi)).$$

The Fisher information matrix for the AWGN model:

$$\mathbb{I}^{AWGN,cplx}(x) = \frac{4}{\sigma^2} \mathcal{R}(\xi).$$

Best inversion scheme ψ that is lossless in the absence of noise achieves:

$$d_1(\psi(c),\psi(d))^2 \leq \frac{68}{a_0} ||c-d||_2^2.$$

An efficient estimator (i.e. unbiased that achieves CRLB) ω^0 is bounded:

$$\mathbb{E}\left[\|\omega^{0}(y)-x\|_{2}^{2};x\right] \leq \frac{(2n-1)\sigma^{2}}{4a_{0}\|x\|^{2}} = \frac{2n-1}{4a_{0}\,SNR}.$$

Proofs Overview

Deterministic bounds: The proofs involve several steps (details in [BZ15]).

- Part 1: Injectivity \longrightarrow bi-Lipschitz: Upper bounds are not too hard; lower bounds: relatively easy for β (the "square" map), but very hard for α .
- Part 2: Left inverse construction is done in three steps:
 - The left inverse is first extended to \mathbb{R}^m into Sym(H) using Kirszbraun's theorem;
 - **2** Then we show that $S^{1,0}(H)$ is a Lipschitz retract in Sym(H);
 - 3 The proof is concluded by composing the two maps.

The stochastic bounds: Direct computations and a bit of luck! [Bal15]

Part 1a: Bi-Lipschitzianity of α

$$\alpha: \hat{H} \to \mathbb{R}^m \ , \ \alpha(x) = (|\langle x, f_k \rangle|)_{1 \le k \le m}$$

The homogeneity of α shows that

$$L(x,y) = \frac{\|\alpha(x) - \alpha(y)\|}{D_{\rho}(x,y)}$$

is homogeneous of degree 0: L(tx, ty) = L(x, y), for every t > 0.

This reduces the problem to the unit ball: $1 = ||x|| \ge ||y||$.

The upper bound was computed in [BCMN13]:

$$\sup_{x \neq y} \frac{\|\alpha(x) - \alpha(y)\|^2}{D_2(x, y)^2} = B \text{ (upper frame bound)}.$$

Part 1a: Bi-Lipschitzianity of α - cont'd

A compactness argument shows the lower bound is positive if and only if the local lower bound is positive:

$$\inf_{\|z\|=1} \lim_{r \to 0} \inf_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} > 0.$$

This bound is computed explicitly and shown positive: Computations involve the realification framework and other delicate nonlinear expansions.

Part 1b: Bi-Lipschitzianity of β

Key Remark (B.Bodmann, Casazza, Edidin - 2007): The nonlinear map β is the restriction of the linear map

$$A: \mathit{Sym}(H) \to \mathbb{R}^m \ , \ A(T) = (\langle \mathit{Tf}_k, \mathit{f}_k \rangle)_{1 \le k \le m}$$

Specifically:
$$\beta(x) = \mathbb{A}(xx^*) = (|\langle x, f_k \rangle|^2)_{1 \leq k \leq m}$$
.

$$\|\beta(x) - \beta(y)\| = \|\mathbb{A}(xx^*) - \mathbb{A}(yy^*)\| = \|\mathbb{A}(xx^* - yy^*)\|$$
$$= \|xx^* - yy^*\| \|\mathbb{A}\left(\frac{xx^* - yy^*}{\|xx^* - yy^*\|}\right)\|$$

$$a_0 = \min_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\| > 0 \ , \ b_0 = \max_{T \in \mathcal{S}^{1,1}, \|T\|_1 = 1} \|\mathbb{A}(T)\|$$

Part 2a: Extension of the inverse for α

We know $\alpha: (\hat{H}, D_2) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$A_0D_1(x,y)^2 \le \|\alpha(x) - \alpha(y)\|^2 \le b_0D_2(x,y)^2$$

Let $M = \alpha(\hat{H}) \subset \mathbb{R}^m$.

Part 2a: Extension of the inverse for α

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Part 2a: Extension of the inverse for α

Then construct the local left inverse $\omega_1:M\to \hat{H}$ with $Lip(\omega_1)=rac{1}{\sqrt{A_0}}$.

Part 2a: Extension of the inverse for α

Use Kirszbraun's theorem to extend isometrically $\omega_2 : \mathbb{R}^m \to \mathit{Sym}(H)$.

Part 2a: Extension of the inverse for α

Construct a Lipschitz "projection" $\pi: Sym(H) \to \mathcal{S}^{1,0}(H)$.

Part 2a: Extension of the inverse for α

Compose the two maps to get $\omega : \mathbb{R}^m \to \mathcal{S}^{1,0}$, $\omega = \pi \circ \omega_2$.

Part 2b: Extension of the inverse for β

We know $\beta: (\hat{H}, d_1) \to (\mathbb{R}^m, \|\cdot\|_2)$ is bi-Lipschitz:

$$a_0d_1(x,y)^2 \le \|\beta(x) - \beta(y)\|^2 \le b_0d_1(x,y)^2.$$

Let $M = \beta(\hat{H}) \subset \mathbb{R}^m$.

