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Background / Refresher
The IPM method solves a sequence of optimization problems 

using penalty functions such that the sequence of 
solutions approaches the true solution from within the 
“valid” region.   As the penalty functions are “relaxed”
and the problem is re-solved, the numerical properties of 
the problem become more “interesting” as the system 
approaches the “true” constrained optimization problem.

μ
0



12/12/2007 3

Application
Why is the IPM method of interest?

It applies to a wide range of problem types:
Linear Constrained Optimization
Semidefinite Problems
Second Order Cone Problems

Once in the “good region” of a solution to 
the set of problems in the solution path:

Convergence properties are great (“quadratic”).
It keeps the iterates in the “valid” region.

Specific Research Problem:
Optimization of Distributed Command and Control
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Optimization Problem
The linear optimization problem can be formulated follows:

inf{ cTx |  Ax = b}.

The search direction is implicitly defined by the system:
Δx + π Δz = r

A Δx = 0
AT Δy + Δz = 0.

For this, the Reduced Equation is:
A π AT Δy = −Ar (= b)

From Δy we can get Δx = r − π ( −AT Δy ).

Def: π = D⊗D, where: π z = x, so D is the metric geometric mean of X and Z−1

From these three equations, the Reduced Equations for Δy are:
A π AT Δy = −Ar (= b)

x is the unknown
y is the “dual” of x

z is the “slack”
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Reminder – The Math Behind It All
We are solving: A π AT Δy = −Ar (= b) 

A is not square, so it isn’t invertible; but AAT is…

What if we pre-multiplied by (AAT)-1 ?

(AAT)-1 A π AT Δy = − (AAT)-1 Ar

Conceptually, we have:

(AT)-1 π AT Δy = − (AAT)-1 b

Since, this looks like a similarity transform, it might have “nice” properties…
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The Project
Goal: Develop a more stable LP IPM solver.

Develop a Matlab system to apply the IPM 
method using the preconditioned conjugate 
gradient solver for the linear system of 
equations using (AAT)-1 as the preconditionner.

Also, incorporate the stability benefits of 
factorization in the system.

Time permitting, apply one speed improvement 
to Matlab solver.

Application: Solve the OSD A&T distributed 
command and control problem.



12/12/2007 7

Development Test Problems
A “simple” canonical problem is available for use during 
development.

min (-x1 - 2x2) subject to the following constraints:
-2x1 +  x2 +  x3 = 2
-x1 + 2x2 +       x4 = 7
x1 + 2x2 +             x5 = 3
x1; x2; x3; x4; x5 ≥ 0

for which the closed form solution is:
0 ≤ x2 ≤ 1½ x1 =   3 - 2x2

x5 = 0 x3 =   8 - 5x2

x4 = 10 - 4x2

The “AFIRO” problem has been identified and a version 
obtained for use during development as a suitable test 
case until data for the OSD A&T application is available.

Published solutions exist from several standard solvers.
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The AFIRO Test Problem
X: 51 parameters
C: depends on 5 of 51 parameters
A: 27 constraint equations (102 non-zeros)

1 14 27 40 51

1

10

19

27

Sparsity Pattern for Matrix A
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Intermediate Results - AFIRO
Started with all 51 values of x and z ≠ 0
Ended with 31 x ‘s and 22 z’s =0

2 parameters (15 & 17) had x=z=0
Condition Numbers

Initial Iteration 15 Iteration 30
D2 8523 1.36e+022 6.90e+035
AD2AT 12110 1.73e+020 1.44e+034
QR(AD2AT) 110 1.30e+010 1.99e+017
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Development Process Flow
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Schedule / Progress

15-May-200814-May-20082Brief Spring 2008 Progress

13-May-20089-May-20082Update OSD/A&T Testing

8-May-20085-May-20083Conduct Incremental V&V

2-May-200811-Apr-200815Incorporate One Speed improvement

10-Apr-20083-Apr-20085Identify Areas for Speed Improvements

2-Apr-200819-Mar-200810Test on OSD/A&T Data

18-Mar-200826-Feb-200815Conduct V&V

25-Feb-200821-Feb-20082Test Code

20-Feb-200830-Jan-200815Add Factorization Solver

29-Jan-200825-Jan-20082Test Code

24-Jan-200814-Dec-200715Add PCG Solver

13-Dec-200712-Dec-20071Brief Fall 2007 Progress

11-Dec-20077-Dec-20072Test Code

6-Dec-20078-Nov-200715Add Preconditioner to Basic Matlab IPM

7-Nov-20075-Nov-20072Test Code

2-Nov-20079-Oct-200715Develop Basic IPM System in Matlab

8-Oct-20071-Oct-20075Obtain AFIRO Data
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Status - Summary
• In summary, the development is slightly ahead of 

schedule…
• Caveat: When things appear to be going well, it proves 

that you don’t know how things are really going.

• Risk area:
• Obtaining the OSD A&T data, even in a sanitized form, 

may be difficult due to delays in the parent OSD A&T 
project resulting from the delay in Congress passing a 
DoD appropriations bill.

• Mitigation Strategy:
• The following NETLIB LP test problems are of 

appropriate dimension to use as testing surrogates:
• KB2, SC50A, SC50B, ADLITTLE

(in increasing dimension)
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Backup Material
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Developing The System Of Equations (1/3)

(Primal) Problem:
Min cTx subject to Ax=b with x≥0

Dual Problem
Max bTy subject to ATy≤c

Alternately, subject to ATy+z=c with z≥0

Penalty function augmented version:
Min B(x; µ) = cTx - µ∑ ln xi

Optimality Conditions:
c - µX-1e - AT y = 0
Ax - b = 0
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Developing The System Of Equations (2/3)

Collecting all these conditions:
Ax - b = 0
ATy+z=c
z≥0
x≥0
c - µX-1e - AT y = 0 Xz = µe

This produces the system of equations:
Xz - µe =0
Ax - b = 0
ATy+z - c = 0
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Developing The System Of Equations (3/3)

Solve this system using Newton’s method:
Newton’s method increments x by: J(x)Δx = -gradient(x)

So, the Newton step is:

If we multiply the first equation by X-1 we get:
Δx + (X-1Z) Δz = µ X-1e – Z Δx + π Δz = r

Similarly, the next two lines produce:
A Δx = 0

AT Δy + Δz = 0
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