Lipschitz Extensions in Inverse Problems

Radu Balan

Department of Mathematics, CSCAMM and NWC
University of Maryland, College Park, MD

May 14–18, 2018
International Conference on Computational Harmonic Analysis
Vanderbilt University, Nashville, TN
"This material is based upon work partially supported by the National Science Foundation under grant no. DMS-1413249, ARO under grant W911NF-16-1-0008, and LTS under grant H9823013D00560049. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Based on joint works with: Yang Wang (HKST), Dongmian Zou (IMA), David Bekkerman and Wenbo Li (UMD).
Happy Birthday Akram!
Table of Contents:

1 Framework

2 Metrics on Matrices

3 BiLipschitz Results

4 Proofs
High-Level Problem Formulation

Given: A nonlinear map (analysis) $\alpha : S \rightarrow \mathbb{R}^m$ from a metric space (S, d) to the Euclidean space $(\mathbb{R}^m, \|\cdot\|_2)$.

Wanted: A left inverse $\omega : \mathbb{R}^m \rightarrow S$ that is globally Lipschitz.

Today problems: The case when $S \subset Sym^+(\mathbb{C}^n)$ is a class of psd matrices, or $S \subset \mathbb{R}^n$ is the class of sparse signals.
Quantum Tomography

Setup

A quantum system is characterized by the density matrix $M \in \mathbb{C}^{n \times n}$. Given a set of observables Y_1, \cdots, Y_m that can be measured simultaneously, the problem is to estimate (compute) the density matrix $M = M^* \geq 0$ from noisy measurements:

$$y_k = \text{trace}(MY_k) + \nu_k.$$

Constraints: (1) $\text{trace}(M) = 1$ (2) weakly mixed system, i.e. M has low rank, $\text{rank}(M) \leq d$:

$$S = St^d(\mathbb{C}^n) = \{X = X^* \geq 0 \ , \ \text{trace}(X) = 1 \ , \ \text{rank}(X) \leq d\}.$$
Scene Understanding from Power Measurements

Setup

Mixing model: d decorrelated sources (acoustic, RF, etc) monitored by n sensors. A subset S of all possible ordered pairs $\{(i,j) ; 1 \leq i \leq j \leq n\}$ of sensors determines signal covariance, i.e. the measurements are:

$$y_{\alpha} = \mathbb{E}[x_i x_j] + \nu_{\alpha} = R_{i,j} + \nu_{\alpha}.$$

for $\alpha = (i,j) \in S$ and $R = \mathbb{E}[xx^*]$ is the $n \times n$ cov. matrix of rank d.

The problem is to estimate R from $\{y_{\alpha} , \alpha \in S\}$ ($|S| = m$).

Here: $S = S_{d,0} = \{X = X^* \succeq 0 \ , \ \text{rank}(X) \leq d\}$.

Radu Balan (UMD)
Lipschitz
Compressive Sampling Scenario

Setup

Signal Model: \(x: \) \(d \)-sparse \(\mathbb{R}^n \)-vector.

Measurement Model:

\[
y = Ax + \nu \in \mathbb{R}^m.
\]

Here:

\[
S = \mathbb{R}^n_d = \{ x \in \mathbb{R}^n , \| x \|_0 \leq d \}.
\]
Notations

\(H = \mathbb{F}^n \) a finite dimensional Euclidean space, with \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{F} = \mathbb{C} \).

- \(\text{Sym}(H) = \{ T \in H^{n \times n} , \ T = T^* \} \)
- Convex cone of PSD: \(\text{Sym}^+(H) = \{ T \in \text{Sym}(H) , \ T = T^* \geq 0 \} \)
- Quantum states: \(\text{St}(H) = \{ T \in \text{Sym}^+(H) , \ \text{trace}(T) = 1 \} \)
- Low-rank quantum states
 \(\text{St}^r(H) = \{ T \in \text{Sym}^+(H) , \ \text{trace}(T) = 1 , \ \text{rank}(T) \leq r \} \)
- Cone of low-rank mixed signature matrices:
 \(\mathbb{S}^{p,q} = \{ T \in \text{Sym}(H) , \ T \ \text{has at most} \ p \ \text{positive and} \ q \ \text{negative eigenvalues} \} \)
 In particular \(\mathbb{S}^{1,0} = \{ xx^* , \ x \in H \} \), set of rank (at most) one PSDs.
- Cone of sparse signals:
 \(H_d = \mathbb{R}^n_d = \{ x \in H = \mathbb{R}^n , \ \| x \|_0 \leq d \} \).
Problem Formulation
Models

