
 1

Anomaly detection through Probabilistic
Support Vector Machine Classification

- Part I -

Vasilis A. Sotiris

Department of Mathematics
PhD Candidate in Applied Mathematics and Scientific Computation

University of Maryland, College Park, MD
vsotiris@math.umd.edu

Michael Pecht

Department of Mechanical Engineering
Director of the Center for Advanced Life Cycle Engineering (CALCE)

University of Maryland, College Park, MD
 pecht@calce.umd.edu

Abstract

Probabilistic Support Vector Machine Classification (PSVC) is a real time detection and
prediction algorithm that is used to overcome assumptions regarding the distribution of the data. Its
classification output is complemented with a probabilistic cost function and incorporates a degree of
uncertainty in its predictions. Computationally, this algorithm is fast because it performs the classification
using only a fraction of the original data.

This project investigates the use of support vector machines (SVMs) to detect anomalies and
isolate faults and failures in electronic systems. The output of the SV Classifier is calibrated to posterior
probabilities thus improving the classical SVM deterministic predictor model to a more flexible
probabilistic “soft” predictor model. This result is desirable because it is anticipated to reduce the false
alarm rate in the presence of outliers and allow for more realistic interpretation of the system health. This
report also investigates the use of a linear principal component decomposition (PCA) of the input data into
two lower dimension subspaces in order to decouple competing failure modes in the system parameters and
uncover hidden degradation features. The SV classification is then used in the two extracted orthonormal
subspaces to determine a predictor model for each subspace respectively. A final decision function is
constructed with the joint output of the two predictor models. The approach is tested on simulated and real
data and the results are compared to the popular LibSVM software.

This project will attempt to address some present issues in health monitoring of electronic
systems: a) reduction of false negative alarms in the training stage b) reduction false positive alarms in the
training stage c) identify hidden degradation of system parameters and d) investigate the presence of
intermittent faults in healthy system performance.

Introduction

With increasing functional complexity of on-board autonomous systems, there is now an
increasing demand for early system level health assessment, fault diagnostics, and prognostics. In the
presence of high complexity and remote inaccessibility, the health of electronic parts and systems is
difficult to monitor, diagnose and predict. Due to the micro scale packaging and material properties of the
integrated components on electronic systems, performance and physics of failure (PoF) models are still
uncommon and or intractable in application. There is a need for a fast and dependable way to detect when
these systems are degrading, or have sustained a fault or failure that is critical. Also there is a need to
predict their remaining useful life. In the absence of sustainable PoF models, a data driven approach in the
machine learning framework is suitable for the first task, that of anomaly detection.

A critical part of detection and in general health monitoring is the management of false and
positive alarms. Decisions made by the algorithm will not always be ideally 100% accurate, and

 2

management of this accuracy is important. False alarms occur in the training and in the evaluation stage. In
the training stage, the algorithm uses the training data to construct the predictor model, a model that will
function as a decision boundary, inside of which incoming new observations will be classified as
positive/healthy and outside of which negative/abnormal. Note that a negative classification is not
necessarily unhealthy, but is at least abnormal. The diagnosis of health will need to consider other factors
including further knowledge of the system itself. In the training stage, false alarms occur when some
training data are misclassified; theoretically all training data should belong to the positive class. In the
evaluation stage, the algorithm classifies new observations against the predictor model constructed in the
training stage. Here false alarms refer to the algorithms generalization ability to correctly classify data for
the system it was training on. High false alarm rates can be indicative of bad training or indeed an
unhealthy system.

