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1 Abstract

We have developed an algorithm for classifying ésalvased on local analysis of their boundary curves
The wavelet transform is used to generate a coefiwector at each boundary point over severdésca
The distributions of these vectors are comparatetermine similarity between leaves. This metfsod i
meant to complement an already-implemented leabiflaation system whose decisions rely entirely on
global shape information, and the combined regiithe local and global models are presented.

2 Background

There is an ongoing project between members dbtheersity of Maryland, Columbia University, and
the National Museum of Natural History Smithsoniiastitution to create an electronic field guide for
plants [1]. The ultimate goal of this projectdsdevelop a system where a user in the field demaa
picture of an unknown plant, feed it into the sgstEarried on a portable computer, and have thesyst
classify the species and display sample imagdseofibsest matches in near real-time. A working
implementation has been developed for the leavesoftly plants of the Baltimore-Washington, DC
area, a database contains 7481 leaves in 245 spddis system uses the Inner-Distance Shape Konte
(IDSC) [4] to generate a distance between eachgbéaves. The IDSC measures the shortest destanc
between two points on a path contained entirelfiwia figure. It is very useful for detecting sianities
between deformable structures (see Figure 1).
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Figure 1: The Inner-Distance between two equivamints is very similar
when the bunny ears change position (b) and (d)nbtwhen the actual
structure of the object changes (a).

The current system projects points evenly arouadtundary of each leaf and measures the relative
Inner-Distance values between leaves, and thisgesveasonable predictions of species classibicati
for most examples. However, this system has teowulblen a pair of leaves has very similar global
features, even when their local serrations areqlifitinct (see Figure 2).
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Figure 2: Globally similar leaves with distinctdal features.
(a) Cephalanthus occidentalis (smooth boundary)
(b) Carpinus caroliniana (serrated boundary)

Leaf edges can be completely smooth, or have vgugmmounts of serration, and although these
characteristics do affect the overall shape detsonipf the leaves, the specific amount of variaii® not
taken into account in the IDSC-based system. Hesalevelop a classification algorithm based
exclusively on local information extracted from feaf edges. This information is then combinedwit
the original global shape information, and a mareusate overall classifier is trained.

3 Algorithm

3.1 Wavelet Decomposition

The wavelet transform is used to construct a vesfttwcal information for each boundary point oe th
boundary of a leaf. The boundary of each leahisrgas input, as a set of approximately 2000 discr
(x,y) points. The 1-D discrete wavelet transform isitapplied to the boundary vector for each
dimension separately. The wavelet transform cds\gwrector oh points into two vectors af/2 points:
a vector of approximation coefficients, which provide the best approximation for the ioréd) vector
given only half as many points, and a second veigftdetail coefficientsy, which provide the extra local
detail information needed to reconstruct the oagirector from the approximation [2] (see Figure 3)
Because the goal of this work is to make decisiased on local information, it is the detail cagéfnts
that will be used to classify each leaf. Reappytime wavelet transform to the approximation
coefficients generates the coefficients at the neatser scale. For the general case in one diarens
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In this project the wavelet coefficients are cadtedtl via the stationary discrete wavelet transfasing
the 4-tap Daubechies-2 wavelet basis. Empiricalsas determined that using the detail coefficseior
the first three scales provides the most relev#otmation. After three scales, too much local
information is lost to be able to provide meanimgfrration classification.
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Figure 3: (a) Original leaf boundary. (b) FirsDiscales of approximation
curves after detail information has been removed.

For analysis, each of the original boundariespsasented by a 6-dimensional coefficient vectbext
andy detail coefficient values for each of the firsteth scales. It is necessary that two leaves vdrieh
the same up to a rotation should be recognizedesstical, so in order to enforce this rotation iemace,
one more processing step must be applied to tHéaests before they can be classified. As each
boundary point is now being considered as a separdity, we are really attempting to classify the
smoothness of each point. The coarsest scaleefficient is rotated to lie strictly on the x-axend all
other coefficients of that point vector are rotabgdhis same angle:
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where (4, yq;) 1s the pair of detail coeflicients at the ith scale

This transformation provides a uniform orientatiorall points, imposing the desired rotation ingade,
and effectively reduces the degrees of freedonmiay  5:

(r,y) = [wq: Yas Taao Yar: Tags O]

Each leaf is now represented as approximately 2008dered 5-dimensional vectors, one for each
boundary point. These collections of vectors nmast be classified. In order to have a meaningsli®
for comparison, a set of representative boundaiyt pgpes must be defined, so that each leaf can be
characterized by the distribution of its boundamings over these clusters.