Forward maps:

\[\alpha : \text{Sym}^{+}(H) \rightarrow \mathbb{R}^{m} \, , \, (\alpha(X))_{k} = \sqrt{\text{trace}(XF_{k})} = \sqrt{\langle X, F_{k} \rangle} \]

\[\beta : \text{Sym}^{+}(H) \rightarrow \mathbb{R}^{m} \, , \, (\beta(X))_{k} = \text{trace}(XF_{k}) =: \langle X, F_{k} \rangle \]

where \(F_{1}, \cdots, F_{m} \in \text{Sym}^{+}(H) \) are fixed PSD matrices.

\[\gamma : H_{d} \rightarrow \mathbb{R}^{m} \, , \, \gamma(x) = Ax \]

where \(A \in \mathbb{R}^{m \times n} \) is a "fat" measurement matrix (\(n > m \geq 2d \)).
Problem Formulation
Models

Forward maps:

\[\alpha : Sym^+(H) \to \mathbb{R}^m, \quad (\alpha(X))_k = \sqrt{\text{trace}(X F_k)} = \sqrt{\langle X, F_k \rangle} \]
\[\beta : Sym^+(H) \to \mathbb{R}^m, \quad (\beta(X))_k = \text{trace}(X F_k) =: \langle X, F_k \rangle \]

where \(F_1, \cdots, F_m \in Sym^+(H) \) are fixed PSD matrices.

\[\gamma : H_d \to \mathbb{R}^m, \quad \gamma(x) = Ax \]

where \(A \in \mathbb{R}^{m \times n} \) is a "fat" measurement matrix \((n > m \geq 2d) \).

Spaces:

- Phase Retrieval: \(S = \mathbb{S}^{1,0} = \{xx^* \mid x \in H\} \) or \(S = \hat{H} = H/T \).
- Quantum Tomography:
 \[S = St^r(H) = \{X = X^* \geq 0, \text{trace}(X) = 1, \text{rank}(X) \leq r\} \].
- Covariance Matrix Estimation: \(S = \mathbb{S}^{d,0} \).
- Sparse Signal Estimation: \(S = \mathbb{R}^n_d \).
Problem Formulation

The phase retrieval problem

Hilbert space $H = \mathbb{C}^n$, $\hat{H} = H/T^1$, frame $\mathcal{F} = \{f_1, \cdots, f_m\} \subset \mathbb{C}^n$ and

$$\alpha : \hat{H} \to \mathbb{R}^m \ , \ (\alpha(x))_k = |\langle x, f_k \rangle| = \sqrt{\langle xx^*, f_k f_k^* \rangle}.$$

$$\beta : \hat{H} \to \mathbb{R}^m \ , \ (\beta(x))_k = |\langle x, f_k \rangle|^2 = \langle xx^*, f_k f_k^* \rangle.$$

Assume α, β are injective, the problem is to construct global Lipschitz inverses and to study their Lipschitz constants.
Problem Formulation
Lipschitz reconstruction: the general case

Assume the maps $\alpha, \beta, \gamma : S \to \mathbb{R}^m$ are injective, where

$$(\alpha(X))_k = \sqrt{\text{trace}(XF_k)} , \quad (\beta(X))_k = \text{trace}(XF_k) , \quad \gamma(x) = Ax.$$

Our Problem Today:

Construct Lipschitz maps $\omega, \psi, \theta : \mathbb{R}^m \to S$ so that $\omega \circ \alpha = 1_X$, $\psi \circ \beta = 1_X$, $\theta \circ \gamma = 1_S$. Determine $\text{Lip}(\omega)$, $\text{Lip}(\psi)$ and $\text{Lip}(\theta)$.

Radu Balan (UMD) Lipschitz
Metric Structures on \(\hat{H} \) and \(\text{Sym}(H) \)

Norm Induced Metric

Fix \(1 \leq p \leq \infty \). The *matrix-norm induced distance* on \(\text{Sym}(H) \):

\[
d_p : \text{Sym}(H) \times \text{Sym}(H) \rightarrow \mathbb{R}, \quad d_p(X, Y) = \|X - Y\|_p,
\]

the \(p \)-norm of singular values (nuclear \(p = 1 \), Frobenius \(p = 2 \), operator \(p = \infty \)).

