
AMSC 664 Final Project Report – Vasilis A. Sotiris 1

Anomaly Detection Through a Bayesian Support Vector Machine 
 
 

Vasilis A. Sotiris 
Department of Mathematics 

PhD Candidate in Applied Mathematics and Scientific Computation 
University of Maryland, College Park, MD 

vsotiris@math.umd.edu 
Michael Pecht 

Department of Mechanical Engineering 
Director of the Center for Advanced Life Cycle Engineering (CALCE) 

University of Maryland, College Park, MD 
 pecht@calce.umd.edu 

 

Abstract 

This project investigates the use of a one-class support vector machine algorithm to detect the onset of 
system anomalies and trend output classification probabilities as a way to monitor the health of the system. 
In absence of “unhealthy” (negative) information, the marginal kernel density estimate of the “healthy” 
(positive) distribution is used to construct an estimate of the negative class. The output of the one-class SV 
classifier is calibrated to posterior probabilities by fitting a logistic distribution to the predictor model in 
effort to reduce and manage false alarms. 

1. Introduction 
With increasing functional complexity of on-board autonomous systems, there is now an increasing 

demand for early system level health assessment, fault diagnostics, and prognostics. In the presence of high 
complexity and remote inaccessibility, the health of electronic parts and systems is difficult to monitor, 
diagnose and predict. Due to the micro scale packaging and material properties of the integrated 
components on electronic systems, performance and physics of failure (PoF) models are still uncommon 
and or intractable in application. There is a need for a fast and dependable way to detect when these 
systems are degrading, or have sustained a fault or failure that is critical. Also there is a need to predict 
their remaining useful life. In the absence of sustainable PoF models, a data driven approach in the machine 
learning framework is suitable for the first task, that of anomaly detection. 

A critical part of detection and in general health monitoring is the management of false and positive 
alarms. Decisions made by the algorithm will not always be ideally 100% accurate, and management of this 
accuracy is important. False alarms occur in the training and in the evaluation stage. In the training stage, 
the algorithm uses the training data to construct the predictor model, a model that will function as a 
decision boundary, inside of which incoming new observations will be classified as positive/healthy and 
outside of which negative/abnormal. Note that a negative classification is not necessarily unhealthy, but is 
at least abnormal. The diagnosis of health will need to consider other factors including further knowledge 
of the system itself. In the training stage, false alarms occur when some training data are misclassified; 
theoretically all training data should belong to the positive class. In the evaluation stage, the algorithm 
classifies new observations against the predictor model constructed in the training stage. Here false alarms 
refer to the algorithm’s generalization ability; to correctly classify data for the system it was trained on. 
High false alarm rates can be indicative of bad training or indeed an unhealthy system. 

With an identifiable negative class, training an SV classifier is straightforward and a separation 
boundary can be computed. In absence of reliable negative class data this training becomes a challenge. 
One suggested approach is to use the origin as the negative class and maximize the margin only between 
the origin and the positive class data. This approach can lead to an overly optimistic decision boundary and 
as a result a higher rate of positive alarms. A more conservative approach is to use the marginal density of 
the positive class to estimate the negative class data. This step is important because failure or fault 
characteristics are constructed as conservative as possible by assuming that the fault space is a) Not linearly 
separable from the training data, b) is prevalent in the space not occupied by the training data and therefore 
c) conforming to the distribution of the training data with some probability. These assumptions about the 
nature of faults in relation to what is considered “healthy” can in turn lead to a situation of over-fitting the 
training data leading to higher rates of false alarms. As a remedy, degrees of classification and posterior 
classification probabilities can be used to measure uncertainty and in such minimize and manage the false 
alarms. 

An important consideration for this work is to design a detection algorithm that can be used in real 
time, which means that it has to be fast and robust. A main focus is to process high dimensional and 



AMSC 664 Final Project Report – Vasilis A. Sotiris 2

correlated parameter information fast without compromising the original information. For this, a principal 
component decomposition is used to compress the training data into two or more lower dimensional 
distributions. In this project the data are decomposed into two lower dimensional spaces called the model 
and residual spaces; one that estimates the maximum variance and the other the error in the principal 
component model selection [6]. The compressed data will retain most of the original information and 
provide insight to the variance of the system, which can be used to detect anomalies, and is anticipated to 
enhance the interpretation of the SVM output. Additionally by compressing the data in such a way, we can 
overcome the computational intractability of high dimensional kernel density estimate computations. 
 

Abstract ................................................................................................................................................. 1 
1. Introduction ................................................................................................................................. 1 
1.1. Project Objectives................................................................................................................... 2 
1.2. Project Schedule ..................................................................................................................... 2 
1.3. Data Structure and Description............................................................................................... 2 
1.4. Report Organization ............................................................................................................... 3 
2. Algorithm Overview.................................................................................................................... 3 
3. Principal Component Analysis .................................................................................................... 4 
4. Overview of Two-Class Support Vector Machine Theory.......................................................... 4 
4.1. Soft-Margin Linear Support Vector Classification Theory .................................................... 6 
4.2. The Nonlinear Classifier......................................................................................................... 6 
4.3. Support Vector Novelty Detection Through Classification .................................................... 7 
5. One Class Classifier .................................................................................................................... 7 
5.1. Data Preparation for Kernel Density Estimation .................................................................... 8 
5.2. Kernel Density Estimation and the Negative Class ................................................................ 8 
6. Posterior Class Probability .......................................................................................................... 8 
7. Joint Posterior Probability Model.............................................................................................. 10 
8. Application to Lockheed Martin Data-Set................................................................................. 11 
9. Application to a Simulated Degradation.................................................................................... 13 
10. Summary and Conclusions ................................................................................................... 15 
11. Acknowledgements .............................................................................................................. 16 
12. Appendix A .......................................................................................................................... 17 
CALCEsvm Functions ........................................................................................................................ 17 
13. Appendix B........................................................................................................................... 19 
14. References ............................................................................................................................ 20 

 

1.1. Project Objectives 
The objectives of this project were to a) develop a toolset for the use of anomaly detection in multivariate 
system data sets, b) provide a detection accuracy probability at each system evaluation and c) perform 
analysis in the absence of failure or fault information about the system. Additionally d) compare the 
performance accuracy of the toolset, which I called CALCEsvm to a commercially available and tested 
software called LibSVM.  

1.2. Project Schedule 
The schedule for the completion of the project was planned to start in September 2007 and finish on May 
19th 2008. A detailed schedule and milestone chart with descriptions is provided in Appendix B. 

1.3. Data Structure and Description 
As illustrated in Figure 1, data is collected at times Ti from a multivariate distribution of random 

variables x1i…xmi, where xi’s are the system covariate random variables. Each row observation called Xi are 
independent random vectors consisting of x1, x2,…xm. We are interested in estimating the conditional class 
{+1,-1} of Xi’s and the corresponding posterior class probability p(class|Xi). 