Part 2b: Extension of the inverse for β

First identify \hat{H} with $\mathcal{S}^{1,0}(H)$.

Part 2b: Extension of the inverse for β

Then construct the local left inverse $\psi_1:M\to \hat{H}$ with $Lip(\psi_1)=\frac{1}{\sqrt{a_0}}$.

Part 2b: Extension of the inverse for β

Use Kirszbraun's theorem to extend isometrically $\psi_2 : \mathbb{R}^m \to \mathit{Sym}(H)$.

Part 2b: Extension of the inverse for β

Construct a Lipschitz "projection" $\pi: Sym(H) \to \mathcal{S}^{1,0}(H)$.

Part 2b: Extension of the inverse for β

Compose the two maps to get $\psi : \mathbb{R}^m \to \mathcal{S}^{1,0}$, $\psi = \pi \circ \psi_2$.

Part 2: $S^{1,0}(H)$ as Lipschitz retract in Sym(H)

Lemma

Consider the spectral decomposition of the self-adjoint operator A in Sym(H), $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi: \mathit{Sym}(H) o \mathcal{S}^{1,0}(H) \;\; , \;\; \pi(A) = (\lambda_1 - \lambda_2) P_1$$

satisfies the following two properties:

- for $1 \le p \le \infty$, it is Lipschitz continuous from $(Sym(H), \|\cdot\|_p)$ to $(S^{1,0}(H), \|\cdot\|_p)$ with Lipschitz constant less than or equal to $3 + 2^{1 + \frac{1}{p}}$:
- **2** $\pi(A) = A$ for all $A \in S^{1,0}(H)$.

Proof uses Weyl's inequality and spectral formula on a complex integration contour by Zwald & Blanchard (2006).

Problem Formulation

Assume simple top eigenvalues (otherwise the bound is immediate):

$$\pi(A) = (\lambda_1 - \lambda_2)P_1$$
, $\pi(B) = (\mu_1 - \mu_2)Q_1$. Then:

$$\|\pi(A) - \pi(B)\|_{p} \leq (\lambda_{1} - \lambda_{2})\|P_{1} - Q_{1}\|_{p} + |\lambda_{1} - \mu_{1}| + |\lambda_{2} - \mu_{2}|$$

$$\leq (\lambda_{1} - \lambda_{2})\|P_{1} - Q_{1}\|_{p} + 2\|A - B\|_{p}.$$

$$\|P_1 - Q_1\|_{p} \leq \frac{1}{2\pi} \int_{I} \|(R_A - R_B)(\gamma(t))\|_{p} |\gamma'(t)| dt$$

Main Results

$$R_A(z) = (A - zI)^{-1}, R_B(z) = (B - zI)^{-1}.$$

$$(R_A - R_B)(z) = \sum_{n \ge 1} (-1)^n (R_A(z)(B-A))^n R_A(z).$$

$$\|(R_A - R_B)(\gamma(t))\|_p \le \sum_{n \ge 1} \|R_A(\gamma(t))\|_{\infty}^{n+1} \|A - B\|_p^n$$

$$=\frac{\left\|R_{A}(\gamma(t))\right\|_{\infty}^{2}\left\|A-B\right\|_{p}}{1-\left\|R_{A}(\gamma(t))\right\|_{\infty}\left\|A-B\right\|_{p}}<\frac{\left\|A-B\right\|_{p}}{dist^{2}(\gamma(t),Spec(A))}\cdot$$

Part 1: Bi-Lipschitzianity of α -cont'd

The analysis requires a deeper understanding of local behavior.

• The global lower and upper Lipschitz bounds:

$$A_0 = \inf_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2} , \ B_0 = \sup_{x,y \in \hat{H}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

② The type I local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$A(z) = \lim_{r \to 0} \inf_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}, \ B(z) = \lim_{r \to 0} \sup_{\substack{x,y \in \hat{H} \\ D_2(x,z) < r \\ D_2(y,z) < r}} \frac{\|\alpha(x) - \alpha(y)\|_2^2}{D_2(x,y)^2}$$

1 The type II local lower and upper Lipschitz bounds at $z \in \hat{H}$:

$$\tilde{A}(z) = \lim_{r \to 0} \inf_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,z)^2} , \ \tilde{B}(z) = \lim_{r \to 0} \sup_{\substack{x \in \hat{H} \\ D_2(x,z) < r}} \frac{\|\alpha(x) - \alpha(z)\|_2^2}{D_2(x,y)^2}$$

Part 1: Bi-Lipschitzianity of α -cont'd

We need to analyze the real structure of \hat{H} .

