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Abstract 
 

Probabilistic Support Vector Machine Classification (PSVC) is a real time detection and 
prediction algorithm that is used to overcome assumptions regarding the distribution of the data. Its 
classification output is complemented with a probabilistic cost function and incorporates a degree of 
uncertainty in its predictions. Computationally, this algorithm is fast because it performs the classification 
using only a fraction of the original data. 

This project investigates the use of support vector machines (SVMs) to detect anomalies and 
isolate faults and failures in electronic systems. The output of the SV Classifier is calibrated to posterior 
probabilities thus improving the classical SVM deterministic predictor model to a more flexible 
probabilistic “soft” predictor model. This result is desirable because it is anticipated to reduce the false 
alarm rate in the presence of outliers and allow for more realistic interpretation of the system health. This 
report also investigates the use of a linear principal component decomposition (PCA) of the input data into 
two lower dimension subspaces in order to decouple competing failure modes in the system parameters and 
uncover hidden degradation features. The SV classification is then used in the two extracted orthonormal 
subspaces to determine a predictor model for each subspace respectively. A final decision function is 
constructed with the joint output of the two predictor models. The approach is tested on simulated and real 
data and the results are compared to the popular LibSVM software. 

This project will attempt to address some present issues in health monitoring of electronic 
systems: a) reduction of false negative alarms in the training stage b) reduction false positive alarms in the 
training stage c) identify hidden degradation of system parameters and d) investigate the presence of 
intermittent faults in healthy system performance. 

Introduction 
 

With increasing functional complexity of on-board autonomous systems, there is now an 
increasing demand for early system level health assessment, fault diagnostics, and prognostics. In the 
presence of high complexity and remote inaccessibility, the health of electronic parts and systems is 
difficult to monitor, diagnose and predict. Due to the micro scale packaging and material properties of the 
integrated components on electronic systems, performance and physics of failure (PoF) models are still 
uncommon and or intractable in application. There is a need for a fast and dependable way to detect when 
these systems are degrading, or have sustained a fault or failure that is critical. Also there is a need to 
predict their remaining useful life. In the absence of sustainable PoF models, a data driven approach in the 
machine learning framework is suitable for the first task, that of anomaly detection. 

A critical part of detection and in general health monitoring is the management of false and 
positive alarms. Decisions made by the algorithm will not always be ideally 100% accurate, and 
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management of this accuracy is important. False alarms occur in the training and in the evaluation stage. In 
the training stage, the algorithm uses the training data to construct the predictor model, a model that will 
function as a decision boundary, inside of which incoming new observations will be classified as 
positive/healthy and outside of which negative/abnormal. Note that a negative classification is not 
necessarily unhealthy, but is at least abnormal. The diagnosis of health will need to consider other factors 
including further knowledge of the system itself. In the training stage, false alarms occur when some 
training data are misclassified; theoretically all training data should belong to the positive class. In the 
evaluation stage, the algorithm classifies new observations against the predictor model constructed in the 
training stage. Here false alarms refer to the algorithms generalization ability to correctly classify data for 
the system it was training on. High false alarm rates can be indicative of bad training or indeed an 
unhealthy system. 

Existing approaches to health monitoring are more rudimentary and include the use of (1) built-in 
devices such as canaries and fuse devices that fail earlier than the host product to provide advance warning 
of failure; (2) monitoring and reasoning of parameters, such as shifts in performance parameters, 
progression of defects, that are precursors to impending failure; and (3) modeling stress and damage in 
electronics utilizing exposure conditions (e.g., usage, temperature, vibration, radiation) coupled with 
physics–of–failure (PoF) models to compute accumulated damage and assess remaining life [1], [2]. 
Traditional univariate analyses analyze each parameter separately whereas an SVM approach evaluates the 
data as a whole, trying to differentiate or characterize the mixture of information without necessarily 
requiring all the system parameters. This is especially true when working with complex electronic systems, 
where hundreds of signals can coexist in the sample and it is very difficult to identify every single 
contributor to the final system output. The SVM approach will take advantage of the overlapping 
sensitivities and process the information generated by these sensors to improve the resolution and accuracy 
of the analysis, be much more economical and easier to build. 