 



AMSC 664 Final Project Report – Vasilis A. Sotiris 3

estimategiven

X

Ti x1 x2 x3 … xm Class
Class 
Probability

X1 T1 x11 x21 x31 … xm1 1 0.95
X2 T2 x12 x22 x32 … xm2 1 0.96

Xn Tn x1n x2n x3n … xmn -1 0.45  
Figure 1 – Data Structure 

1.4. Report Organization 
This report is organized as follows: section 2 gives an overview of the algorithm functionality. Section 3 
discusses the theory and methodology for principal component model decomposition. Section 4 discusses 
the two class support vector machine theory and the approach to novelty detection with support vector 
classification. Section 5 discusses the approach taken to develop a one-class support vector based classifier. 
Section 6 discusses the method for estimating the posterior class probability based on the output of the 
support vector classifier. Section 7 outlines the construction of the joint posterior class probabilities that are 
based on the models discussed in section 3. Section  

2. Algorithm Overview 
Figure 2 illustrates the approach methodology. The multivariate training data X ∈ Rnxm where n is the 

number of observations and m the number of parameters is pre-processed first through a Principal 
component analysis. The principal component analysis (PCA) is used to decompose the signal into two or 
more orthonormal subspaces, in this project into two subspace, the model [M] and the residual [R] 
subspaces. The distribution of the projected data in the model subspace is used to estimate the maximum 
variance in the original parameters and the distribution on the residual is used to test the fit of the model to 
the data. Greater variance in the residual distribution is an indication of a poorly chosen model subspace. In 
addition, the residual subspace is anticipated to uncover hidden behaviors in the system degradation by 
highlighting abnormal variation in parameters that are overshadowed by dominant ones, usually present in 
the model subspace. 

The decomposition of the training data X into more than two subspaces as illustrated in Figure 2 
constructs m orthonormal subspaces which can be used to estimate the joint posterior class probability (Jp).  
The benefit of the multiple models is that they independently capture a unique identifiable subset of 
information related to the covariance of the random variables in X. The dimension for each model can be 
chosen to be as low as 1 and as high as m-1 with m potential models for each respectively, considering all 
the possible combinations. In this project, only two models are considered, each of which is two 
dimensional. The reason for this selection is largely due to computational constraints in computing the 
kernel density estimates described next. Kernel density computations in three and higher dimensions have a 
computation cost of order 2 larger for each increase in dimension. The dimensionality of the models is an 
important factor in the accuracy of the algorithm because too few dimensions might loose too much 
information about the correlation structure of the variables and too high might not reflect enough 
decomposition detail to benefit the detection accuracy.  

 
 

M

R1

R2

Rm

X

pM

pR1

pR2

pRM

Jp

w1

w2

w3

wm

M

R1

R2

Rm

X

pM

pR1

pR2

pRM

Jp

M

R1

R2

Rm

X

pM

pR1

pR2

pRM

Jp

w1

w2

w3

wm

 
Figure 2 – CALCEsvm algorithm flow diagram.  

 
A kernel density estimate (KDE) is computed for the two models [M] and [R] to estimate likelihood of 

the positive class (training data) and from it construct the negative class for each respectively. The SV 



AMSC 664 Final Project Report – Vasilis A. Sotiris 4

classifier, constructs two predictor models D1(y1) and D2(y2) for each model respectively. A soft decision 
boundary is constructed by fitting the training data with a model for posterior class probabilities using a 
logistic distribution that maps classified data to posterior classification probabilities. The joint class 
probability from the two subspaces will in the end be used for the decision classification. 

Because support vectors produce an un-calibrated value that is not a probability, the algorithm uses the 
support vector classifier to produce a posterior probability P(class|input) according to a bayesian 
formulation. The predictor function can benefit from an uncertainty estimate associated with each 
prediction and give realistic interpretations for the classification output, reduce the number of false alarms. 
Finally the joint posterior class probability can be weighted with a weight vector W = [w1…wm] to 
emphasize some models as opposed to others. This weighting could be beneficial when one model, usually 
the principal model [M] captures more of the data covariance information. In this project all models are 
weighted equally, W=I. The CALCEsvm function are listed and described in Appendix A. 

3. Principal Component Analysis 
Subspace decomposition into Principal Components can be accomplished using singular value 

decomposition of the input data X [3] [4]. The SVD of data matrix X, is expressed as X=USVT, where 
S=diag(s1,…,sm) ∈  Rnxm, and s1>s2>…>sm. The two orthogonal matrices U and V are called the left and 
right eigen-matrices of X. Based on the singular value decomposition, the subspace decomposition of X is 
expressed as: 

T
rrr

T
sssrs VSUVSUXXX +=+=   (1) 

 
The diagonal matrix Ss are the singular values {s1,…,sk}, and {sk+1,…,sm} belong to the diagonals of Sr. 

The set of orthonormal vectors Us=[u1,u2,…,uk] form the bases of signal space Ss. The original data is 
decomposed into three matrices, U, S and V, where matrix U contains the transpose of the covariance 
eigenvectors. The original data X is projected onto the signal subspace as defined by the principal model 
[M]. In terms of the SVD of X, the projection matrix H can be expressed as UUT where u=USVT. Then the 
projection of vector x onto [M] can be expressed as x[M]=UUTx and onto the residual subspace as x[R]=(I-
UUT)x. Any vector x can then be represented by a summation of two projection vectors from subspaces Ss 
and Sr, where the total dimension size of [M] + [R] sums up to the original data dimension. 

xPIxPxxx RMRM
rr )(][][ −+=+=   (2) 

PS=UUT and PR=I-UUT are the projection matrices for the model and residual subspace respectively, where 
both subspaces respectively comprise the total data dimension. In this framework, we can apply SVC 
having oriented the data such that we can better capture system faults that are due to changes in variance, 
changes in correlation and changes in the distribution of the data. In this framework we can break down the 
effects of multivariate data into separate and independent models, each examining a different effect of the 
data, and envision combining the results in the end to achieve a global detection result. 

4. Overview of Two-Class Support Vector Machine Theory 
Support vector machines (SVMs) alleviate the need for algorithms with statistically grounded 

frameworks, that is, ones that require knowledge of the distribution of the random variables. This makes the 
use of SVMs very practical in providing system level health decisions with a minimal footprint on 
computational resources. SVMs are also trained to generalize well with a reduced training set making the 
training of SVMs much simpler and economical.  

We first introduce the theory behind hard margin classification to build the framework for the soft margin 
and nonlinear classification in subsequent sections. The hard-margin theory is the basis for all further 
analysis. In hard-margin classification, training data are linearly separable whereas in soft and nonlinear 
classification the training data are mostly not linearly separable. Suppose x is the input vector, y is the class 
label, d is the number of dimension and n is the number of samples. Training data (xi,yi) where x ∈ Xm, yi ∈ 
{+1,-1} and i=1,…,n can be separated by the hyperplane predictor function D(x) with appropriate w and b: 

( ) ( ) ∑
=

+=+=
n

i
ii

T bxwbxwxD
1

   (3) 

where w=[w1,…,wn]T  is the weight vector of the hyperplane and x=[x1,…xn]T. Thus, training data with 
yi=+1 will fall into D(x)>0 while the others with yi=-1 will fall into D(x)<0. 

There are many possible separating hyperplanes which can classify the training samples, but we only need 
to choose one which is called the optimal separating hyperplane (OSH). Finding the (OSH) is important 
because it determines the accuracy of the detection and prediction process after the training. In detection 



AMSC 664 Final Project Report – Vasilis A. Sotiris 5

the OSH defines the boundary in which new observations are considered normal/healthy and outside of 
which they are considered abnormal/unhealthy. To determine the (OSH), support hyperplanes are used. The 
input vectors pass through the support hyperplanes are called support vectors. The distance between two 
support hyperplanes is defined as the margin M. The separating hyperplane with the maximum margin is 
called the (OSH). 