On \(\hat{H} = H/ T^1 \) it induces the metric

\[
d_p : \hat{H} \times \hat{H} \rightarrow \mathbb{R}, \quad d_p(\hat{x}, \hat{y}) = \|xx^* - yy^*\|_p
\]

so that \(d_p(\hat{x}, \hat{y}) = d_p(xx^*, yy^*) \). In the case \(p = 2 \) we obtain

\[
d_2(X, Y) = \|X - Y\|_F, \quad d_2(x, y) = \sqrt{\|x\|^4 + \|y\|^4 - 2|\langle x, y \rangle|^2}
\]
Metric Structures on \hat{H} and $\text{Sym}(H)$

The Natural Metric

The *natural metric*

$$D_p : \hat{H} \times \hat{H} \to \mathbb{R}, \quad D_p(\hat{x}, \hat{y}) = \min_\varphi \| x - e^{i\varphi} y \|_p$$

with the usual p-norm on \mathbb{C}^n. In the case $p = 2$ we obtain

$$D_2(\hat{x}, \hat{y}) = \sqrt{\|x\|^2 + \|y\|^2 - 2|\langle x, y \rangle|}$$

On $\text{Sym}^+(H)$, the ”natural” metric lifts to

$$D_p : \text{Sym}^+(H) \times \text{Sym}^+(H) \to \mathbb{R}, \quad D_p(X, Y) = \min_{V, W \text{ s.t. } VV^* = X, WW^* = Y} \| V - W \|_p.$$
Metric Structures on $\text{Sym}(H)$

Natural metric vs. Bures/Helinger

Let $X, Y \in \text{Sym}^+(H)$. For the natural distance we choose $p = 2$:

$$D_{\text{natural}}(X, Y) = \min_{VV^* = X, WW^* = Y} \|V - W\|_F$$

Fact:

$$D_{\text{natural}}(X, Y) = \min_{U \in U(n)} \|X^{1/2} - Y^{1/2}U\|_F = \sqrt{\text{tr}(X) + \text{tr}(Y) - 2\|X^{1/2}Y^{1/2}\|_1}$$
Metric Structures on $\text{Sym}(H)$

Natural metric vs. Bures/Helinger

Let $X, Y \in \text{Sym}^+(H)$. For the natural distance we choose $p = 2$:

$$D_{\text{natural}}(X, Y) = \min_{VV^* = X, WW^* = Y} \| V - W \|_F$$

Fact:

$$D_{\text{natural}}(X, Y) = \min_{U \in U(n)} \left\| X^{1/2} - Y^{1/2} U \right\|_F = \sqrt{\text{tr}(X) + \text{tr}(Y) - 2 \| X^{1/2} Y^{1/2} \|_1}$$

Another distance: Bures/Helinger distance:

$$D_{\text{Bures}}(X, Y) = \| X^{1/2} - Y^{1/2} \|_F = d_2(X^{1/2}, Y^{1/2})$$

A consequence of the Arithmetic-Geometric Mean Inequality [BhatiaKittaneh00]:

$$\frac{1}{2} \| X^{1/2} - Y^{1/2} \|_F^2 \leq \min_{U \in U(n)} \| X^{1/2} - Y^{1/2} U \|_F^2 \leq \| X^{1/2} - Y^{1/2} \|_F^2$$
Stability Results for the forward maps
Bi-Lipschitz properties of α and β

Fix a closed subset $S \subset Sym^+(H)$. For instance $S = St(H)$, or $S = S^{r,0}$, or $S = St^r(H) = St(H) \cap S^{r,0}$.

Theorem

Assume $F = \{F_1, \cdots, F_m\} \subset Sym^+(H)$ so that $\alpha|_S$ and $\beta|_S$ are injective. Then there are constants $a_0, A_0, b_0, B_0 > 0$ so that for every $X, Y \in S$,

$$A_0 \| X^{1/2} - Y^{1/2} \|_F^2 \leq \sum_{k=1}^m \left| \sqrt{\langle X, F_k \rangle} - \sqrt{\langle Y, F_k \rangle} \right|^2 \leq B_0 \| X^{1/2} - Y^{1/2} \|_F^2$$

$$a_0 \| X - Y \|_F^2 \leq \sum_{k=1}^m |\langle X, F_k \rangle - \langle Y, F_k \rangle|^2 \leq b_0 \| X - Y \|_F^2.$$
Stability Results for the inverse map
Lipschitz inversion of α and β on Quantum States