Methodology 
 

An important consideration for this work is to design a detection algorithm that can be used in real 
time, which means that it has to be fast and robust. A main focus is to process high dimensional and 
correlated parameter information fast without compromising the original information. For this, a Karhunen-
Loev decomposition is used to compress the training data into two lower dimensional distributions; one that 
estimates the maximum variance and the other the error in the Karhunen-Loev model selection [6]. The 
compressed data will retain most of the original information and provide insight to the variance of the 
system, which can be used to detect anomalies, which is anticipated to enhance the interpretation of the 
SVM output. 
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Figure 1 – Algorithm flow chart 

 
Figure 1 illustrates the approach methodology. The multivariate training data X ∈ Rnxm where n is 

the number of observations and m the number of parameters. The Karhunene-Loev, or otherwise known as 
Principal component analysis (PCA), decomposes the signal into two orthonormal subspaces, the model [S] 
and the residual [R] subspaces. The distribution of the projected data in the model subspace is used to 
estimate the maximum variance in the original parameters and the distribution on the residual is used to test 
the fit of the model to the data. Greater variance in the residual distribution is an indication of a poorly 
chosen model subspace. In addition, the residual subspace is anticipated to uncover hidden behaviors in the 
system degradation by highlighting abnormal variation in parameters that are overshadowed by dominant 
ones. 

The two resulting distributions are then used as the training stage for the SV classifier, which 
constructs two predictor models D1(y1) and D2(y2) for each distribution respectively. The “training” of the 
SV classifier is an important part of this work, and is further discussed in the implementation section of this 
report. For now, these predictor models are constructed by using the given PCA output from two subspaces 
and a distribution of negative class data. One class classifiers would be more appropriate in this situation 
where negative class data (representing faulty behavior) are not available. A soft decision boundary can be 
constructed by fitting the training data with a likelihood function that maps SVM output to posterior 
probabilities. In the evaluation stage, a new observation is processed through the same algorithmic steps; it 
is projected onto the model and residual subspaces and classified with the SVM predictor model. The new 
observation will be classified twice and with two probabilities. The joint class probability from the two 
subspaces will in the end be used for the decision classification. 

Support vectors produce an uncalibrated value that is not a probability. By constructing the 
classifier to produce a posterior probability P(class|input) the predictor model can benefit from an 
uncertainty to each prediction and give realistic interpretations for the classification output. The soft 
decision boundary can reduce the number of false alarms in both the training and evaluation stage by 
accepting new observations inside the SVM predictor boundary and also within the soft boundary. The 
issue of hidden degradation can be addressed with the PCA decomposition of the input space, where the 
residual subspace can uncover parameters that are overshadowed by dominantly varying ones. 

Principal Component Analysis 
 

Subspace decomposition into Principal Components can be accomplished using singular value 
decomposition of matrix the input data X [3] [4]. The SVD of data matrix X, is expressed as X=USVT, 
where S=diag(s1,…,sm) ∈  Rnxm, and s1>s2>…>sm. The two orthogonal matrices U and V are called the left 
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and right eigen matrices of X. Based on the singular value decomposition, the subspace decomposition of X 
is expressed as: 

T
rrr

T
sssrs VSUVSUXXX +=+= (1) 

 
The two orthogonal matrices U and V are called the left and right eigen matrices of X. The signal 

space Ss is defined by the PCA model and the residual subspace Sr is taken as the residual space. The 
diagonal Ss are the singular values { s1,…,sk }, and { sk+1,…,sm } belong to the diagonals of Sr. The set of 
orthonormal vectors Us=[u1,u2,…,uk] form the bases of signal space Ss. SVD is employed as a matrix 
algebra tool to perform the projection required for the subspace decomposition of the signal. The original 
data is decomposed into three matrices, U, S and V, where matrix U contains the transpose of the 
covariance eigenvectors. The original data X is projected onto the signal subspace as defined by the PCA 
model. It is furthermore desirable to use the SVD because we can express the projection in terms of 
existing information, that is: the eigenvectors of the covariance of the original data X. 
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Figure 2: Two dimensional illustration of a subspace decomposition.  