Support hyperplanes are parallel to the (OSH) D(x)=wTx+b=0, and their equations can be written as: 
D(x)=wTx+b=k and D(x)=wTx+b=-k, where k is a positive integer. However, the above two equations are 
over-parameterized. If we multiply a constant to w, b and k, the equations still hold. However, if we set k=1 
so that only one set of w and b will be the solution the equations become: D(x)=wTx+b=1 and 
D(x)=wTx+b=-1. In hard-margin classification, no input data fall between two support hyperplanes. The 
training data are restricted to the following constraints: wTxi+b≥+1 for yi=+1, and wTxi+b≤-1 for yi=-1, 
i=1,…,n, which can be rewritten as: 

( ) 1 0    for    1,...,T
i iy b i n+ − ≥ =w x   (4) 

 
where n is the number of input vectors. The margin is then given by M=2/||w||, called the objective 
function. Therefore, the maximal margin M can be found by minimizing ||w||. To simplify computations, 
the objective function is squared: 2/||w||2=1/2wTw and minimized subject to the constraints yi(wTxi+b)-1≥0 
for i=1,…,n. Lagrangian multipliers are used to convert the objective function from the primal space (input 
space) to a dual space to simplify the calculations. The primal form of the lagrangian function can be stated 
as: 

( )
1 1

1( , , )
2

n n
T T

P i i i i
i i

L b y bα α α
= =

= − + +∑ ∑w w w w x  (5) 

The lagrangian functions in primal and dual spaces are written as LP and LD respectively. The idea is to 
minimize LP with respect to w and b or to maximize LD with respect to α. The optimal solution (w*, b*, α*) 
exists if and only if KKT conditions are satisfied. The KKT conditions state that: i) the partial derivative 
with respect to w and b is equal to zero ii) αi[yi(wTxi+b)-1]=0 and iii) αi≥0 for i-1,…,n. Taking the partial 
derivative with respect to w and b and setting the derivative to zero gives a set of equations to solve for w 
and b. By applying the KKT conditions we find w and b: 

1
 

n

i i i
i

yα
=

= ∑w x      (6) 

1
0

n

i i
i

yα
=

=∑      (7) 

which in turn can be used to formulate the dual optimization problem: 

( )
1 , 1

1
2

n n
T

D i i j i j i j
i i j

L y yα α α α
= =

= −∑ ∑ x x    (8) 

subject to (4). Quadratic Programming is used to solve for the optimal lagrange multipliers α* in the dual 
form, through which w* and b* can be found. In matrix form the dual problem is expressed as 

( ) 1
2

T T
DL pα α α α= − +H     (9) 

where Hessian matrix H = yi yj xi
T xj, α=[α1,…,αn] and pT=[1,…,1]T which has a size of (n x 1). The dual 

optimization formulation is: minimize (6) subject to (4) where αi≥0. 

Since pT=[1,…,1]T and H = yi yj xi
T xj (which can be calculated by the given training samples), α* can 

be calculated. The weight vector w* can also be found. From (ii) in the KKT conditions, when αi>0, yi(wTx 
+ b)-1=0 and b=1/yi-xTw=yi-wTx. To improve the estimate of the value of b, the average value of b is found 
by averaging over all support vectors: 

 

1 1 1

1 1s sn n n
T

i j i j i j
i i js s

b y y y
n n= = =

= −∑ ∑∑α x x   (10) 

1 1 1

1 1s sn n n

i j
i i js s

b y
n n= = =

= −∑ ∑∑Hα   where T
i j i jy y=H x x  



AMSC 664 Final Project Report – Vasilis A. Sotiris 6

1 1

1 1
s sn n

i ji j
i js

b y
n = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑H α    (11) 

4.1. Soft-Margin Linear Support Vector Classification Theory 
In real world applications data are rarely linearly separable and therefore we are interested in the 

nonlinear classifier. Before, we examined the theory for separable data (hard-margin), here we look at data 
that are inseparable (soft-margin). In this case an input data point can have an error ξ which is called the 
slack variable if it falls inside the margin. For 0< ξi<1, the data are not well separated but still correctly 
classified and for ξi>1, data are misclassified. The summation of slack ∑i=1,n(ξi) is the upper bound on the 
errors. When the slack variable ξ is introduced, the constraints on (xi, yi) are always met, so feasible 
solutions always exist. Thus, we need to penalize the objective function by adding an error term to the 
optimization equation. The objective function f(w,b) now becomes: 

2

1

1( , , )
2

n
p

i
i

f b Cξ ξ
=

= − ∑w w    (12) 

subject to ( ) 1     for    1,...,T
i i iy b i nξ+ ≥ − =w x  where C is the margin penalty parameter that determines 

the trade-off between the maximization of the margin and minimization of the classification error. The 
slack variables ξi together with the constraints ensure that the decision function D(x)=wTx+b selected fits 
the training set: almost all the data points verify that D(x)-b≥0 (ie., ξi=0), and are located inside R (Figure 
3). Some data points however, are such that ξi>0, these are the outliers. The number of outliers is kept low 
by minimizing ∑i=1,n(ξi). Moreover the term 1/2||w||2 ensures that D(x) has a minimum norm, which results 
in minimum volume for R. The dual optimization problem is given by: 

∑
=

+=
n

i
iP CwbwL

1

2

2
1min!),,,(min ξβα  

( )[ ] ∑∑
==

−+−+−
n

i
ii

n

i
ii

T
ii bxwy

11

1 ξβξα    (13) 

where α and β are the Lagrange multipliers for the original function 1/2||w||2 and the error term ξ 
respectively. The idea now is to minimize LP with respect to w, b and ξ or maximize with respect to the 
non-negative Lagrange multiplier α and β. The Karush-Kuhn-Tucker (KKT) conditions give (4), (5) and 

+     for    1,...,   i i C i nα β = =    (14) 
The dual formulation is given by:  

( )
1 , 1

1
2

n n
T

D i i j i j i j
i i j

L y yα α α α
= =

= −∑ ∑ x x    (15) 

subject to (5) and 0      for     1,...,iC i nα≤ ≤ =  

In order to find the optimal hyperplane D(x), a dual Lagrangian LD(α) has to be maximized with 
respect to the non-negative Lagrange multiplier α by Quadratic Programming. When αi=0, βi=C which is a 
positive number, ξi=0, which means that the input data xi is correctly classified and it is under the 
constraint yi(wTxi + b)-1≥0. When αi=C, yi(wTxi + b)-1+ξi=0 and ξi≥0. The input vector xi corresponding to 
αi=C is called a bounded support vector which might be inseparable or misclassified, that is yi(wTxi + b)-
1≥0. If 0<ξi<1, xi is correctly classified. If ξi≥0, xi is misclassified. When C<αi<0, yi(wTxi+b)-1+ξi=0 and 
ξi=0. Thus, yi(wTxi + b)=1 and xi is the unbounded support vector. 

4.2. The Nonlinear Classifier 
The basic idea in designing nonlinear SV machines is to map input vector x ∈ Xm into vectors Φ(x) of a 

higher dimensional feature space F (where Φ represents mapping Xm Xf ), and to solve a linear 
classification problem as developed in the preceding theory in this feature space. The nonlinear decision 
function D(x) is given by 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
+ΦΦ= ∑

=

n

i
i

T
ii bxxysignxD

1
)( α  

( ) ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

n

i
iii bxxkysign

1
,α   (16) 

where k is the kernel function and sign decides the membership of the data point between the two classes. 
The mathematical formulation for the nonlinear classifier is solved through the same optimization 
formulation as with the linear classifier. The difference is that the input space dot product is replaced by a 
new dot product defined by a chosen kernel function k. With the use of a kernel trick the mapping to the 



AMSC 664 Final Project Report – Vasilis A. Sotiris 7

higher dimension can be accomplished though a dot product manipulation of the input space. The very 
efficiency of the SVC comes from Vapnik’s principle: instead of designing D(x) from an estimated 
underlying density, we design D(x) directly. This avoids devoting unnecessary estimation accuracy to 
regions located far away from the decision boundary of D(x) (The limiting hypersurface in Xm enclosing R) 
and to devote high estimation accuracy to regions close to the boundary. 