Existing approaches to health monitoring are more rudimentary and include the use of (1) built-in
devices such as canaries and fuse devices that fail earlier than the host product to provide advance warning
of failure; (2) monitoring and reasoning of parameters, such as shifts in performance parameters,
progression of defects, that are precursors to impending failure; and (3) modeling stress and damage in
electronics utilizing exposure conditions (e.g., usage, temperature, vibration, radiation) coupled with
physics–of–failure (PoF) models to compute accumulated damage and assess remaining life [1], [2].
Traditional univariate analyses analyze each parameter separately whereas an SVM approach evaluates the
data as a whole, trying to differentiate or characterize the mixture of information without necessarily
requiring all the system parameters. This is especially true when working with complex electronic systems,
where hundreds of signals can coexist in the sample and it is very difficult to identify every single
contributor to the final system output. The SVM approach will take advantage of the overlapping
sensitivities and process the information generated by these sensors to improve the resolution and accuracy
of the analysis, be much more economical and easier to build.

Methodology

An important consideration for this work is to design a detection algorithm that can be used in real
time, which means that it has to be fast and robust. A main focus is to process high dimensional and
correlated parameter information fast without compromising the original information. For this, a Karhunen-
Loev decomposition is used to compress the training data into two lower dimensional distributions; one that
estimates the maximum variance and the other the error in the Karhunen-Loev model selection [6]. The
compressed data will retain most of the original information and provide insight to the variance of the
system, which can be used to detect anomalies, which is anticipated to enhance the interpretation of the
SVM output.

 3

PCA
Model
R kxm

Residual
Model
R lxm

PCA Model
Decision boundary

Residual Model
Decision boundary

D2(y2)

Posterior Class
Probabilities

p

0

1

0
D(x)

-1 +1
0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Posterior Class
Probabilities

p

Probability
matrix

Probability
matrix

Health
Decision

Trending of
joint
probability
distributions

Joint
Probabilities

Baseline
Population
Database

Input space R nxm

Training data

PCA

D1(y1)

New
Observation
∈ R 1xm

SVC

SVC

PCA SVC
Probability
Model

Figure 1 – Algorithm flow chart

Figure 1 illustrates the approach methodology. The multivariate training data X ∈ Rnxm where n is

the number of observations and m the number of parameters. The Karhunene-Loev, or otherwise known as
Principal component analysis (PCA), decomposes the signal into two orthonormal subspaces, the model [S]
and the residual [R] subspaces. The distribution of the projected data in the model subspace is used to
estimate the maximum variance in the original parameters and the distribution on the residual is used to test
the fit of the model to the data. Greater variance in the residual distribution is an indication of a poorly
chosen model subspace. In addition, the residual subspace is anticipated to uncover hidden behaviors in the
system degradation by highlighting abnormal variation in parameters that are overshadowed by dominant
ones.

The two resulting distributions are then used as the training stage for the SV classifier, which
constructs two predictor models D1(y1) and D2(y2) for each distribution respectively. The “training” of the
SV classifier is an important part of this work, and is further discussed in the implementation section of this
report. For now, these predictor models are constructed by using the given PCA output from two subspaces
and a distribution of negative class data. One class classifiers would be more appropriate in this situation
where negative class data (representing faulty behavior) are not available. A soft decision boundary can be
constructed by fitting the training data with a likelihood function that maps SVM output to posterior
probabilities. In the evaluation stage, a new observation is processed through the same algorithmic steps; it
is projected onto the model and residual subspaces and classified with the SVM predictor model. The new
observation will be classified twice and with two probabilities. The joint class probability from the two
subspaces will in the end be used for the decision classification.

Support vectors produce an uncalibrated value that is not a probability. By constructing the
classifier to produce a posterior probability P(class|input) the predictor model can benefit from an
uncertainty to each prediction and give realistic interpretations for the classification output. The soft
decision boundary can reduce the number of false alarms in both the training and evaluation stage by
accepting new observations inside the SVM predictor boundary and also within the soft boundary. The
issue of hidden degradation can be addressed with the PCA decomposition of the input space, where the
residual subspace can uncover parameters that are overshadowed by dominantly varying ones.