 
Figure 2 illustrates the projection pursuit using a two-dimensional projection example, where vector v 

is projected onto model u. Essentially what is required is a vector Vp which represents the projection of v 
onto u. Vector Vp can be expressed as pu, where p is a scalar and u is a unit vector for the model. The 
model in this example can be expressed in terms of the unit vector u. The best projection is the one that 
minimizes the residual in (3). 

upvr rrr
−=     (2) 

The equations for the projection vector and residual vector are given by equation 4 and 5 respectively: 

( )uuvV T
p

rrr
=     (3) 

( )uuvvr T rrrrr
−=     (4) 

The dot product of orthogonal vectors should equal zero, therefore the residual vector r should be 
perpendicular to all of the basis (unit) vectors u, such that: 

( ) 0=− upvu T rrr
    (5) 

Solving for p to gives 

0=− puuvu TT rrrr
   (6) 

 which gives an optimal p,  

( ) vuuup T
opt

rrrr 1−
=    (7) 

In terms of the projection matrix H, the model can be formulated as: 
vup rr

Η=     (8) 

 where 

( ) vuuuu T rrrrr 1−
=Η    (9) 

In terms of the SVD of X, the projection matrix H can be expressed as UUT where u=USVT. Then the 
projection of vector v can be expressed as:  
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vUUV T
p =     (10) 

and the residual vector as: 

( )vUUIr T−=     (11) 
 The projection matrix Ps onto the signal subspace is therefore given by: 

T
sss UUP =      (12) 

The residual subspace is the orthogonal complement of the signal subspace and the projection of the 
original data onto it can be expressed as  

sr PIP −=     (13) 
Any vector x can be represented by a summation of two projection vectors from subspaces Ss and Sr.  

xPIxPXXX ssrs
rr )( −+=+=   (14) 

Support Vector Machines 
 
The training data (xi,yi) in each subspace, x ∈ Xm, an the class yi  ∈ {+1,-1}, i=1,…,n can be 

separated by the hyperplane decision function D(x) with appropriate w and b. The classification problem 
can be states as:  

min!½ ( ||w||2 ) = ½ wTw    (15) 
 

s.t. y(xi) = sign [ wTxi + b] – 1 ≥ 0   (16) 
 
where w = [w1,…,wn]T is the weight vector of the hyperplane and x = [x1,…xn]T the training data. 
Therefore, training data x with yi = +1 will fall into D(x) > 0 while the others with yi = - 1 will fall into D(x) 
< 0. The separating hyperplane will function as the predictor model and is chosen to maximize the distance 
between the two classes, a distance called the margin M = 2 / ||w||, called the objective function. The 
objective function is penalized by adding an error term ξ to the optimization equation: 

∑
=

+=
n

i
i

T CwwbwD
12

1),,( ξξ   (17) 

where C is the margin penalty parameter that determines the trade-off between the maximization of the 
margin and minimization of the classification error, and therefore the false alarm rate.  
 

Support Vector Machine Training 
 

The training stage of the SVM is critical. With negative class data (fault information) the task is 
relatively easy because the boundaries between negative and positive class is given and a separation 
boundary can be computed. In cases where system faults and especially failures are absent, training 
becomes an issue. Whereas in the two class approach the training strategy is to generate an artificial 
negative class based on human knowledge of system performance, the alternative one – class training 
approach is investigated in this project. In the one – class training approach, data from the known positive 
class are “converted” to negative class points. Logically these points should be chosen as the outliers of the 
positive class, in other words, the task is to find the boundary of the positive class training data. 

In one – class training one seeks to intelligently find areas of low data density in the training data 
to assign the negative class. In this project we investigate the use of statistical decision theory to infer data 
sufficient statistics such as the mean and variance and in such the data with associated maximum likelihood 
for the negative class. Computational approaches using Kmeans, or Centroid Clustering will also be 
investigated1.  

                                                 
1 One – class training will be developed as part II of this project 
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Posterior Probabilities 
 

One way of producing posterior probabilities for the SV classifier output D is to fit a sigmoid 
function S [7] around it. An MLE estimate of its parameters optimizes the function to better fit the 
distribution of the support vectors generated by SVM. The density function that best prescribes this 
probability is the likelihood function computed based on the knowledge of the decision function values 
D(xi). 
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Figure 3 – Maximum Likelihood Estimate of posterior class probabilities 

 
The likelihood function illustrated in Figure 3 (right) is a result of the maximum likelihood estimate (MLE) 
of the parameters a and b in: 