4.3. Support Vector Novelty Detection Through Classification 
Novelty detection using SVC addresses the following problem: given a set of vectors x=[x1,…,xm]T in 

Xm  such that [x1,…,xm]T~d0, with d0 unknown, is a new vector x ∈ Xm distributed according to d0, and is 
considered normal under hypothesis H0, and abnormal or “novel” under hypothesis H1. In SVC, this 
problem is addressed through designing a predictor model D(x) (shown as the solid line in Figure 3) over 
region R in Xm and a real number b such that D(x)-b≥0, if x ∈ R and D(x)-b<0 otherwise. From the 
illustration in Figure 3 the points x which fall outside of the decision boundary are taken as outliers or 
abnormal observations. Notice the improved classification performance obtained using the predictor model. 
The predictor model D(x) is designed under two constraints: firstly, most of the training vectors 
x=[x1,…,xm]T should be in R, except for a small fraction of abnormal vectors, called outliers, and secondly, 
it must be such that R in Xm has minimum volume. In order to estimate R, or equivalently D(x) and b, we 
use a kernel function k in a higher dimensional space F. Space F can be implicitly selected by first 
choosing a positive definite kernel function k. A common choice is the Gaussian RBF kernel (where || . || Φ 
denotes the norm in Xm) 

( ) 2

2
21

2
21 , σ

xx

exxk
−

−
=     (17) 

 
A positive definite kernel k induces a linear feature space F of functions that utilize a dot product. 

Given a positive definite kernel k and the corresponding feature space F, the support vector novelty 
detection approach finds a linear optimal separating hyperplane in F that can be mapped back to the input 
space Xm as a nonlinear function resulting in R. 

Xm
x1

x2 90% Confidence ellipse
SV decision boundary

R

Xm
x1

x2 90% Confidence ellipse
SV decision boundary

Xm
x1

x2 90% Confidence ellipse90% Confidence ellipse
SV decision boundarySV decision boundary

R

 
Figure 3: Illustration of the SV classifier and a 90% confidence decision boundary 

 
From a Bayesian representation D(x) can be shown to be the maximum a posteriori solution to the 

problem of maximizing the conditional probability of correct classification given the data x. This means 
that D(x) is the best classifier for the given training data. This fact will be used later in the report to provide 
rational for the design of a posterior classification probability calibration.  

5. One Class Classifier 
Novelty detection in many real world, especially mission critical systems for which failures are not 

known, requires a predictor model that is constructed using the training data (positive class) and an estimate 
for the fault space (negative class). The estimate of the negative class is a conservative representation of the 
system fault space, an assumption that could lead to poor generalization of the algorithm in situations 
where the predictor model is not updated to reflect changes in the system performance characteristics. Such 
changes are plausible for example in a reliability setting in which the system has aged so its performance 
signature has changed but it is still functioning at a “healthy” state. Another example is the case where the 
original training data were not complete enough to represent the global system performance regimes, and in 
such situations the predictor model will naturally fall victim to large numbers of false alarms. Therefore a 
one-class-classifier approach to novelty detection is subject to complete and updatable training of the 
predictor model D(x). 



AMSC 664 Final Project Report – Vasilis A. Sotiris 8

5.1. Data Preparation for Kernel Density Estimation 
Before estimating the density of the positive class, the CALCEsvm code uses a cleaning procedure in 
which the data points with low likelihood are excluded from the training population. The idea here is that 
data in the positive class that are outliers should not be included in the density estimation. This step in the 
algorithm is optional, and its use makes the one-class classifier more conservative. If it is believed that the 
outlier/s in the positive class are indeed representative of a “healthy” operating system then this functions 
should be excluded from the analysis. This is accomplished using a kernel density estimation of the data 
discussed next. 

5.2. Kernel Density Estimation and the Negative Class 
As discussed above a one-class SVM training can be required in cases where faults or failures are not 
available or not reliable. For this project we worked on estimating the negative class based on the 
assumption that the fault space is a) not linearly separable from the healthy training data, b) is prevalent in 
the space not occupied by the healthy training data and therefore c) conforming to the distribution of the 
healthy training data.  

L

X1

X2  
Figure 4 – Positive class kernel density estimate for bivariate distribution 

 
To estimate the negative class Xn ~ Rm, we used the marginal kernel density estimate of the positive 

class X ~ Rm shown in illustration in Figure 4. This was accomplished by first partitioning the parameter 
space Rm into a grid of separate regions Rd, of length size h and dimension d. A general parzen windowing 
approach with Gaussian kernels is used to compute the density of each data point by centering a Gaussian 
kernel function ϕ on each point x with a bandwidth equal to the size of the grid length h. All neighboring 
data xi are evaluated against the Gaussian centered at x and their corresponding influence weighted 
according to their distance from x. A good choice for a smooth ϕ is the normal N(0,1) function 

( ) 2

2

2
1 u

eu
−

=
π

ϕ     (18) 

 
where the density estimate of for parameter x is given by: 

( ) d

n

i

i

nh
h

xx

xf
∑

=
Χ

⎟
⎠
⎞

⎜
⎝
⎛ −

= 1ˆ
ϕ

   (19) 

 
To overcome over-parameterized density estimates that do not generalize well, the bandwidth h is 

determined through a nearest neighbor approach; in which h is selected as the value that produces a volume 
around x containing √n neighbors. This approach personalizes the value of h to each data point x and 
effectively smoothes out the density in areas of sparse information. The negative class data are constructed 
by selecting grid coordinates on which the likelihood of the training data is below a threshold τ. The 
estimated negative class data are augmented to the positive class data set and together construct the two 
class training data required for the two class SV classifier. 

6. Posterior Class Probability 
Once the predictor model D(x) is constructed using the positive and estimated negative training data, 

the argument is that D(x) is the best classifier, that is: 

( )
⎩
⎨
⎧

+
−

====
+−= 1

,1
|maxarg)(

1,1
xXaYpxD

a 5.0)|1( ≥=+= xXyp
5.0)|1( <=+= xXypif

if
( )

⎩
⎨
⎧

+
−

====
+−= 1

,1
|maxarg)(

1,1
xXaYpxD

a 5.0)|1( ≥=+= xXyp
5.0)|1( <=+= xXypif

if  (20) 



AMSC 664 Final Project Report – Vasilis A. Sotiris 9

The objective is to correctly classify data X=x by comparing the probability that the class membership of x 
is +1, vs the probability that the class membership of x is -1. The larger probability classifies x into the 
corresponding class. It can be shown that D(x) is the MAP solution to problem of maximizing the 
conditional probability of class given the data (20). Here we can start thinking about the function as a 
boundary, where classifications close to it will be associated with probabilities close to 0.5, and 
classifications far from it with probabilities closer to 1 or 0. Data that fall exactly on the boundary are 
randomly and fairly classified as either +1 or -1 with a classification probability of 0.5. 