Let $\varphi_1, \dots, \varphi_m, \zeta \in \mathbb{R}^{2n}$, $\Phi_1, \dots, \Phi_m \in \mathit{Sym}(\mathbb{R}^{2n})$, $J \in \mathbb{R}^{2n \times 2n}$ defined by:

$$\Phi_{k} = \varphi_{k} \varphi_{k}^{\mathsf{T}} + J \varphi_{k} \varphi_{k}^{\mathsf{T}} J^{\mathsf{T}}, \varphi_{k} = \begin{bmatrix} real(f_{k}) \\ imag(f_{k}) \end{bmatrix}, J = \begin{bmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{bmatrix}, \zeta = \begin{bmatrix} real(z) \\ imag(z) \end{bmatrix}$$

Key relations: $\langle z, f_k \rangle = \langle \zeta, \varphi_k \rangle + i \langle \zeta, J \varphi_k \rangle$, $|\langle z, f_k \rangle| = \sqrt{\langle \Phi_k \zeta, \zeta \rangle}$. Consider the following objects:

$$\mathcal{R}: \mathbb{R}^{2n} \to \mathit{Sym}(\mathbb{R}^{2n}) \quad , \quad \mathcal{R}(\xi) = \sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k} \; , \; \xi \in \mathbb{R}^{2n}$$

$$\mathcal{S}: \mathbb{R}^{2n} \to \mathit{Sym}(\mathbb{R}^{2n}) \quad , \quad \mathcal{S}(\xi) = \sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\langle \Phi_{k} \xi, \xi \rangle} \Phi_{k} \xi \xi^{T} \Phi_{k} \; , \; \xi \in \mathbb{R}^{2n}$$

Theorem (BZ15)

Assume $\mathcal F$ is phase retrievable for $H=\mathbb C^n$ and A,B are its optimal frame bounds. Then:

- For every $0 \neq z \in \mathbb{C}^n$, $A(z) = \lambda_{2n-1}(S(\zeta))$ (the next to the smallest eigenvalue);
- $A_0 = A(0) > 0;$
- **3** For every $z \in \mathbb{C}^n$, $\tilde{A}(z) = \lambda_{2n-1} \left(\mathcal{S}(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the next to the smallest eigenvalue);
- $\tilde{A}(0) = A$, the optimal lower frame bound;
- **3** For every $z \in \mathbb{C}^n$, $B(z) = \tilde{B}(z) = \lambda_1 \left(S(\zeta) + \sum_{k: \langle z, f_k \rangle = 0} \Phi_k \right)$ (the largest eigenvalue);
- $B_0 = B(0) = \tilde{B}(0) = B$, the optimal upper frame bound;

Lipschitz bounds for β

Theorem (cont'd)

- For every $0 \neq z \in \mathbb{C}^n$, $a(z) = \tilde{a}(z) = \lambda_{2n-1}(\mathcal{R}(\zeta))/\|z\|^2$ (the next to the smallest eigenvalue);
- **3** For every $0 \neq z \in \mathbb{C}^n$, $b(z) = \tilde{b}(z) = \lambda_1(\mathcal{R}(\zeta))/\|z\|^2$ (the largest eigenvalue);
- **1** $a_0 = \min_{\|\xi\|=1} \lambda_{2n-1}(\mathcal{R}(\xi))$ is also the largest constant to that $\mathcal{R}(\xi) \geq a_0(\|\xi\|^2 I J\xi\xi^T J^T);$
- ① $b(0) = \tilde{b}(0) = b_0 = \max_{\|\xi\|=1} \lambda_1(\mathcal{R}(\xi))$ is also the 4th power of the frame analysis operator norm $T: (\mathbb{C}^n, \|\cdot\|_2) \to (\mathbb{R}^m, \|\cdot\|_4)$: $b_0 = \|T\|_{B(I^2, I^4)}^4 = \max_{\|x\|_2=1} \sum_{k=1}^m |\langle x, f_k \rangle|^4$;
- **1** $\tilde{a}(0)$ is given by $\tilde{a}(0) = \min_{\|z\|=1} \sum_{k=1}^{m} |\langle z, f_k \rangle|^4$.

References

- [BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. **20** (2006), 345–356.
- [BBCE07] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., **15** (4) (2009), 488–501.
- [B12] R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
- [B13] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
- [BW14] R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469–488.

- [BZ14] R. Balan, D. Zou, On Lipschitz inversion of nonlinear redundant representations, to appear in Contemporary Mathematics 2015.
 - [BZ15] R. Balan, D. Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, available online arXiv 1506.02092v1 [mathFA], 6 June 2015.
- [Bal15] R. Balan, The Fisher Information Matrix and the Cramer-Rao Lower Bound in a Non-Additive White Gaussian Noise Model for the Phase Retrieval Problem, proceedings of SampTA 2015.
- [BCMN13] A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission, arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106–125.
- [EM12] Y. C. Eldar, S. Mendelson, *Phase retrieval: Stability and recovery guarantees*, available online: arXiv:1211.0872.

Problem Formulation

[HG13] M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.

[ZB06] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel Principal Component Analysis, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.