

Improving the Draft Assembly of the Horse Genome:

Final Report

Megan Smedinghoff, smeds@umd.edu

Advisor: James A. Yorke, yorke@umd.edu

May 19, 2008

Abstract

In February 2007, Broad Institute of MIT released a draft assembly of the horse genome.

To fulfill the requirements of AMSC 663-664, I reassembled the genome using the Celera

Assembler and then used my assembly to fix gaps and compressions in the Broad

assembly. I was able to increase the N50 contig size of the Broad assembly by 15% and

increase the total assembly size by .18%. As a part of this process, I also produced a

parallelized version of the University of Maryland Overlapper. Initial tests show that the

parallelized overlapper runs 2-4 times faster than the serial version.

Background and Motivation

In February 2007, Broad Institute of MIT announced that it had completed a draft

assembly of the horse genome (equus caballus). The announcement was the culmination

of a $15 million project funded by the National Institute of Human Genome Research and

the National Institute of Health (1). The draft genome will allow the equine research

community to better understand diseases that affect horses. Additionally, the release of

the horse genome has caused some excitement in the human genome research

community. There are over 80 known conditions in horses that are analogous to

disorders in humans, including arthritis and allergies (2). Many believe that comparative

genomics methods will lead to a better understanding of these disorders and therefore

better treatments for both animals.

The draft genome produced by Broad Institute was done using the Arachne

assembler (3-4). I reassembled the genome using the Celera Assembler (5) and the

University of Maryland overlapper (6-7). The Celera Assembler and the Arachne

Assembler have slightly different underlying algorithms and therefore produce

assemblies that are almost identical but do contain some differences. I also used the

University of Maryland overlapper as a preprocessor to Celera. UMD Overlapper has

been shown to improve genome quality when used in the Celera pipeline (7). After

running UMD overlapper and then Celera, I used the resulting assembly to fix gaps and

compressions in the Arachne draft.

In the process of producing a reconciled assembly, I was also able to make

improvements to the UMD overlapper. Since the horse genome is large, I was initially

forced to split the data into groups and run many of the overlapper commands by hand.

This process was complicated and time-consuming. Fortunately, the computationally

intensive part of the overlapper algorithm was highly parallelizable, and I was able to

produce a new version that runs well on mammalian sized genomes.

Producing a Celera Assembly of the Horse

Before we can begin to assemble a genome, we must first sequence the organism.

Sequencing begins by extracting DNA from the nucleus of a cell (see Figure 1). The

DNA is then cut up into smaller pieces. After shearing the DNA, we sort the fragments

by size and pick certain sized pieces to make up a “library”. A library is a set of DNA

strings that have a certain mean length and standard deviation. These strings of DNA are

known as “inserts”. Once we have a library of inserts, we clone them and put them into a

vector. Current sequencing technology does not allow us to read the nucleotides from

one side of an insert to the other. We can only usually read 800-1000 nucleotides before

the sequence quality becomes unreliable. While we cannot determine the sequence of the

entire insert, we can determine the first 800-1000 nucleotides on each end of the insert.

These two pieces of DNA are known as “reads”. Since we know the length of the insert,

we also know the distance between the two reads as well as their orientation relative to

each other. The two reads from each insert are known as “mate pairs”.

Figure 1: DNA sequencing process (figure courtesy of Art Delcher)

 At the end of sequencing we have a set of overlapping reads. The assembler takes

these reads, calculates which reads overlap, and then fits them together to produce a

genome. The Celera Assembler’s algorithm for fitting reads together begins by building

“unitigs” (see Figure 2). A unitig is a piece of sequence built from overlapping reads

where there is no possibility of an ambiguous overlap. For example, if there is a repeat

region in the genome, a read in this region might have two overlaps that are clearly from

different sections of the genome. This case is considered an ambiguous overlap and

would not be included in a unitig. Once Celera builds all the unitigs, it then uses mate

pair information to build “contigs”. A contig is a set of unitigs that are placed together.