The classification problem defined by p(y=+1|X=x) can now be expressed as p(y=+1|D(x)), where D(x) is 
the sufficient statistic to classify data X=x into class +1 or -1.Intuitively because D(x) is the optimal 
classifier on which the probability of interest is exactly 0.5, then distances to it can be calibrated to 
probabilities. The distribution of these posterior class probabilities can be modeled by a logistic distribution 
centered at D(x)=0 (Figure 5). The shape parameter for the distribution can be thought to reflect the 
confidence in D(x), a statistic dependent on the data. 

D(x)D(x)  
Figure 5 - Logistic distribution model for posterior class probabilities 

The positive posterior class probability for X=x can be given as: 

( ) ( )
( )i

i
i xXP

xXYPxyP
=

=+=
=+=

,1|1
 

( ) ( )
( ) ( )∑

+−=

===

+=+==
=

1,1
|

11|

a
i

i

aYPaYxXP

YPYxXP
ie α−+

=
1

1

(21) 
With the intuition that distances of data X=x to D(x) can be calibrated to probabilities leads to the 
justification for using a logistic type distribution to model these probabilities. From bayes rule and the law 
of total probability, and re-expressing the sum in the denominator, we get a function with parameter α that 
is a logistic type distribution (21). 

( ) ( )
( ) ( )11|

11|log
−=−==
+=+==

=
YPYxXP
YPYxXP

i

i
iα

 
The distribution scale parameter α effects the shape of the distribution by compressing it around D(x)=0 
with large values of α and stretching it for small values. The shape of the distribution reflects the level of 
uncertainty in the classifier, and should be designed from the training data. From the resulting expression 
for α, all except one term are known, namely the probability p(X=xi|Y=+1) which was estimated 
previously. The unknown quantities are: p(X=xi|Y=-1), and the priors p(Y=+1) and p(Y=-1). Replacing α 
by its intuitive interpretation, namely the data’s relationship to D(x)=0 we can evaluate the objective 
probability given as: 

( ) ( )( ) iii pxDyPxXyP ≡+===+= |1|1  

( ) ( )BxADii ie
xXyPp +−+

==+== )(1
1|1

 (22) 
The parameters A and B are used to optimize the posterior class distribution, of logistic form, and are 
estimated by maximizing the likelihood of class given data and A,B.  

( ) ( ) ( )BAxxccpBAXXpBAccXXpBA kkkkkBAMLEMLE ,,...|...,|...,|...,...maxargˆ,ˆ
11111,

==
 



AMSC 664 Final Project Report – Vasilis A. Sotiris 10

The classification probability of a set of test data X={x1,…,xk}, into a binary classification c={1,0} is given 
by a product Bernoulli distribution 

( ) ( )∏
=

−−=
k

i

c
i

c
ikk

ii ppxxccp
1

1
11 1..|...

 
where pi is the probability of classification (22) when c=1 (y=+1) and 1-pi is the probability of 
classification when c=0 (y=-1). By taking the log of the likelihood, setting its first derivative to zero and 
solving for A and B, we can get the maximum likelihood estimate for AMLE and BMLE, and in turn estimate 
piMLE. In this project we skip the MLE and set A to 1 and B to 0. 

The evaluation of D(xi) and sign(D(xi)) give the distance from D(x)=0 and the class label respectively. 
Alternatively, in this project, a function F(x) is used instead of D(x), which computes the Euclidian distance 
of x to the mean of the sample data, which usually is the origin. Data x can be evaluated with this model 
with 

( )
ww
bxwxF

T

T +
=)(    (23) 

where w and b are parameters estimated through the support vector classification solution. This approach 
seems to provide better results than the former, as evident in the results obtained from two case studies 
discussed at the end of the report. Other distance based probability calibrations involve computing the 
distance of x to D(x)=0, but have not been used in this project.   

7. Joint Posterior Probability Model 
The end objective of the project is to compute a joint posterior class probability based on the separate 

and independent results from each lower dimensional model, for example, in this project the model 
subspace [M] and the residual subspace [R]. The joint result will provide a final classification with 
associated final positive and negative posterior class probabilities. This result is anticipated to give a more 
accurate estimate of the classification of the data X=x. The conditional joint posterior class probability is 
expressed in equation (24) with the assumption (supported earlier) that the random variables xM and xR are 
independent.  
 

( ) ( ) ( )yxPyxPyxxP RMRM ||| =    (24) 
 
according to Baye’s rule: 
 

( ) ( ) ( )
( )RS

RS
RS xxP

yPyxxP
xxyP

|
| =   ( ) ( ) ( )

( ) ( )∑
=

y
RS

RS

yPyxxP
yPyxPyxP

|
||  

( ) ( ) ( ) ( )
( ) ( ) ( )∑

=

y
RS

RS
RS yxPyxPyP

yxPyxPyP
xxyP

,,1
,,1

|  

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∑

=

y
RS

RS

yPxyPyPxyPyP
yPxyPyPxyP

yP ||1
||1 ( ) ( ) ( )

( ) ( ) ( )∑
=

y
RS

RS

yPxyPxyP
yPxyPxyP

||
||  

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1|1|11|1|1
||

−=−=−=++=+=+=
=

yPxyPxyPyPxyPxyP
yPxyPxyP

RSRS

RS  

 
where xR =[xR1, xR2,…,xRn] ∈ R1xm is the posterior class probability random vector from the principal 
subspace and , xS=[xS1, xS2, …, xSn] is the posterior calss probability random vector from the residual 
subspace, and as before n is the number of sample observations, y is the class membership {-1 or +1} and 
D(x) the SV classifier predictor model. In the joint probability model, P(y=c|xS) is the probability that data 
point xM  is classified as class c in [M], P(y=c|xR) is the probability that data point xR is classified as c class 
in [R], and P(y=c|xS,xR) is the final conditional joint probability that x is classified as class c, where c ∈ C = 
{-1,+1}. The main assumption is that the random variables on each subspace are independent, which allows 
formulating: therefore, the final joint probabilities of positive and negative classification are given by (25) 
and (26). 
 



AMSC 664 Final Project Report – Vasilis A. Sotiris 11

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1|1|11|1|1

1|1|1
)( −=−=−=++=+=+=

+=+=+=
=∏ + yPxyPxyPyPxyPxyP

yPxyPxyP

RSRS

RS  (25) 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1|1|11|1|1
1|1|1

)( −=−=−=++=+=+=
−=−=−=

=∏ − yPxyPxyPyPxyPxyP
yPxyPxyP

RSRS

RS  (26) 

 
The final probability vectors are smoothed using an exponential smoothing approach which averages 

the signal of a time series of classification probabilities as a function of time  
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )01...2111)( 2 xtxtxtxtS tαααα −++−−+−−+=    (27) 
 
The inputs, x is the joint positive posterior class probabilities and y the joint negative posterior class 
probabilities and the outputs are the exponentially smoothed joint positive/negative posterior class 
probabilities. The parameter α is chosen to give 95% of the weight to the current probability estimate, 
α=0.95. 

8. Application to Lockheed Martin Data-Set 
To test the proposed algorithm we used a data-set extracted from Lockheed Martin servers, X ∈R nxm 

where n=2471 observations and m=22 parameters which we name p1 through p22. Three failure periods are 
known a priori, identified in the data and labeled as fi. The failure periods are identified to occur during 
observations 912 – 1040, 1092-1106 and 1593-1651. The first 800 observations were used as the positive 
training class, whereas the remaining data was used as the test data. The training data was reduced to 140 
samples chosen randomly from the original 800. The results of the algorithm (Figure 6) show promise, 
having detected the first two successive periods of anomaly, namely those between 912 and 1040, shown 
here between 112 and 240, and between 1092 and 1106 shown here between 292 and 306. The third 
anticipated faulty period was identified to start at observation 1593, shown here as observation 793, instead 
the algorithm starts to identify anomalies starting at observation 500, and indicates the system as faulty 
throughout the remainder of the data set. The lower joint probabilities in the second and third period of 
“healthy” behavior are due to the smoothing applied to the raw joint posterior probability time series, as 
described earlier. 