Principal Component Analysis

Subspace decomposition into Principal Components can be accomplished using singular value
decomposition of matrix the input data X [3] [4]. The SVD of data matrix X, is expressed as X=USVT,
where S=diag(s1,…,sm) ∈ Rnxm, and s1>s2>…>sm. The two orthogonal matrices U and V are called the left

 4

and right eigen matrices of X. Based on the singular value decomposition, the subspace decomposition of X
is expressed as:

T
rrr

T
sssrs VSUVSUXXX +=+= (1)

The two orthogonal matrices U and V are called the left and right eigen matrices of X. The signal

space Ss is defined by the PCA model and the residual subspace Sr is taken as the residual space. The
diagonal Ss are the singular values { s1,…,sk }, and { sk+1,…,sm } belong to the diagonals of Sr. The set of
orthonormal vectors Us=[u1,u2,…,uk] form the bases of signal space Ss. SVD is employed as a matrix
algebra tool to perform the projection required for the subspace decomposition of the signal. The original
data is decomposed into three matrices, U, S and V, where matrix U contains the transpose of the
covariance eigenvectors. The original data X is projected onto the signal subspace as defined by the PCA
model. It is furthermore desirable to use the SVD because we can express the projection in terms of
existing information, that is: the eigenvectors of the covariance of the original data X.

y

x

u

v

Vp

v-pu

O

y

x

u

v

Vp

v-pu

O
Figure 2: Two dimensional illustration of a subspace decomposition.

Figure 2 illustrates the projection pursuit using a two-dimensional projection example, where vector v

is projected onto model u. Essentially what is required is a vector Vp which represents the projection of v
onto u. Vector Vp can be expressed as pu, where p is a scalar and u is a unit vector for the model. The
model in this example can be expressed in terms of the unit vector u. The best projection is the one that
minimizes the residual in (3).

upvr rrr
−= (2)

The equations for the projection vector and residual vector are given by equation 4 and 5 respectively:

()uuvV T
p

rrr
= (3)

()uuvvr T rrrrr
−= (4)

The dot product of orthogonal vectors should equal zero, therefore the residual vector r should be
perpendicular to all of the basis (unit) vectors u, such that:

() 0=− upvu T rrr
 (5)

Solving for p to gives

0=− puuvu TT rrrr
 (6)

 which gives an optimal p,

() vuuup T
opt

rrrr 1−
= (7)

In terms of the projection matrix H, the model can be formulated as:
vup rr

Η= (8)

 where

() vuuuu T rrrrr 1−
=Η (9)

In terms of the SVD of X, the projection matrix H can be expressed as UUT where u=USVT. Then the
projection of vector v can be expressed as:

 5

vUUV T
p = (10)

and the residual vector as:

()vUUIr T−= (11)
 The projection matrix Ps onto the signal subspace is therefore given by:

T
sss UUP = (12)

The residual subspace is the orthogonal complement of the signal subspace and the projection of the
original data onto it can be expressed as

sr PIP −= (13)
Any vector x can be represented by a summation of two projection vectors from subspaces Ss and Sr.

xPIxPXXX ssrs
rr)(−+=+= (14)

Support Vector Machines

The training data (xi,yi) in each subspace, x ∈ Xm, an the class yi ∈ {+1,-1}, i=1,…,n can be

separated by the hyperplane decision function D(x) with appropriate w and b. The classification problem
can be states as:

min!½ (||w||2) = ½ wTw (15)

s.t. y(xi) = sign [wTxi + b] – 1 ≥ 0 (16)

where w = [w1,…,wn]T is the weight vector of the hyperplane and x = [x1,…xn]T the training data.
Therefore, training data x with yi = +1 will fall into D(x) > 0 while the others with yi = - 1 will fall into D(x)
< 0. The separating hyperplane will function as the predictor model and is chosen to maximize the distance
between the two classes, a distance called the margin M = 2 / ||w||, called the objective function. The
objective function is penalized by adding an error term ξ to the optimization equation:

∑
=

+=
n

i
i

T CwwbwD
12

1),,(ξξ (17)

where C is the margin penalty parameter that determines the trade-off between the maximization of the
margin and minimization of the classification error, and therefore the false alarm rate.