3.2 Clustering

The K-Means clustering scheme was chosen to geniratrepresentative clusters. In this algoritkm,
initial cluster centers are chosen at random freeninput data, and each point in the full datdsset
assigned to its closest cluster center. The clasteters are then redefined to be the mean vélak o
data points associated with each cluster. Thisga®is iterated until the cluster centers stopging
locations. In this experiment, the number of dustk, was chosen to be 36. Empirically, thisigal



should be between about 25 and 50, as using féaarthis causes all the distributions look aboat th
same, while much more and the exact boundariessieetthe clusters start to play too large a rolee T
value of 36 has been used successfully as the muhbkisters for texture analysis in the past [A]l
boundary points from one leaf of each species fezténto the algorithm, approximately 500,000 psint
total, and the 36 representative cluster centers wlatained. For each individual leaf, a distridutof its
boundary point coefficient vectors can now be foower the 36 cluster centers, and the resulting
histograms can be compared.
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Figure 4: Leaf image and corresponding histogram(f) Corylus americana,
(b) Corylus americana, different example, (c) Asartrriloba.
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The distribution between each pair of leaves cam Io® compared during the testing phase, usingtthe ¢
squared distance:

36
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n=1
where £;(n) = % of distribution of leaf 7 in cluster n

Nearest neighbor classification is used to assigar&nown leaf to the species of the leaf withritest
similar distribution.

4 Validation

To demonstrate that a clustering of wavelet decaitipos is actually able to capture and distinguish
between local serration information, a very simpka case is processed. Three curves were cotestruc
a circle, a circle plus a sine curve, and a sstrafght lines joined into a circular star (seeufr@5s).
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Figure 5: Simple validation curves. (a) Visualuederstand
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the properties of each curve, with 15 peaks in eaadbe,
(b) the actual curves tested, with 50 peaks in eacte.

The wavelet detail coefficient vectors are gener&be each curve, and then all boundary point wescto
are provided as input to the K-means clusteringe 36 points that start the K-Means iterations are
picked at random from the input data, so it is expe that the final cluster centers will changéhas
input data changes. In order to be meaningfid,ieéquired that although the location of the @ust
centers may change, the general layout of theldisions should not. This can be tested by engutiat
the distances between distributions over sevepatitions remain similar. Running the algorithmesal
times, we observe that the actual locations ottuster center peaks do change, but the general
distribution of peaks remains similar (see Figure ®omparing the final distances between the three
curves over several runs, we see that these reldistances remain close (see Figure 7). Thigis t

desired result.
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Figure 6: Distribution over three different setisatuster centers generated from the validatiorves.
Left plots: circle; center plots: circle+sine ue; right plots: circular star.

D(12) |D(23) |D(1.3)

0.5443 | 0.5704 | 0.0944
0.5186 | 0.5398 | 0.0900
0.5232 | 0.5481 | 0.0947
0.5229 | 0.5357 | 0.0919
0.5352 | 0.5799 | 0.0856
0.5168 | 0.5536 | 0.0944
0.5087 | 0.5318 | 0.0864
0.5305 | 0.5623 | 0.0910
0.5196 | 0.5338 | 0.0923
0.5446 | 0.5661 | 0.0846

Figure 7: Distances over many trial runs betwegndrcle,
(2) circle+sine curve, (3) circular star..

The next step was to run the algorithm on a setafl-picked leaves displaying the desired variation
serration. 10 species with smooth boundaries aieosen, along with 10 species with serrated
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Figure 8: (a) 10 smooth species, (b) 10 serraizetees.