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation #

Pr
ob

ab
ili

ty

 
Figure 6 – Joint posterior class probabilities for test data 

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Observation

Pr
ob

ab
ili

ty

CALCEsvm LibSVM

 
Figure 7 – Joint posterior class probabilities for CALCEsvm and LibSVM for the detection of the first 

faulty period 



AMSC 664 Final Project Report – Vasilis A. Sotiris 12

 
CALCEsvm results were compared to commercially available and widely used support vector classification 
software called LibSVM. The setup for LibSVM used its two class C-SVC setting with input the training 
data used in CALCEsvm. Because the one-class SVM in LibSVM does not provide posterior class 
probabilities, the negative class training data were taken from the output estimate of CALCEsvm. 
Therefore the comparison was made between two, two-class svm algorithms. The option settings used for 
LibSVM are: 

-s svm_type : 0 -- C-SVC 
-t kernel_type : 2 -- radial basis function 
-d degree : 1, degree in kernel 
-c cost : 150, margin penalty parameter 
-e epsilon : 1e-5, setting for tolerance of termination criterion 
-b probability_estimates: 1, outputs class probabilities into file. 
 

The accuracy comparison was performed through three tests: a) a direct comparison of the quadratic 
optimization results: the objective function , the sum of the lagrange multipliers, and the number of support 
vectors, b) detection accuracy based on class index only and c) detection accuracy based on range of 
probabilities. 

Model Subspace Residual Subspace
CALCEsvm LibSVM CALCEsvm LibSVM

b0 0.1808 0.1808 0.0995 0.0995
w2 15.4 7.7 14.7 5.6
epsilon 0.00015 0.000603 0.00015 0.000509
nSV 24 23 14 14  
Table 1 – Optimization results for CALCEsvm and LibSVM 

 
Where b0 is the bias term, w2 is the objective function equal to αTHα, where α ∈ R1xn is the lagrange 
multiplier vector and H ∈ Rnxn is the Hessian matrix, where n is the length of the svm training data. 
Parameter epsilon is the tolerance of the termination criterion, and nSV are the total number of support 
vectors. The results in Table 1 indicate that the performance of the software is comparable with difference 
found in the objective function. The number of support vectors found was the same as well as the bias term. 
The difference in the objective function parameter is an indication to their respective classification output 
for the Lockheed data set discussed next. 
 
The second and third tests compared the detection accuracy of the two software related to the known 
periods of anomaly. Each test file was coded with a column variable z ∈ {-1,+1} indicating the known class 
of each observation. LibSVM counts the number of misclassified observations based on the coded variable 
z. Table 2 shows the accuracy results comparing LibSVM to CALCEsvm output. The first column in the 
table shows the detection accuracy based only on the class index, whereas the second column shows the 
detection accuracy based on a probability index. In the first comparison both performed almost identically, 
but the second comparison shows a clear favor towards CALCEsvm.  
 

Detection Accuracy 
based on class 
index

Detection Accuracy 
based on probab.

99.60% 30.50% 0.8 1
100.00% 0 0.4

99.60% 30.50%
100.00%

100.00% 98.10%
100.00%

Ranges of probabilities

CALCEsvm output 

Libsvm Output residual test

Libsvm Output model test

 
Table 2 – Comparison of LibSVM and CALCEsvm detection accuracy 

 
The second comparison was performed based on a probability index reflecting the expert knowledge of the 
system “health”. This index therefore pertains to a belief and is subjective to the user settings. Non the less, 
this index is based on an intuitive argument, namely: that since the posterior class probabilities reflect the 



AMSC 664 Final Project Report – Vasilis A. Sotiris 13

certainty/uncertainty of the classification/detection, then a known “healthy” and or known “unhealthy” 
observation should be associated with high and low probabilities respectively. In the Lockheed data-set 
there are two system levels: “healthy” and “faulty”, both of which are entirely known for the whole data 
set. The “healthy” level is set to be represented by posterior class probabilities between 0.8 and 1. In light 
of these explanations, CALCEsvm had 0% error in its detection accuracy as opposed to a much reduced 
performance from LibSVM. The reason LibSVM performed at 30.5% accuracy is because two out of three 
periods with “healthy” level operation where captured with a posterior class probability at around 0.75 to 
0.78. LibSVM as did CALCEsvm captured the faulty periods with 100% accuracy. These results reflect the 
comparison for this specific data-set. For complete and more concrete comparisons more testing and 
validation is needed. 

9. Application to a Simulated Degradation 

A second case study is performed using a simulated correlated data set consisting of three random 
variables from three different but dependent distributions to construct the training set. The objective in this 
case study is to test the algorithms in a setting in which a system is degrading, and in which the degradation 
takes place in the presence of considerable noise. Copulas are used to build a simulation model consisting 
of three random variables: Gamma(2,1), Beta(2,2), and t(5). Copulas are functions that describe 
dependencies among variables, and provide a way to create distributions to model correlated multivariate 
data. A bivariate copula for example is a probability distribution on two random variables, each of whose 
marginal distributions is uniform. These two variables may be completely independent, deterministically 
related (e.g., U2 = U1), or anything in between. The family of bivariate Gaussian copulas is parameterized 
by ρ= [1 ρ; ρ 1], the linear correlation matrix. U1 and U2 approach linear dependence as ρ approaches +/- 
1, and approach complete independence as ρ approaches zero. Using a copula, one can construct a 
multivariate distribution by specifying marginal univariate distributions, and choosing a particular copula to 
provide a correlation structure between variables. Bivariate distributions, as well as distributions in higher 
dimensions, are possible. The Gaussian and t copulas are known as elliptical copulas and can generalize 
higher number of dimensions. Here we simulate data from a trivariate distribution with Gamma(2,1), 
Beta(2,2), and t(5) marginals using a Gaussian copula. 

Test data where generated from the trivariate distribution of Gamma, Beta and t random variables and 
is setup such that three degradation periods are generated. The first period is designed to be “healthy”, the 
second introduces a shift in each variable separately while maintaining the correlation structure, and the 
third period a larger shift in mean. The anticipation is that the algorithm will capture the trend of 
degradation present in the simulated data, and correctly classify each observation according to some event 
rules, similar to those applied for the Lockheed data, but in this case with more event levels, specifically 
four event levels illustrated by the CALCEsvm output shown in Figure 8. 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation number

P
ro

ba
bi

lit
y

P1 P2 P3 P4

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation number

P
ro

ba
bi

lit
y

P1 P2 P3 P4

 
Figure 8 – Joint positive posterior class probability for simulated degradation levels P1 through P4 
 

The CALCEsvm results are shown in Figure 8, with the four periods identified by breaking perforated lines 
and an index P1 through P4, where P1 is the indentifier for the “healthy” period, with mean equal to 
nominal, and P2 through P4 have successively increasing changes in mean. The result of the algorithm 
shows the ability to capture the trend of simulated degradation in the presence of considerable noise. The 
beginning period that shows a dip in the probability estimate is a direct result of an initial oversmoothing 
(implementation of the exponential smoothing). The larger result though is the algorithms ability to 



AMSC 664 Final Project Report – Vasilis A. Sotiris 14

correctly classify the data for each period of operation and to capture the trend. CALCEsvm results where 
compared to the results obtained from LibSVM and tabulated in Table 3. The probabilities as in the 
Lockheed Martin case study, again reflect a belief about the interpretation of the posterior class 
probabilities. In this case, posterior class probabilities between 0.8 and 1 are acceptable for a “healthy” 
system, probabilities between 0.7 and 0.85 acceptable for the next level of “health” allowing for some 
overlap, and so on. 
 

