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Abstract 

In February 2007, Broad Institute of MIT released a draft assembly of the horse genome.  

To fulfill the requirements of AMSC 663-664, I reassembled the genome using the Celera 

Assembler and then used my assembly to fix gaps and compressions in the Broad 

assembly.  I was able to increase the N50 contig size of the Broad assembly by 15% and 

increase the total assembly size by .18%.  As a part of this process, I also produced a 

parallelized version of the University of Maryland Overlapper.  Initial tests show that the 

parallelized overlapper runs 2-4 times faster than the serial version. 



Background and Motivation 

In February 2007, Broad Institute of MIT announced that it had completed a draft 

assembly of the horse genome (equus caballus).  The announcement was the culmination 

of a $15 million project funded by the National Institute of Human Genome Research and 

the National Institute of Health (1).  The draft genome will allow the equine research 

community to better understand diseases that affect horses.  Additionally, the release of 

the horse genome has caused some excitement in the human genome research 

community.  There are over 80 known conditions in horses that are analogous to 

disorders in humans, including arthritis and allergies (2).  Many believe that comparative 

genomics methods will lead to a better understanding of these disorders and therefore 

better treatments for both animals. 

The draft genome produced by Broad Institute was done using the Arachne 

assembler (3-4).  I reassembled the genome using the Celera Assembler (5) and the 

University of Maryland overlapper (6-7).  The Celera Assembler and the Arachne 

Assembler have slightly different underlying algorithms and therefore produce 

assemblies that are almost identical but do contain some differences.  I also used the 

University of Maryland overlapper as a preprocessor to Celera.  UMD Overlapper has 

been shown to improve genome quality when used in the Celera pipeline (7).  After 

running UMD overlapper and then Celera, I used the resulting assembly to fix gaps and 

compressions in the Arachne draft.  

In the process of producing a reconciled assembly, I was also able to make 

improvements to the UMD overlapper.  Since the horse genome is large, I was initially 

forced to split the data into groups and run many of the overlapper commands by hand.  



This process was complicated and time-consuming.  Fortunately, the computationally 

intensive part of the overlapper algorithm was highly parallelizable, and I was able to 

produce a new version that runs well on mammalian sized genomes. 

 

Producing a Celera Assembly of the Horse 

Before we can begin to assemble a genome, we must first sequence the organism.  

Sequencing begins by extracting DNA from the nucleus of a cell (see Figure 1).  The 

DNA is then cut up into smaller pieces.  After shearing the DNA, we sort the fragments 

by size and pick certain sized pieces to make up a “library”.  A library is a set of DNA 

strings that have a certain mean length and standard deviation.  These strings of DNA are 

known as “inserts”.  Once we have a library of inserts, we clone them and put them into a 

vector.  Current sequencing technology does not allow us to read the nucleotides from 

one side of an insert to the other.  We can only usually read 800-1000 nucleotides before 

the sequence quality becomes unreliable.  While we cannot determine the sequence of the 

entire insert, we can determine the first 800-1000 nucleotides on each end of the insert.  

These two pieces of DNA are known as “reads”.  Since we know the length of the insert, 

we also know the distance between the two reads as well as their orientation relative to 

each other.  The two reads from each insert are known as “mate pairs”.   

 



Figure 1: DNA sequencing process (figure courtesy of Art Delcher) 

 

 At the end of sequencing we have a set of overlapping reads.  The assembler takes 

these reads, calculates which reads overlap, and then fits them together to produce a 

genome.  The Celera Assembler’s algorithm for fitting reads together begins by building 

“unitigs” (see Figure 2).  A unitig is a piece of sequence built from overlapping reads 

where there is no possibility of an ambiguous overlap.  For example, if there is a repeat 

region in the genome, a read in this region might have two overlaps that are clearly from 

different sections of the genome.  This case is considered an ambiguous overlap and 

would not be included in a unitig.  Once Celera builds all the unitigs, it then uses mate 

pair information to build “contigs”.  A contig is a set of unitigs that are placed together.  

The assembler figures out which unitigs fit together by looking at the overlaps but also by 

calculating if placing two unitigs together causes paired reads to be the correct distance 

apart.   Finally, once the assembler has built unitigs, it again uses the mate pair 

information to build scaffolds.  Building scaffolds is similar to building contigs, but in 

this case there is usually little or no overlap between the pieces of sequence.  Instead of 
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seeing that two pieces fit together, the assembler relies on knowing how far apart pairs of 

reads must be from each other. 