From each species, 10 example leaves were chowmto|wster centers were found from the boundary
data of these 200 leaves. Five new examples fleat were used for testing. Each new leaf was
predicted to be from the species of the leaf withrost similar distribution. As the algorithm ptékes
into account very local boundary information, ihist expected that full species classification lcappen
with this information alone. Instead, the wavelistance on its own should be able to distinguish
between smooth and serrated leaves, matching srieatbs to smooth species, and serrated leaves to
serrated species, even if the specific speciesmisiacorrect. The results of this test are devis:

Identitied correct species 46%
Identified incorrect species with correct serration 100%

We see that the wavelet model is capturing locahbdary information as desired.

5 Combining with IDSC

The goal is now to combine the wavelet distancéls thie original IDSC distances to train a bettezrall
classifier. On the same smooth/serrated datesssb@ve, the IDSC algorithm alone had the following
results:

Identified correct species 62%
Identified incorrect species with correct serration 53%

This shows that while it is better at predicting tiorrect species, when IDSC fails to find the s®eat
predicts the correct serration no better than ahafecom this comparison, we are convinced that the
wavelets are capturing information that is indegamdrom the IDSC measure, and that combining the
two results should have positive results.

The distance from a new leaf to a species is theaest distance from that leaf to any individualfli
the training data of that species. Given the wehdistances and the IDSC distances:

dW((, Sg) = closest wavelet distance from leaf £ to any leaf in species S
dI(l,Sy) = closest IDSC distance from leaf £ to any leaf in species S,

We want to set up a probability model to solvetfe@ most likely species of the new leaf.

Species(f) = ”’?";,””'" Plt e S, | dW(L, Sy, dI(L, Sy)]
A ,l‘

Using Bayes’ Rule, a Naive Bayes classification ei@adn be constructed from probabilities than can b
calculated from the training data:
argrmax

Species(() = 7o " Pl € 5 | dW(C, Sy), dI(l, S)]
Dk

argmar. pdw (£,Sy), di(¢,S,) | £25,]-PLeSy]
S PlAW(2,5,), dI(Z,5;)]

The first model is constructed to validate that borimg the two sets of distances does indeed peduc
better overall classification scheme. The trairang test data are again the data set of 10 sraootiO



serrated species. Here the wavelet distance istogwovide a binary serration value, based on the
serration of the closest leaf in the training data:

Lif 0 is serrated
0if (is unserrated

Ser(l) = {

The IDSC distances are used to generate a ranénfecteach leaf, IDS@), ranking the possible species

S in order from most likely to least likely, basedl the closest distance from the leaf to any ledhaf
species:

IDSC(€) =[Sy, Sa, ..., Sa0)

The rank value Rs then the index into this vector for any spe&es
R;(£,Sy) = rank # of Sy in IDSC(()

This adjusted setup with Naive Bayes is now:

Species Prediction of leaf { = (17‘9;?2 “p [€ € Sk | Ri(C,Sk), Ser(l)]
3

ArgMmazr plry(e,5,), Ser(t) | te8,] Ples;]
Sk P[R;(£.5%), Ser(d)]

For completeness, each of the necessary probeditiéin be computed as follows:

PIRi(¢, Sy), Ser(() | € € Si] = P[Ri(€,8k) | £ € Si] * P[Ser(() | ¢ € Sk

(assume independence)

) 0 _ # examples of Sy, with Sy in rank Ry(£,S))
P[RI@ S]‘) | te S]‘} - # examples of Sy

.y ) _ # examples of Sy classified as serration Ser({)
P[SE" (‘{) ‘ te S‘d - # examples of Sy,

0 _ # examples of S, 1
P“ € S'l"l T # leaves total 20

0 L (\] _ FF times rank Ry is assigned with serration Ser(£)
P[RI (£ ’ Sk‘)' Ser u” o total # leaves

These probabilities are then smoothed to ensutenthprobabilities are actually zero. The serrat
smoothed with a small linear term:

P[SGF({) ‘ = Sk] _ top + 0.1

~ bottomn + Hexamples x 0.1

The IDSC rankings are smoothing with a Gaussiaroghitog term, where half a Gaussian is fit to the
distribution over the ranks of each species segplgrat

) ) o top + ¢ (Ry)
P{RI({ Sk) ‘ te Sk] " bottom + Z"kqj}i(RI)



where ¢ (r) = Gaussian for species k

Training the classifier with the above describeabability model, and testing on 5 new examplesache
species, the following results were obtained:

Wavelet alone IDSC alone Wavelet + IDSC
Identified correct species 46% 2% 71%

Identified incorrect species 100% 53% 100%
with correct serration

It is seen that adding pure serration informatias improved the overall classification results.