The assembler figures out which unitigs fit together by looking at the overlaps but also by

calculating if placing two unitigs together causes paired reads to be the correct distance

apart. Finally, once the assembler has built unitigs, it again uses the mate pair

information to build scaffolds. Building scaffolds is similar to building contigs, but in

this case there is usually little or no overlap between the pieces of sequence. Instead of

DDNNAA ttaarrggeett ssaammppllee
SHEAR

SIZE SELECT

ee..gg..,,
1100KKbbpp
±± 88%%
ssttdd..ddeevv..

VVeeccttoorr

LIGATE &
CLONE PPrriimmeerr

EEnndd RReeaaddss ((MMaatteess))

SEQUENCE

750bp

seeing that two pieces fit together, the assembler relies on knowing how far apart pairs of

reads must be from each other.

Figure 2: Celera assembler builds successively bigger pieces of sequence
 known as unitigs, contigs, and scaffolds to create an assembly

To produce an assembly of the horse, I ran the Celera assembler with default

parameters. The only modification I made to the Celera pipeline was that I used UMD

overlapper to produce the list of read overlaps instead of using Celera’s internal routines.

It took nine days to run the assembler and produce a draft horse genome (see Table 1).

Unitig

Contig

Scaffold

Assembly Celera Arachne
Number of Scaffolds 59,044 9,687
Number of Contigs in Scaffolds 126,810 55,316
Genome Size 2.5 billion bases 2.4 billion bases
N50 Contig Size 77,479 bases 112,381 bases

Table 1: Celera and Arachne assembly statistics

 The Celera assembly contained many more scaffolds than the Arachne assembly,

but the two genomes were approximately the same size. The Arachne assembly had a

larger N50 contig size than the Celera assembly. N50 contig size is the size of a contig

such that 50% of all nucleotides are in larger contigs and 50% of all nucleotides are in

smaller contigs. N50 contig size is frequently used to measure the quality of an

assembly. A larger N50 contig size is usually considered better than a smaller one.

Comparing the Two Assemblies

After producing a Celera assembly of the horse, I started comparing the two assemblies at

the sequence level to see how similar they were in terms of scaffold structure. The first

step in this process was to run NUCmer, an open source program designed to quickly

align large genomes (8-9). Once I had an alignment, I was able to map Celera contigs to

Arachne contigs. Not all Celera contigs mapped to Arachne contigs, but I compiled a list

of those that did. I then used this list to compare the scaffold structures of the two

assemblies. In performing this comparison, I encountered three different types of

disagreement between the assemblies: orientation problems, ordering problems, and gap

size problems.

Orientation Problems – An orientation problem occurs when contigs from a Celera

scaffold map to contigs of an Arachne scaffold but one of the contigs is oriented in the

opposite direction from its match (see Figure 3).

Figure 3: Illustration of an orientation problem

Ordering Problems – An ordering problem occurs when a set of contigs from a Celera

scaffold map to a set of contigs from an Arachne scaffold but they map in a different

order (see Figure 4).

Figure 4: Illustration of an ordering problem

Gap Size Problems – Scaffolds are made up of a set of contigs with gaps between the

contigs. We do not know the exact size of each gap, but we do know the mean and

standard deviation of the gap from mate pair information. We can use this information to

Contig A Contig B Contig C Contig D

Contig A’ Contig B’ Contig C’ Contig D’

Celera
Scaffold

Arachne
Scaffold

Contig A Contig B Contig C Contig D

Contig A’ Contig C’ Contig B’ Contig D’

Celera
Scaffold

Arachne
Scaffold

compare the sizes of the gaps between the Celera contigs and the sizes of the gaps

between the Arachne contigs. If the gap between two Celera contigs is considerably

bigger or smaller than the gap between two corresponding Arachne contigs then there is a

gap size problem. The criteria I used for determining if a gap was too big or too small

was that the mean Arachne gap size had to be within four standard deviations of the mean

Celera gap size (see Figure 5).