Based on 
Class Index

Based on 
Probability

1 1 0.8 1
0.038 0.144 0.7 0.85
0.29 0.46 0.3 0.7
0.88 0.79 0 0.4

Ranges for probability

Libsvm Output

 

Based on 
class index

Based on 
probability

1 0.8125 0.8 1
0.038 0.317 0.7 0.85
0.29 0.31 0.3 0.7
0.88 0.84 0 0.4

Ranges for 
probability

CALCEsvm output 

 
Table 3 – CALCEsvm and LibSVM accuracy results for simulated case study 

 
The comparison of accuracy results based on the class index show that both algorithms performed virtually 
identically for the given probability ranges. Both CALCEsvm and LibSVM had a detection accuracy rate of 
100% in P1, noticeably in P2 both algorithms perform poorly, and improve in P3 and P4 to 88% when the 
degradation becomes more distinct.  The comparison of accuracy results based on the posterior class 
probabilities shows a slight improvement in the performance of each algorithm for P1, and about the same 
performance for the other periods. CALCEsvm performed better than LibSVM in detecting the anomalies 
with the appropriate probability in periods P2 through P4. Figure 9 plots the detection accuracy of 
CALCEsvm and LibSVM vs the start value for the probability index for level 2 (P2). For example, from 
the plot, it can be seen that when the lower bound on the probability index  is 55% and the upper limit fixed 
at 100% CALCEsvm has a detection accuracy of 96% versus approximately 89% for LibSVM. 

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Start range

A
cc

ur
ac

y

LibSVM CALCESVM

 
Figure 9 – Comparison of CALCEsvm and LibSVM detection accuracy for level 2 (P2) 

 

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Start range

A
cc

ur
ac

y

 
Figure 10 – Comparison of CALCEsvm and LIbSVM detection accuracy for the simulation case study for 

operation level 3 (P3) 



AMSC 664 Final Project Report – Vasilis A. Sotiris 15

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Start Range

A
cc

ur
ac

y

LibSVM CALCESVM

 
Figure 11 – Comparison of CALCEsvm and LibSVM detection accuracy for the simulation case study for 

operation level 1 (healthy) 
 
In Figure 11 the accuracy of CALCEsvm is sharply reduced when the requirement of the probability index 
becomes more stringent. Here for example, when the lower bound on the probability index is 90% and the 
upper 100%, CALCEsvm has a low ~10% detection accuracy, whereas LibSVM has a much better 
performance 100%. This result here as mentioned earlier is due to the over-smoothing of the joint 
probabilities in the early stages (can also be seen in Figure 8). 

10. Summary and Conclusions 
 
At the start of the project the goal was to develop an algorithm based on a support vector machine 
framework that would detect the onset of anomalies in multivariate systems. In the absence of fault and 
failure data, the objective grew to include estimating that information in a conservative approach through 
the use of non-parametric density estimation. The needs of the algorithm grew to accommodate required 
functionality and modifications to enhance the accuracy of detection; the nearest neighbor optimization of 
the density estimation bandwidth, an optimal grid selection for the estimation of the negative class, 
posterior class probability calibration through distance computations, etc. The decomposition of the 
training data into two lower dimensional models was useful because it allowed detection on each 
separately, and from each to extract different performance degradation characteristics. The end joint 
posterior classification probability tied together the results from each model to determine the “combined 
effect” detection.  

To test and validate the CALCEsvm implementation of these algorithms, simulated and real data were 
used against both CALCEsvm and commercially available software for support vector machine analysis 
called LibSVM. A simulation test-bed was created to model time series data indicative of a degrading 
multivariate system, with correlated system parameters. Metrics were used to measure the detection 
accuracy of both algorithms based on a) the class index only, b) on their posterior probability estimates for 
known system states, and given probability ranges. It was found from the two case studies that CALCEsvm 
performed on average better than LibSVM. These results are not in any way generalizable, and need 
extensive cross-validation. The point is that for these metrics and this particular data CALCEsvm so a 
favorable performance in constract to LibSVM. 

Allthough the CALCEsvm implementation proved successful in meeting the goals set in this project 
and has proven useful for detection in multivariate systems, it has some limitations and areas for great 
improvement. Its limitations lie in two key areas: a) The estimation of the negative class can in many cases 
be over-conservative, depending on how the user specifies the threshold τ, and or if the number of training 
samples is to small. Also, in this area a limitation also arises in the selection of the grid size and dimension. 
Not much attention has been put into automating and optimizing the grid construction as to best and most 
accurately compute the kernel density estimation. The second key area is decomposition of the training data 
into two dimensional subspaces. This was used in this project because KDE on higher dimensional spaces 
is costly and therefore time consuming. For a proof of concept in this project we only used two dimensional 
subspace models. This was also designed to better visualize the data and validate the results. In many 
circumstances, especially when the multivariate data are highly correlated then two dimension are 
potentially justifiable and reasonable. For the Lockheed data for example, retaining only two dimensions to 
construct each subspace model only retained 45% of the original information available in the training data. 
In data sets with more than 6 or 7 parameters, usually more than two dimensional models are required. In 
the same are, another limitation is the fact that only one residual model was used, totaling two subspace 
models. This was again done to keep computational time low. A parallel processing approach that could 



AMSC 664 Final Project Report – Vasilis A. Sotiris 16

run the classification independently in each of the possible combinations of residual models as shown in 
Figure 2 could have enhanced the detection accuracy of the algorithm and reduced the influence of noise. 

 

11. Acknowledgements 
 
I would like to thank Dr. R. Balan for his help, patients and time spent discussing the project with me, 

as well as Dr. A. Zimin for constructive feedback and ideas throughout the course. I would also like to 
acknowledge my advisor Dr. M. Pecht for his guidance, motivation and support of my ideas and work. 

 



AMSC 664 Final Project Report – Vasilis A. Sotiris 17

12. Appendix A 

CALCEsvm Functions 
 
Function calcesvm.m – is the main function to call 
 
>>out=calcesvm(ker,p1,C,straind,datatype,plottype), and replace ker by ‘rbf’, p1 by the degree of the 
kernel, usually 1, the margin penalty paremter, usually 100 to 150, the size of the training data, which is 
used in simulations, the data type, choose ‘sim0’, ‘sim1’, etc… for various degradation simulations, use 
‘load’ to load an excel file, and ‘input’ to  type in the data. For plottype, set to ‘on’ to view the result plots. 
 
>>[pos,t]=getdata(datatype,straind); – code to simulate or load file. Currenlty there are five simulations 
‘sim0’ through ‘sim4’, each of which has a different model for degradation. Input: the user input command 
on simulation or input or load and the size of the data if simulation. Output: the positive class data matrix 
pos and a test data matrix t. 
 
 >>[pos,t]=normalize(pos,t); – code to normalize training data X and test data T by subtracting by the 
mean of the training data and dividing by its standard deviation for both. Input: the positive class data pos 
and the test data matrix t. Output: the normalized pos and t. 
 