To construct an improved classification schemehenentire 7481 leaf data set, several methods of
combining the two sets of distance were consideEsath species of leaf in the system has been
classified by a botanist as either serrated or Bott what defines serration in botany is incomsisiith
the information retrieved by the wavelet serratietection. For example, a leaf with a few largeesc
spikes is formally classified as serrated, butllgache vast majority if its boundary is smoothddeigure
9).

Figure 9: Species Acer negundo is classified asitx in terms of
botany, but its serrations are too large and srhdotbe
detected as serrated using the wavelet model.

Using the Naive Bayes system as described abotieantire data set, with the official botany seora
classification determining the binary serrationueabf each species, the combined system is onéytabl
predict species correctly about 20% of the timebefter way of combining the distances must be.used

Limiting the serration information a binary valusés a significant amount of information. There ar
many ways to include more of this information ie ttlassifier. However, using a simple ranking eyst
as described above for the IDSC distances is mobapate, as this incorporates too much infornmatio
from leaves whose serration type is very diffefemin the leaf being considered. For example, & th
example with 10 smooth species and 10 serratedespéica new serrated leaf ranks a smooth spesies
the 12" or 19" most likely, this should probably not affect tHassification decision very much, as long
as it the smooth species more likely to be in tveel half. But forcing a rank decision for all sf@s
does not allow for this. Similarly, using the adtdistances to each species type weights too lyahei
insignificant distances. Neither of these modelalile to produce more than 30% accuracy on the
smooth/serrated data set.



Instead, a simple linear weighting between thedigtances is used, to fit, the combined distance:
dC (01, 05) = o dW (€1, L) + (1 — «) dI(ly, (5)

Trained over the smooth/serrated data set, it wasd that the optimal weighting value should b&0.7
(see Figure 10).
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Figure 10: The percentage of correctly classifigp@cies in the
combined model as a function of the weighting corist

Using this model, matching each leaf to the spemfiés nearest neighbor using the new combined
distance values, improved distances are foundtbeeentire data set. The results are as follows:

Distance Model | Correct Species Identified
Wavelet Alone 20%
IDSC Alone 54%
Combined 64%

6 In Practice

In practice, the Electronic Field Guide returnsdgesof the top 5, 10 or 20 best matches. It ietbee
desirable to examine how the percentage of coyrazhtified species increases as the number of top
matches is enlarged. A plot of the old IDSC resatid the new combined results is shown in Figlire 1
We see that the correct percentage increases yuwitki the addition of a few more top matches, trad
the combined results are indeed more accuratettigaold IDSC prediction alone.
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Figure 11: The percentage of correctly identifsgmbcies
in the top n matches, asn=1,...,20.

In order for the electronic field guide to be preaktto use over paper documents, the system neusble
to return results in near real-time. Fortunattlg, vast majority of calculations required for this
algorithm are preprocessing. Reading in all tleds, applying the wavelet transformations, periiogm
the K-Means clustering, and calculating the distitns of each leaf takes several hours on a patson
computer running Matlab, but this all only has éodone once. When an image of a new leaf is diven
the system, only one set of wavelet transforms sig@tle calculated, and the distribution of thiso$e
points over the already known 36 clusters musbbed. The one new distribution must then be
compared to all distributions in the system. Mi®le process takes on average 0.92 seconds, easily
satisfying the near real-time requirement.

7 Conclusions

It is seen that the wavelet transformation oveesshscales is able to capture local boundary médion.
This information is able to distinguish betweerfatiént types of serration on the boundary of a leaf
Using this information in combination with the piewsly implemented IDSC leaf distance measure, a
better overall classification scheme is produc&tl necessary calculations can be done in real time
make this a realistic system to use in the field.
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