Figure 5: Illustration of a gap size problem

2,252 of the 59,044 Celera scaffolds contained enough matching contigs to

compare to Arachne scaffolds. While these scaffolds only represent 4% of all Celera

scaffolds, they did contain 96.6% of the nucleotides. I compared each of these scaffolds

to Arachne and counted how many times each type of problem occurred (see Table 2).

Total Celera Scaffolds 59,044
Celera Scaffolds Compared to Arachne 2,252 (96.6% of bases)
Celera Scaffolds with Orientation Problems 42
Celera Scaffolds with Ordering Problems 109
Celera Scaffolds with Gap Size Problems 162
Celera Scaffolds with at least one problem 174 (93.1% of bases)

Table 2: Results of the Celera-Arachne comparison

Contig A Contig B Contig C Contig D

Contig A’ Contig B’ Contig C’ Contig D’

Celera
Scaffold

Arachne
Scaffold

Gap

Gap

 The results show that 92% of the Celera scaffolds that I was able to compare to

Arachne had matching scaffold structures. The 174 scaffolds that had some type of

problem represented 93.1% of the total genome. In other words, most of the largest

scaffolds had some type of problem. This result is to be expected since larger scaffolds

have more contigs and therefore more opportunity to have problems.

Producing a Reconciled Assembly

 The comparison of the two assemblies provided evidence that the two drafts were

similar but contained some minor differences. This observation indicated that we could

use the Celera assembly to fix gaps and compressions in the Arachne assembly. A gap is

simply two pieces of the official assembly that have a gap between them and match to a

portion of the draft assembly that has sequence between those two pieces instead of a gap

(see Figure 6). A compression point is a portion of the official assembly that matches a

portion of the draft assembly where the draft has additional sequence inserted within the

matching region (see Figure 7). Reconciliation software detects gaps and compressions

in the official assembly and uses mate placement statistics to decide if the draft assembly

is more likely to be correct. If the draft assembly is deemed to be better in a certain

region, the change is incorporated into the reconciled assembly.

Figure 6: Illustration of a gap

Matching Sequences

Assembly A

Assembly B

Gap in Assembly B

Figure 7: Illustration of a compression

 I treated the Arachne assembly as the official assembly and used the Celera

assembly to close gaps and fix compressions (see Table 3). The results show that

reconciliation was able to fix 80% of the detected compressions. The genome size

increased by .18% (4.3 million bases), and the N50 contig size increased by 15%. These

increases in size represent increases in quality since the reconciliation software only fixes

the official assembly if there is overwhelming evidence that the draft assembly is better.

Assembly Celera Arachne Reconciled
Number of Compressions N/A 687 136
Genome Size 2.512 billion bases 2.428 billion bases 2.433 billion bases
N50 Contig Size 77,479 bases 112,729 bases 130,123 bases

Table 3: Reconciliation statistics

Parallelizing the Overlapper

In addition to producing a reconciled assembly of the horse genome, I also made

improvements to the University of Maryland Overlapper. UMD Overlapper was

developed by Mike Roberts and relies on the concept of “minimizers” to efficiently

detect overlaps (6-7). The algorithm begins by examining each 20-mer in each read and

Assembly A

Assembly B

Matching sequences

Compression error in Assembly A or expansion error in Assembly B

recording an associated hex value for that 20-mer (see Figure 8). The program then uses

a sliding 20 base window and finds the minimum hex value in that window. The 20-mer

associated with this value (known as a “minimizer”) is then recorded along with the read

name and the offset from the end of the read. This list is then sorted and filtered by

minimizers that have fewer than 70 matches in the genome (minimizers with more than

70 matches frequently represent repeat regions). This sorted list of minimizers represents

sets of candidate pairs for overlap. Reads in these groups are then compared in a process

known as “checker”, which outputs a list of overlaps. There are some additional post-

processing steps including a Poisson test that eliminates overlaps that have a probability

of less than 10-8 of being true overlaps. There is also an additional step that splits groups

of overlaps if there are a certain number of differences within the group. After the post-

processing, the final list of overlaps is output.