Support Vector Machine Training

The training stage of the SVM is critical. With negative class data (fault information) the task is
relatively easy because the boundaries between negative and positive class is given and a separation
boundary can be computed. In cases where system faults and especially failures are absent, training
becomes an issue. Whereas in the two class approach the training strategy is to generate an artificial
negative class based on human knowledge of system performance, the alternative one – class training
approach is investigated in this project. In the one – class training approach, data from the known positive
class are “converted” to negative class points. Logically these points should be chosen as the outliers of the
positive class, in other words, the task is to find the boundary of the positive class training data.

In one – class training one seeks to intelligently find areas of low data density in the training data
to assign the negative class. In this project we investigate the use of statistical decision theory to infer data
sufficient statistics such as the mean and variance and in such the data with associated maximum likelihood
for the negative class. Computational approaches using Kmeans, or Centroid Clustering will also be
investigated1.

1 One – class training will be developed as part II of this project

 6

Posterior Probabilities

One way of producing posterior probabilities for the SV classifier output D is to fit a sigmoid
function S [7] around it. An MLE estimate of its parameters optimizes the function to better fit the
distribution of the support vectors generated by SVM. The density function that best prescribes this
probability is the likelihood function computed based on the knowledge of the decision function values
D(xi).

x1

x2

D(x)

D(x)

Figure 3 – Maximum Likelihood Estimate of posterior class probabilities

The likelihood function illustrated in Figure 3 (right) is a result of the maximum likelihood estimate (MLE)
of the parameters a and b in:

() ()()bxaD
baDfyP

++
≡≈+=

exp1
1),,(1 (18)

where the probability of the class prediction (in this case being +1) is given by a parametric model f which
is a function of D, and the parameters a and b. So, the above equation says that the probability that a data
point x is positively (normal) classified is defined by an inverse exponential function [7]. The parameters a
and b in (18) are found by minimizing the negative log likelihood of the training data:

()∑
=

−−+−=
n

i
iiiiba

ptptF
1,

)1log()1()log(min (19)

()bxaD
p

i
i ++
=

)(exp1
1

2
1+

= i
i

yt

The minimization of (19) can be performed using any number of optimization algorithms. Each prediction
will be given as two probabilities for each subspace prediction, a total set of four probabilities. The joint
probabilities from the two predictors (model and residual) are used to formulate a final probabilistic
prediction.

Implementation

One of the main motivations in designing a detection algorithm is its generality; that is to be
suitable for a broad range of applications regardless of the data type or system purpose. For this, its online
computational performance characteristics are important factors in programming the algorithm into stand
alone software/tools, which should be able to perform on a standard dual processor PC with 2.2 GHz. A
proof of concept will be performed using Matlab in (.m) and (.mex) files. A C based code will be attempted
for the final tool. For the proof of concept, the quadratic programming solution to the quadratic
optimization problem will be addressed with existing matlab/C code available in LibSVM and other matlab

 7

based SVM code. Singular value decomposition will be used for computations of matrix inverses and
eigenanalysis. A complexity analysis of the algorithm will be provided and a discussion of potential
improvements noted. The tool will be called CALCEsvm.

Platt [7] uses a Levenberg-Marquardt (LM) algorithm to solve (19). The LM method was
originally designed for solving nonlinear least-squares problems. As an iterative procedure, at the kth step,
this method solves (19) to obtain a direction δk and moves the solution from zk to zk+1=zk+δk if the function
is sufficiently decreases. Here Hk is an approximation of the Hessian of the least-square problem, I is the
identity matrix and zk the sequence of iteration vectors.