Consider the measurement maps

$$\alpha, \beta : (St^r(H), d_1) \rightarrow (\mathbb{R}^m, \| \cdot \|_2) , \ (\alpha(T))_k = \sqrt{tr(TF_k)} , \ (\beta(T))_k = tr(TF_k)$$

where $St^r(H) = \{ T = T^* \geq 0 , \ tr(T) = 1 , \ rank(T) \leq r \}$. If $r = n := dim(H)$ then $St^n(H) = St(H)$ is a compact convex set, hence a Lipschitz retract.

If $r < n$ then $St^r(H)$ is not contractible hence not a Lipschitz retract ($St^1(H) = P(H)$).
Stability Results for the inverse map
Lipschitz inversion of α and β on Quantum States

Consider the measurement maps

$$\alpha, \beta : (\text{St}^r(H), d_1) \to (\mathbb{R}^m, \| \cdot \|_2) \text{, } (\alpha(T))_k = \sqrt{\text{tr}(TF_k)}, (\beta(T))_k = \text{tr}(TF_k)$$

where $\text{St}^r(H) = \{ T = T^* \geq 0 \text{, } \text{tr}(T) = 1 \text{, } \text{rank}(T) \leq r \}$.

If $r = n := \text{dim}(H)$ then $\text{St}^n(H) = \text{St}(H)$ is a compact convex set, hence a Lipschitz retract.

If $r < n$ then $\text{St}^r(H)$ is not contractible hence not a Lipschitz retract ($\text{St}^1(H) = P(H)$). Consequence:

Theorem

*Fix $1 \leq r < n$. For any set of matrices $F_1, \cdots, F_m \in \text{Sym}^+(H)$ there are no continuous maps $\omega : \mathbb{R}^m \to \text{St}^r(H)$ or $\psi : \mathbb{R}^m \to \text{St}^r(H)$ so that $\omega(\alpha(T)) = T$ for every $T \in \text{Sym}^+(H)$, or $\psi(\beta(T)) = T$ for every $T \in \text{Sym}^+(H)$.***
Lipschitz inversion of α on $\mathbb{S}^{r,0}$

Theorem

Assume the map

$$\alpha : (\mathbb{S}^{r,0}(H), D_{Bures}) \rightarrow (\mathbb{R}^m, \| \cdot \|_2), \quad (\alpha(T))_k = \sqrt{\text{trace}(TF_k)}$$

is injective, where $\mathbb{S}^{r,0}(H) = \{ T = T^* \geq 0, \text{rank}(T) \leq r \}$. Then there exists a Lipschitz map $\omega : \mathbb{R}^m \rightarrow \mathbb{S}$ so that $\omega(\alpha(T)) = T$ for every $T \in \mathbb{S}^{r,0}$, and

$$\text{Lip}(\omega) = \sup_{c \neq d \in \mathbb{R}^m} \frac{\| (\omega(c))^{1/2} - (\omega(d))^{1/2} \|_F}{\| c - d \|_2} \leq \frac{\sqrt{r + 1}}{\sqrt{A_0}}.$$
Lipschitz inversion of β on $S^{r,0}$

Theorem

Assume the map

$$\beta : (S^{r,0}(H), \| \cdot \|_F) \to (\mathbb{R}^m, \| \cdot \|_2), \quad (\beta(T))_k = \text{trace}(TF_k)$$

is injective, where $S^{r,0}(H) = \{ T = T^* \geq 0, \text{ rank}(T) \leq r \}$. Then there exists a Lipschitz map $\psi : \mathbb{R}^m \to S$ so that $\psi(\beta(T)) = T$ for every $T \in S^{r,0}$, and

$$\text{Lip}(\psi) = \sup_{c \neq d \in \mathbb{R}^m} \frac{\| \psi(c) - \psi(d) \|_F}{\| c - d \|_2} \leq \frac{\sqrt{r + 1}}{\sqrt{a_0}}.$$
Phase Retrieval: Lipschitz inversion of α

Theorem (B.Li18, B.Zou15, BWang15, BCMN14)

Assume \mathcal{F} is a phase retrievable frame for H. Then:

1. The map $\alpha : (\hat{\mathbb{C}}^n, D_2) \to (\mathbb{R}^m, \| \cdot \|_2)$ is bi-Lipschitz. Let $\sqrt{A_0}$, $\sqrt{B_0}$ denote its Lipschitz constants: for every $x, y \in \mathbb{C}^n$:

\[
A_0 \min_{\varphi} \| x - e^{i\varphi} y \|_2^2 \leq \sum_{k=1}^{m} \| \langle x, f_k \rangle - \langle y, f_k \rangle \|_2^2 \leq B_0 \min_{\varphi} \| x - e^{i\varphi} y \|_2^2.
\]

2. $B_0 = B$, the frame upper bound.

3. In the real case: $A_0 = \min_{I \subset [m]} A[I] + A[I^c]$.

4. There is a Lipschitz map $\omega : (\mathbb{R}^m, \| \cdot \|_2) \to (\hat{H}, D_2)$ so that: (i) $\omega(\alpha(x)) = x$ for every $x \in \hat{\mathbb{C}}^n$, and (ii) its Lipschitz constant is $\text{Lip}(\omega) \leq \frac{2}{\sqrt{A_0}}$.

Radu Balan (UMD)
Phase Retrieval: Lipschitz inversion of β

Theorem (B.Li18, B.Zou15, BWang15, BCMN14)

Assume F is a phase retrievable frame for H. Then:

1. The map $\beta : (\hat{\mathbb{C}}^n, d_1) \rightarrow (\mathbb{R}^m, \| \cdot \|_2)$ is bi-Lipschitz. Let $\sqrt{a_0}, \sqrt{b_0}$ denote its Lipschitz constants: for every $x, y \in \mathbb{C}^n$:

$$a_0 \| xx^* - yy^* \|_1^2 \leq \sum_{k=1}^{m} \left| \langle x, f_k \rangle^2 - \langle y, f_k \rangle^2 \right|^2 \leq b_0 \| xx^* - yy^* \|_1^2.$$

2. $b_0 = \max_{\|x\|=1} \|Fx\|_4^4$.

3. There is a Lipschitz map $\psi : (\mathbb{R}^m, \| \cdot \|_2) \rightarrow (\hat{H}, d_1)$ so that: (i) $\psi(\beta(x)) = x$ for every $x \in \hat{\mathbb{C}}^n$, and (ii) its Lipschitz constant is $\text{Lip}(\psi) \leq \frac{2}{\sqrt{a_0}}$.
Global Lipschitz inversion in Compressive Sampling

Theorem

Assume that every $2d$ columns of the $m \times n$ matrix A are linearly independent. Let $c_0 = \min_{|I|=2d} \sigma_{2d}(A[I])$ (square root of the smallest lower Riesz bound among all possible combinations of $2d$ columns). Let $\gamma : \mathbb{R}_d^n \to \mathbb{R}^m$, $\gamma(x) = Ax$, where \mathbb{R}_d^n denotes the space of d-sparse signals in \mathbb{R}^n. Then

1. For every $x, y \in \mathbb{R}_d^n$, $\|\gamma(x) - \gamma(y)\|_0 \geq c_0 \|x - y\|_2$.
2. There is a Lipschitz maps $\theta : \mathbb{R}^m \to \mathbb{R}_d^n$ so that: (i) $\theta(\gamma(x)) = x$ for all $x \in \mathbb{R}_d^n$; (ii) $\text{Lip}(\theta) \leq \frac{\sqrt{d+1}}{c_0}$.

Note: Same bounds for \mathbb{C}_d^n.
The extension mechanism involves three steps:

1. Embed the metric space \((S, d)\) into a Hilbert space \(K\) \((\text{Sym}(H)\) or \(H)\);
2. Use Kirszbraun’s theorem to obtain an isometric extension;
3. Construct and apply a Lipschitz projection in \(K\) onto the image of \((S, d)\).

We exemplify this mechanism on the phase retrieval (PR) problem. The Low-Rank PSD Case: Similar to the PR case; different Lipschitz retraction for \(\mathbb{S}^{r,0}(H)\). Same for the compressive sampling problem. Note: The same mechanism works in the Johnson-Lindenstrauss theorem.
PR Inversion
Extension of the inverse for α

We know $\alpha : (\hat{H}, D_2) \to (\mathbb{R}^m, \| \cdot \|_2)$ is bi-Lipschitz:

$$A_0D_2(x, y)^2 \leq \|\alpha(x) - \alpha(y)\|^2 \leq b_0D_2(x, y)^2$$

Let $M = \alpha(\hat{H}) \subset \mathbb{R}^m$.
PR Inversion
Extension of the inverse for α: Step 1

First identify (=embed) \hat{H} with $S^{1,0}(H)$.