>>[posm,tm,k]=pca('m',pos,t); - code to decompose X into two lower dimensional subspaces according to a 
linear principal component analysis. The principal subspace is constructed using the first two principal 
components and the residual subspace the two last. Input: the principal or residual model indication ‘m’ or 
‘r’, the positive class and the test data. Output: the transformed positive class and test data, and the model 
dimension k. 
 
>>[gm,negm,dm,cm,xcm,ycm] = parzen2a(posm(:,[1:k]),xmin,xmax,ymin,ymax,a,b); - This function 
estimates: 

a) the kernel density of the positive class dm 
b) the negative class negm 
c) the contour plots of the positive class cm 
 

and provides the grid points used for the kernel density estimation xcm and ycm. Input: the transformed 
positive class data for either the principal or residual subspace, the dimensions of the grid for the KDE. 
Currently this is set manually to allow user to optimize the dimensions to best estimate the negative class. 
User set parameters a and b which are used to better define a threshold τ with which to construct the 
negative class. The threshold t is inversely proportional to a, t ∝ 1/a, large values for a make the threshold 
more strict. Parameter b takes values between 1 and 2 (although can take any non-negative value) and it 
regulates the size of the negative class, values of b close to 1 minimize the size of the negative class. This is 
important to keep the computations (for this code) reasonably fast. 
 
Within parzen2a.m there are three functions: 
 
>>sigma=smoothparam(pos,pos(j,:),length(pos)); - This function estimates the optimal band width sigma 
for each data point pos(j,:) by counting the nearest neighbors. The required size of nearest neighbors is 
taken as the square root of n, the total number of samples. 
 
>>pos=cleanpos(pos,L); - This function is used to clean (delete data with low likelihoods) the positive class 
data pos based on their likelihood L.  
 
>>[p,c,neg]=negclass(pos,p,x,y,mar,a,b); - This function is used to estimate the negative class based on the 
positive class pos data and their corresponding likelihoods p. Input: positive class data pos, positive class 
likelihoods p, grid coordinates x, y, threshold mar (τ), and parameters a and b described above. Output: The 
new density profile p and contours c for the given grid that includes altered densities that reflect the 
coordinates of the negative class (colored in orange). And the estimate for the negative class neg. 
 
>>[b0m,alpham,epsilonm,wm]=svc(C,n,ker,xm,ym); - This function is called from calcesvm.m and is the 
core support vector classification part of the algorithm. Input: the margin penalty parameter C, the samples 
size n, the kernel used, the training data for either the principal model xm and its corresponding class index 



AMSC 664 Final Project Report – Vasilis A. Sotiris 18

vector ym or the residual model xr and its corresponding class index vector yr. Output: the quadratic 
optimization solution parameters. 
 
Whithin svc.m there are three functions: 
 
>>svkernel(ker,X(i,:),X(j,:)); - This function computes the appropriate kernel for the given data. Usage: k = 
svkernel(ker,u,v). Parameters: ker - kernel type u,v - kernel arguments Values for ker: 'linear', 'poly' - p1 is 
degree of polynomial’, 'rbf'     - p1 is width of rbfs (sigma). 
 
>>[alpha lambda how] = qp(H, c, A, b, vlb, vub, x0, neqcstr); - This function computes the quadratic 
optimization problem. Input: the Hessian matrix H, c a unit vector, A class label vector, b=0, vlb and vub 
set the bounds for the support vectors, x0 starting point is zero (vector), and neqcstr sets the number of 
equality constraints (1 or 0) to 1. 
 
>> Dsm=distance(dsm(:,1:k)',zeros(size(dsm(:,1:k),2),size(dsm(:,1:k),1))); - This function computes the 
Euclidean distance between two vectors A and B. ||A-B||=sqrt(||A||2 + ||B||2 -2.A.B). Input: test data and 
origin. 
 
>>[classm,idxm,pnm1,ppm1]=svmDetection(xm,ym,b0m,alpham,epsilonm,ker,tm(:,1:k)); - This function 
computes the class index and the posterior class probabilities for the test data tm and tr. The probability 
calculation pnm1 and ppm1 are based on evaluating tm on D(.), ppm1=1/(1+exp(D(tm))), pnm1=1-ppm1. 
The class is determined by sign(D(x)) = sign( SUM(y(i)*alpha(i)*K(xi,x)), i=1:n. Input: the training data 
(positive + negative), class labels, SVM parameters, kernel function and the test data. Ouput: class index 
classm and classr, index, and posterior class probabilities ppm1 and pnm1. 
 
>>[pnm,ppm]=probfit(Dsm(:,1),classm); - This function provides the alternative posterior class probability 
calculations based of F(.), distance from the origin. Input distances from origin and class index. Output, 
posterior class probability based on distance from origin. 
 
Plotting options 
 
>>zs=plotsvc(xm,ym,b0m,epsilonm,alpham,ker); - This function plots the positive and negative class data 
as well as the predictor function D(x), and the support hyperplanes at D(x)=-1 and D(x)=+1. 



AMSC 664 Final Project Report – Vasilis A. Sotiris 19

13. Appendix B 
 
Project Schedule 
 

 
 
The schedule was focused on six stages, listed in the schedule gant chard above. A) Development of a principal component analysis code to transform the data into lower 
dimensional subspace models. B) Develop the framework for the support vector machines developing most of the code from scratch except for the quadratic optimization 
algorithm. C) Develop the code for the posterior class probabilities and the final joint probability calculations. D) Develop the kernel density estimation code and integration to a 
support vector machine analysis. Also develop code for the optimal bandwidth selection using a nearest neighbor approach. E) Develop code to simulate correlated multivariate 
data that simulate a degrading system. Acquire real data from Lockheed Martin with identified faults and failures. Develop a database to access the information easily. F) Develop 
a methodology and code to test, validate and compare the CALCEsvm accuracy results to a commercially used SVM software, LibSVM. Document code and write up reports. 



AMSC 664 Final Project Report – Vasilis A. Sotiris 20

14. References 
 

A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, “Probabilistic Outputs for Support Vector Machines 
and Comparisons to Regularized Likelihood Methods”, Advances in Large Margin Classifiers, pp. 61-74, 
MIT Press, (1999). 

 
H. T. Lin, C. J. Lin, R. C. Weng, “A note on Platt's probabilistic outputs for support vector machines”, 
Machine Learning, Vol 68, 3, pgs 267 – 276, October 2007 
 
W. Chu, S.Sa.Keerthi, C.J.Ong, “A New Bayesian Design Method For Support Vector Classification”, 
Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'OZ) , Vol. 2 

 
G. Yves, M. Johnny, B. Samy, “A Probabilistic Interpretation of SVMs with an Application to Unbalanced 
Classification”, Advances in Neural Information Processing Systems, NIPS 15, 2005 

 
J. Gao, P. N. Tan, “Converting Output Scores from Outlier Detection Algorithms into Probability 
Estimates”, Proceedings of the Sixth International Conference on Data Mining, pp 212-221, 2006 

 
D. Tax, P. Juszczak, "Kernel whitening for one-class classification," Proceedings of the First International 
Workshop on Pattern Recognition with Support Vector Machines, pp 40 – 52, 2002 

 
P. J. Moreno, P. P. Ho, N. Vasconcelos, “A Kullback-Leibler Divergence Based Kernel for SVM 
Classification in Multimedia Applications”, Advances in Neural Information Processing Systems 16, MIT 
Press 
 
C. J. C. Burges. "A Tutorial on Support Vector Machines for Pattern Recognition". Data Mining and 
Knowledge Discovery 2:121 - 167, 1998 
 
 
 

 
 
 
 
 
 

 
 