)()(kkkk zFIH −∇=+ δλ (20)

It can be proven that the MLE optimization that (5) is convex [8] which allows for the use of more

efficient numerical optimization techniques such as Newton’s method with a backtracking line search,
which are fast and robust.

Testing and Validation

The Center for Advanced Life Cycle Engineering (CALCE) at University of Maryland has
extensive experimental data for electronic parts and systems under accelerated condition testing. The
testing plan will utilize two data sets:

a) A simulation of training data for a multivariate system with non-uniformly scaled parameter
distributions to simulate physically different measurements. The test data is identical to the training data,
but with artificially injected faults. The injected faults will also differ in degree, where one parameter will
be subjected to gross changes in variance while other parameters will be subjected to finer changes in
variance and other still to just Gaussian noise ~ N(0,σ2) and the remaining will be unchanged.

b) Experimental data for training and experimental data with faults and failures. The experimental
data includes intermittent faults and failures as part of the training and evaluation stage. The output of the
algorithm will be tested against the LibSVM software output on four categories: a) false negative and false
positive alarm rate for training stage b) False negative and false positive alarm rate for the evaluation stage.

c) Accuracy and timeliness in detecting known faulty periods, including intermittent faults d)
Computation time. Data will generally be stored in (.mat) or excel files.

 8

Midterm Results

In the first part of the project, SVM and PCA were combined and tested against a simulated data
set. The training data X ∈ R3x374 consist of three parameters (chosen for visualization purposes), and n =
374 observations. The test data t consists of three parameters and only 9 observations. Each row in the data
matrix X is considered an observation in time. An outlier in T is artificially injected (Table 1) at the fourth
observation, the remaining observations were taken out of the distribution of the positive class.

-2
-1

0
1

2

-4

-2

0

2
-5

0

5

10

XY

Z

Figure 4 – Raw data

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

P
C

2

PC1

Negative class

Figure 5 – Distribution of data on Model space

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

PC1

P
C

2

Figure 6 – Distribution of data on residual space

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

PC1

P
C

2

Abnormal Test point

Figure 7 – SVM prediction boundary

The application of the algorithm at this point, without the MLE optimization uses the PCA output

to train the SVM. Then the output of the SVM is tested against known faults, i.e., the injected outlier in the
test data set. Both the model and residual space were chosen to be two dimensional. With the appropriate
number of negative class data the algorithm does a good job at identifying the outlier. The current state of
the algorithms calls for a user defined number of negative class data points to look for. This task in itself is
a bottleneck in the analysis because a selection of too few negative class data points causes a larger
proportion of positive misclassification (that is estimating healthy when in fact the data is unhealthy) and a
selection of too many negative class data points causes a larger proportion of positive misclassification
(estimating unhealthy when in fact the data is healthy). For the purpose of part I of this project the size of
the negative class is chosen based on the user input only. For later analysis the plan is to optimize the size
of the negative class by minimizing the volume within the SVM generated boundary. This should

 9

theoretically converge to an optimum size for the negative class population. This optimization will be
designed as part of the one – class training module.

Table 1 shows the results of the analysis on the simulated data. The first three columns show the test data
where the fourth row highlights the outlier. The fourth column shows the results of the classification
prediction of the SVM on the model and residual spaces respectively. Both outputs detect the presence of
the outlier, as indicated in the fourth row.

Table 1 - Test Data with one outlier and prediction results

X Y Z
Prediction on
Model Space

Prediction on
Residual Space

3.14439 21.42006 42.25756 -1 -1
2.524949 23.41016 6.106023 -1 -1
2.255137 20.06534 38.8432 -1 -1

7.7 21.94482 3.382264 +1 +1
2.515579 23.16903 3.858731 -1 -1
0.781046 22.91557 12.18433 -1 -1
0.564716 23.96737 37.2265 -1 -1
2.028987 20.68384 17.43634 -1 -1
0.576191 23.15583 42.13435 -1 -1