 

 

Figure 2: Celera assembler builds successively bigger pieces of sequence  
                  known as unitigs, contigs, and scaffolds to create an assembly 

 

To produce an assembly of the horse, I ran the Celera assembler with default 

parameters.  The only modification I made to the Celera pipeline was that I used UMD 

overlapper to produce the list of read overlaps instead of using Celera’s internal routines.   

It took nine days to run the assembler and produce a draft horse genome (see Table 1).  
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Assembly Celera Arachne 
Number of Scaffolds 59,044 9,687 
Number of Contigs in Scaffolds 126,810 55,316 
Genome Size 2.5 billion bases 2.4 billion bases 
N50 Contig Size 77,479 bases 112,381 bases 

Table 1: Celera and Arachne assembly statistics 

 

 The Celera assembly contained many more scaffolds than the Arachne assembly, 

but the two genomes were approximately the same size.  The Arachne assembly had a 

larger N50 contig size than the Celera assembly.  N50 contig size is the size of a contig 

such that 50% of all nucleotides are in larger contigs and 50% of all nucleotides are in 

smaller contigs.  N50 contig size is frequently used to measure the quality of an 

assembly.  A larger N50 contig size is usually considered better than a smaller one. 

 

Comparing the Two Assemblies 

After producing a Celera assembly of the horse, I started comparing the two assemblies at 

the sequence level to see how similar they were in terms of scaffold structure.  The first 

step in this process was to run NUCmer, an open source program designed to quickly 

align large genomes (8-9).  Once I had an alignment, I was able to map Celera contigs to 

Arachne contigs.  Not all Celera contigs mapped to Arachne contigs, but I compiled a list 

of those that did.  I then used this list to compare the scaffold structures of the two 

assemblies.  In performing this comparison, I encountered three different types of 

disagreement between the assemblies: orientation problems, ordering problems, and gap 

size problems. 



Orientation Problems – An orientation problem occurs when contigs from a Celera 

scaffold map to contigs of an Arachne scaffold but one of the contigs is oriented in the 

opposite direction from its match (see Figure 3).   

 

Figure 3: Illustration of an orientation problem 

 

Ordering Problems – An ordering problem occurs when a set of contigs from a Celera 

scaffold map to a set of contigs from an Arachne scaffold but they map in a different 

order (see Figure 4).   

 

Figure 4: Illustration of an ordering problem 

 

Gap Size Problems – Scaffolds are made up of a set of contigs with gaps between the 

contigs.  We do not know the exact size of each gap, but we do know the mean and 

standard deviation of the gap from mate pair information.  We can use this information to 

Contig A Contig B Contig C Contig D 

Contig A’ Contig B’ Contig C’ Contig D’ 

Celera  
Scaffold 

Arachne 
Scaffold 

Contig A Contig B Contig C Contig D 

Contig A’ Contig C’ Contig B’ Contig D’ 

Celera  
Scaffold 

Arachne 
Scaffold 



compare the sizes of the gaps between the Celera contigs and the sizes of the gaps 

between the Arachne contigs.  If the gap between two Celera contigs is considerably 

bigger or smaller than the gap between two corresponding Arachne contigs then there is a 

gap size problem.  The criteria I used for determining if a gap was too big or too small 

was that the mean Arachne gap size had to be within four standard deviations of the mean 

Celera gap size (see Figure 5). 

 

Figure 5: Illustration of a gap size problem 

 

2,252 of the 59,044 Celera scaffolds contained enough matching contigs to 

compare to Arachne scaffolds.  While these scaffolds only represent 4% of all Celera 

scaffolds, they did contain 96.6% of the nucleotides.  I compared each of these scaffolds 

to Arachne and counted how many times each type of problem occurred (see Table 2). 

 

Total Celera Scaffolds 59,044 
Celera Scaffolds Compared to Arachne 2,252 (96.6% of bases) 
Celera Scaffolds with Orientation Problems 42 
Celera Scaffolds with Ordering Problems 109 
Celera Scaffolds with Gap Size Problems 162 
Celera Scaffolds with at least one problem 174 (93.1% of bases) 

Table 2: Results of the Celera-Arachne comparison 
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 The results show that 92% of the Celera scaffolds that I was able to compare to 

Arachne had matching scaffold structures.  The 174 scaffolds that had some type of 

problem represented 93.1% of the total genome.  In other words, most of the largest 

scaffolds had some type of problem.  This result is to be expected since larger scaffolds 

have more contigs and therefore more opportunity to have problems.   