Figure 8: UMD Overlapper algorithm

Get associated hex value
for each 20-mer in read

Record “minimizer” (20-mer
with minimum hex value) for
sliding 20-base window

Create Read, Offset,
Minimizer file

R O M
M O R

Filter by certain minimizers
and then sort to get
candidate pairs for overlap

Run “checker” on candidate pairs
And produce edit-transcripts 10-

8

Do Poisson test and eliminate
any overlaps that have less than
a 10-8 probability of occurring

Do Multi-compare and split
overlaps when they have
a certain number of differences

Overlaps

Output Overlap List

 The most computationally intensive part of the algorithm is the Checker routine

that compares the reads. The routine is computationally expensive since every read in a

minimizer group needs to be compared to every other read in the group. While this

process is time-consuming, it is advantageous in that each minimizer group can be run on

a different processor and the routine is therefore easily parallelizable. An additional

merit is that there is no overhead for the parallelization since the reads are already in

groups. I used Sun Grid Engine functions to submit checker commands to available

processors on the cluster. To make sure that my parallelization was working properly, I

tested it on a bacterium, a fly, and the horse. In each case I was able to produce correct

output and dramatically reduce the running time of algorithm (see Table 4). For a

bacteria sized genome, the speedup was 2x. For a fly-sized genome, the speedup was

3.5x. In the case of the horse, I was unable to run the serial version of the overlapper.

Estimates indicate that it would have taken about nine days. The corresponding speedup

would be 3x.

 Current Overlapper Parallelized Overlapper Speedup
Bacteria 30 Minutes 14 Minutes 2.1x
Fly 21.5 Hours 6.25 Hours 3.4x
Horse 9 Days (estimate) 3.07 Days 2.9x

Table 4: Timing results for the parallelization of UMD Overlapper

Conclusion

I produced a 2.5 billion base genome of the horse using the Celera assembler that closely

resembled the draft genome produced by Broad Institute. I used the Celera assembly to

improve the Arachne assembly and fixed 80% of the 687 detected compressions. I was

also able to increase the Arachne genome size by .18% and increase the N50 contig size

by 15%. The reconciliation process inspired a secondary project of improving UMD

Overlapper. I parallelized the most computationally intensive routine in the overlapper

algorithm and was able to produce a 2-4 times speedup on several different sized

genomes.

Acknowledgements

I would like to thank my advisor, Jim Yorke. I would also like to thank the members of

the University of Maryland genome group for advice and support during the duration of

this project.

References

1. NIH News (February 7, 2007) Horse Genome Assembled.

http://www.nih.gov/news/pr/feb2007/nhgri-07.htm

2. Broad Institute Horse Genome Project Webpage

http://www.broad.mit.edu/mammals/horse/

3. Batzoglou, S., Jaffe, D.B., Stanley, K. et al. (2002), ‘ARACHNE: A whole-genome

shotgun assembler’, Genome Res., Vol. 12(1), pp. 177-189.

4. Jaffe, D. B., Butler, J., Gnerre, S. et al. (2003), ‘Whole-genome sequence assembly for

mammalian genomes: Arachne 2’, Genome Res., Vol. 13(1) pp. 91-96.

5. Myers, E. W., Sutton, G. G., Delcher, A. L. (2000), ‘A whole-genome assembly of

Drosophila’, Science, Vol. 287(5461), pp. 2196-2204.

2478-2483.

6. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke, J. A. (2004),

‘Reducing storage requirements for biological sequence comparison’, Bioinformatics,

Vol. 20(18), pp. 3363-3369.

7. Roberts, M., Hunt, B. R., Yorke, J. A., Bolanos, R. A., and Delcher, A. L. (2004), ‘A

preprocessor for shotgun assembly of large genomes’, J Comput Biol., Vol. 11(4), pp.

734-752.

8. Delcher, A.L., Phillippy, A., Carlton, J. and Salzberg, S.L. (2002), ‘Fast algorithms for

large-scale genome alignment and comparison’, Nucleic Acids Res., Vol. 30(11) pp.

9. Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. (2004), ‘Comparative

genome assembly’, Brief Bioinform., Vol. 5(3), pp. 237-248.