$\hat{C}^n \xrightarrow{\alpha} \hat{H} \xrightarrow{\kappa_\alpha} S^{1,0} \xrightarrow{M = \alpha(C^n)} \mathbb{R}^m$
PR Inversion
Extension of the inverse for α: Step 1

Then construct the local left inverse $\omega_1 : M \to \hat{H}$ with $\text{Lip}(\omega_1) = \frac{1}{\sqrt{A_0}}$.
PR Inversion
Extension of the inverse for α: Step 2

Use Kirszbraun’s theorem to extend isometrically $\omega_2 : \mathbb{R}^m \to \text{Sym}(H)$.
PR Inversion
Extension of the inverse for α: Step 3

Construct a Lipschitz "projection" $\pi : \text{Sym}(H) \rightarrow S^{1,0}(H)$.
PR Inversion
Extension of the inverse for α: Final process

Compose the two maps to get $\omega: \mathbb{R}^m \to S^{1,0}$, $\omega = \pi \circ \omega_2$.

$M = \alpha(\mathbb{C}^n)$
Part 2: $S^{1,0}(H)$ as Lipschitz retract in $Sym(H)$

Lemma

Consider the spectral decomposition of the self-adjoint operator A in $Sym(H)$, $A = \sum_{k=1}^{d} \lambda_{m(k)} P_k$. Then the map

$$\pi : Sym(H) \to S^{1,0}(H) \quad , \quad \pi(A) = (\lambda_1 - \lambda_2)P_1$$

satisfies the following two properties:

1. $\pi : (Sym(H), \| \cdot \|_F) \to (S^{1,0}(H), \| \cdot \|_F)$ is Lipschitz with $Lip(\pi) = \sqrt{2}$. \\
2. $\pi(A) = A$ for all $A \in S^{1,0}(H)$.

In [B.Zou'15] paper we proved, for $\pi : (Sym(H), d_{p}) \to (S^{1,0}(H), d_{p})$, $Lip(\pi) \leq 3 + 2^{1+\frac{1}{p}}$.

Recently [March 2018], Wenbo Li [AMSC/UMD] proved $Lip(\pi) = 2$ for $p = \infty$.

Radu Balan (UMD) Lipschitz
$\mathbb{S}^{r,0}(H)$ as Lipschitz retract in $\text{Sym}(H)$

Lemma

Consider the nonlinear projector P_+ onto the cone of PSD matrices $\text{Sym}^+(H)$. Then the map

$$
\pi_r : \text{Sym}(H) \rightarrow \mathbb{S}^{1,0}(H) \quad , \quad \pi(A) = P_+(A - \lambda_{r+1}(A)I)
$$

satisfies the following two properties:

1. $\pi_r : (\text{Sym}(H), \| \cdot \|_F) \rightarrow (\mathbb{S}^{r,0}(H), \| \cdot \|_F)$ is Lipschitz with $\text{Lip}(\pi_r) = \sqrt{r + 1}$.

2. $\pi_r(A) = A$ for all $A \in \mathbb{S}^{r,0}(H)$.
Consider the nonlinear soft thresholding operator $\tau_\theta(t) = \text{sign}(t)[|t| - \theta]_+$. Consider the map

$$P_d : \mathbb{R}^n \rightarrow \mathbb{R}^n_d, \quad (P_d(x))_k = \tau_\theta(x_k), \quad \theta = |\tilde{x}_{d+1}|$$

where \tilde{x}_{d+1} is the $d + 1^{st}$ largest entry in magnitude. Then P_d satisfies the following two properties:

1. $P_d : (H, \| \cdot \|_2) \rightarrow (H_d, \| \cdot \|_2)$ is Lipschitz with $\text{Lip}(P_d) = \sqrt{d + 1}$.
2. $P_d(x) = x$ for all $x \in H_d$.

$H_d = \mathbb{R}^n_d$ as Lipschitz retract in $H = \mathbb{R}^n$
THANK YOU!!

Questions?
References