 

Producing a Reconciled Assembly 

 The comparison of the two assemblies provided evidence that the two drafts were 

similar but contained some minor differences.  This observation indicated that we could 

use the Celera assembly to fix gaps and compressions in the Arachne assembly.  A gap is 

simply two pieces of the official assembly that have a gap between them and match to a 

portion of the draft assembly that has sequence between those two pieces instead of a gap 

(see Figure 6).  A compression point is a portion of the official assembly that matches a 

portion of the draft assembly where the draft has additional sequence inserted within the 

matching region (see Figure 7).  Reconciliation software detects gaps and compressions 

in the official assembly and uses mate placement statistics to decide if the draft assembly 

is more likely to be correct.  If the draft assembly is deemed to be better in a certain 

region, the change is incorporated into the reconciled assembly. 

Figure 6: Illustration of a gap 
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Figure 7: Illustration of a compression 

 

 I treated the Arachne assembly as the official assembly and used the Celera 

assembly to close gaps and fix compressions (see Table 3).  The results show that 

reconciliation was able to fix 80% of the detected compressions.  The genome size 

increased by .18% (4.3 million bases), and the N50 contig size increased by 15%.  These 

increases in size represent increases in quality since the reconciliation software only fixes 

the official assembly if there is overwhelming evidence that the draft assembly is better. 

 

Assembly Celera Arachne Reconciled 
Number of Compressions N/A 687 136 
Genome Size 2.512 billion bases 2.428 billion bases 2.433 billion bases
N50 Contig Size 77,479 bases 112,729 bases 130,123 bases 

Table 3: Reconciliation statistics 

  

Parallelizing the Overlapper 

In addition to producing a reconciled assembly of the horse genome, I also made 

improvements to the University of Maryland Overlapper.  UMD Overlapper was 

developed by Mike Roberts and relies on the concept of “minimizers” to efficiently 

detect overlaps (6-7).  The algorithm begins by examining each 20-mer in each read and 
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recording an associated hex value for that 20-mer (see Figure 8).  The program then uses 

a sliding 20 base window and finds the minimum hex value in that window.  The 20-mer 

associated with this value (known as a “minimizer”) is then recorded along with the read 

name and the offset from the end of the read.  This list is then sorted and filtered by 

minimizers that have fewer than 70 matches in the genome (minimizers with more than 

70 matches frequently represent repeat regions).  This sorted list of minimizers represents 

sets of candidate pairs for overlap.  Reads in these groups are then compared in a process 

known as “checker”, which outputs a list of overlaps.  There are some additional post-

processing steps including a Poisson test that eliminates overlaps that have a probability 

of less than 10-8 of being true overlaps.  There is also an additional step that splits groups 

of overlaps if there are a certain number of differences within the group.  After the post-

processing, the final list of overlaps is output. 

Figure 8: UMD Overlapper algorithm 
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 The most computationally intensive part of the algorithm is the Checker routine 

that compares the reads.  The routine is computationally expensive since every read in a 

minimizer group needs to be compared to every other read in the group.  While this 

process is time-consuming, it is advantageous in that each minimizer group can be run on 

a different processor and the routine is therefore easily parallelizable.  An additional 

merit is that there is no overhead for the parallelization since the reads are already in 

groups.  I used Sun Grid Engine functions to submit checker commands to available 

processors on the cluster.  To make sure that my parallelization was working properly, I 

tested it on a bacterium, a fly, and the horse.  In each case I was able to produce correct 

output and dramatically reduce the running time of algorithm (see Table 4).  For a 

bacteria sized genome, the speedup was 2x.  For a fly-sized genome, the speedup was 

3.5x.  In the case of the horse, I was unable to run the serial version of the overlapper.  

Estimates indicate that it would have taken about nine days.  The corresponding speedup 

would be 3x. 

 

 Current Overlapper Parallelized Overlapper Speedup 
Bacteria 30 Minutes 14 Minutes 2.1x 
Fly 21.5 Hours 6.25 Hours 3.4x 
Horse 9 Days (estimate) 3.07 Days 2.9x 

Table 4: Timing results for the parallelization of UMD Overlapper 

 

Conclusion 

I produced a 2.5 billion base genome of the horse using the Celera assembler that closely 

resembled the draft genome produced by Broad Institute.  I used the Celera assembly to 

improve the Arachne assembly and fixed 80% of the 687 detected compressions.  I was 



also able to increase the Arachne genome size by .18% and increase the N50 contig size 

by 15%.  The reconciliation process inspired a secondary project of improving UMD 

Overlapper.  I parallelized the most computationally intensive routine in the overlapper 

algorithm and was able to produce a 2-4 times speedup on several different sized 

genomes. 
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