Summary

In part I of the project, PCA and SVM were successfully integrated and used to detect outliers in a
simulated data set. The preliminary results are promising and show that the algorithm can accurately detect
anomalies in non Gaussian data. Concerns exist regarding the one – class training stage of the algorithm, in
which the negative class data are generated based on outlying positive class data. The method for selection
of both the size and actual data points for the negative class is still in question. Currently, the user specifies
the size of the negative class and the actual points that represent it are chosen based on the sum of the
second norm distances of each data point to each of their neighbors. The cross space detection results will
be further investigated and the posterior probabilities, as discussed, used to compute the joint classification
probabilities. It is anticipated that the trend of these joint class probabilities can be used to predict the future
system performance.

In Part II of the project, the plan is to develop the one – class training algorithm, compute the

maximum likelihood of the sigmoid parameters a and b, implement the joint class probability model and
design a performance tracker to tabulate and compare the performance characteristics of CALCEsvm with
LibSVM. In terms of the data, get access to experimental data on tested electronic systems from CALCE
and run both tools on the same data. Additionally the CALCEsvm will be compared against the Classical
hard classifier SVM to compare and find potential improvements or benefits in using the probabilistic
approach.

 10

Tasks Title Task Description Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Apr-08 May-08
Probability Model

Joint probability model for SVM output
Matlab code for Posterior Probability Function (PPF) selection
Theoretical background of MLE with SVM
Matlab code for MLE of PPF parameters

 Build decision function (health assessment)
Support Vector Machines (SVM)

Theoretical background for SVM
Set up LibSVM
Matlab code for CALCEsvm (MAIN)
Matlab code for SVM model parameter tuning
Matlab code for kernel functions

 Matlab code to interface with PCA
Principal Component Analysis (PCA)

Write up theoretical background for PCA decomposition
 Code PCA in matlab
Data Acqusition & Storage

Create training data set for simulated test case
Create test data set for simulated test case
Get experimental data (identify faults)
One Class Training Algorithm

 Matlab to Database interface
Testing & Validation

Test and debug CALCEsvm
Run LibSVM on test data
Run CALCEsvm on test data (likelihood fncs)

 Comparison of CALCEsvm and LibSVM
Reports and Software

Write report for full description of CALCEsvm
Write doumentation for software

 Transition matlab code to C

 11

Bibliography

[1] G. Jie, N.Vichare, T. Tracy, M. Pecht, “Prognostics Implementation Methods for Electronics”, 53rd Annual

Reliability & Maintainability Symposium (RAMS), Florida, 2007
[2] Vichare, N. and Pecht, M.; “Prognostics and Health Management of Electronics,” IEEE Transactions on

Components and Packaging Technologies, Vol. 29, No. 1, March 2006. pp. 222–229
[3] Haifeng Chen, Guofei Jiang, Cristian ungureanu and Kanji Yoshihira, 2005, “Failure Detection and Localization

in Component Based Systems by Online Tracking”, KDD, August 2005, Chicago Illinois
[4] Jun Liu, Khiang-Wee Lim, Rajagopalan Srinivasan and Xuan-Tien Doan, 2005, “ On-Line Process Monitoring

and Fault Isolation Using PCA”, IEEE 2005
[5] C. J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge

Discovery, 2, 121–167 (1998)
[6] J. A. K. Suykens, T. Van Gestel, J. Vandewalle, and B. De Moor, “A Support Vector Machine Formulation to

PCA Analysis and Its Kernel Version”, IEEE Transactions on Neural Networks, 14, 2, 2003
[7] J.C. Platt, “Probabilistic outputs for Support Vector Machines and Comparisons to Regularized Likelihood

Methods”, March 6, 1999
[8] H.T Lin, C.J. Lin, R.C. Weng, “A Note on Platt’s Probabilistic Outputs for Support Vector Machines”, Machine

Learning, 68 , 3, 267 – 276, 2007