( ) ( )( )bxaD
baDfyP

++
≡≈+=

exp1
1),,(1  (18) 

 
where the probability of the class prediction (in this case being  +1) is given by a parametric model f which 
is a function of D, and the parameters a and b. So, the above equation says that the probability that a data 
point x is positively (normal) classified is defined by an inverse exponential function [7]. The parameters a 
and b in (18) are found by minimizing the negative log likelihood of the training data: 
 

( )∑
=

−−+−=
n

i
iiiiba

ptptF
1,

)1log()1()log(min  (19) 

( )bxaD
p

i
i ++
=

)(exp1
1  

 

2
1+

= i
i

yt  

 
The minimization of (19) can be performed using any number of optimization algorithms. Each prediction 
will be given as two probabilities for each subspace prediction, a total set of four probabilities. The joint 
probabilities from the two predictors (model and residual) are used to formulate a final probabilistic 
prediction. 

Implementation 
 

One of the main motivations in designing a detection algorithm is its generality; that is to be 
suitable for a broad range of applications regardless of the data type or system purpose. For this, its online 
computational performance characteristics are important factors in programming the algorithm into stand 
alone software/tools, which should be able to perform on a standard dual processor PC with 2.2 GHz. A 
proof of concept will be performed using Matlab in (.m) and (.mex) files. A C based code will be attempted 
for the final tool. For the proof of concept, the quadratic programming solution to the quadratic 
optimization problem will be addressed with existing matlab/C code available in LibSVM and other matlab 
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based SVM code. Singular value decomposition will be used for computations of matrix inverses and 
eigenanalysis. A complexity analysis of the algorithm will be provided and a discussion of potential 
improvements noted. The tool will be called CALCEsvm. 

Platt [7] uses a Levenberg-Marquardt (LM) algorithm to solve (19). The LM method was 
originally designed for solving nonlinear least-squares problems. As an iterative procedure, at the kth step, 
this method solves (19) to obtain a direction δk  and moves the solution from zk to zk+1=zk+δk if the function 
is sufficiently decreases. Here Hk is an approximation of the Hessian of the least-square problem, I is the 
identity matrix and zk the sequence of iteration vectors. 

 
)()( kkkk zFIH −∇=+ δλ  (20) 

 
It can be proven that the MLE optimization that (5) is convex [8] which allows for the use of more 

efficient numerical optimization techniques such as Newton’s method with a backtracking line search, 
which are fast and robust. 

Testing and Validation 
 

The Center for Advanced Life Cycle Engineering (CALCE) at University of Maryland has 
extensive experimental data for electronic parts and systems under accelerated condition testing. The 
testing plan will utilize two data sets: 

a) A simulation of training data for a multivariate system with non-uniformly scaled parameter 
distributions to simulate physically different measurements. The test data is identical to the training data, 
but with artificially injected faults. The injected faults will also differ in degree, where one parameter will 
be subjected to gross changes in variance while other parameters will be subjected to finer changes in 
variance and other still to just Gaussian noise ~ N(0,σ2) and the remaining will be unchanged. 

b) Experimental data for training and experimental data with faults and failures. The experimental 
data includes intermittent faults and failures as part of the training and evaluation stage. The output of the 
algorithm will be tested against the LibSVM software output on four categories: a) false negative and false 
positive alarm rate for training stage b) False negative and false positive alarm rate for the evaluation stage. 

c) Accuracy and timeliness in detecting known faulty periods, including intermittent faults d) 
Computation time. Data will generally be stored in (.mat) or excel files. 
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Midterm Results 
 

In the first part of the project, SVM and PCA were combined and tested against a simulated data 
set. The training data X ∈ R3x374 consist of three parameters (chosen for visualization purposes), and n = 
374 observations. The test data t consists of three parameters and only 9 observations. Each row in the data 
matrix X is considered an observation in time. An outlier in T is artificially injected (Table 1) at the fourth 
observation, the remaining observations were taken out of the distribution of the positive class. 
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Figure 4 – Raw data 
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Figure 6 – Distribution of data on residual space 
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The application of the algorithm at this point, without the MLE optimization uses the PCA output 

to train the SVM. Then the output of the SVM is tested against known faults, i.e., the injected outlier in the 
test data set. Both the model and residual space were chosen to be two dimensional. With the appropriate 
number of negative class data the algorithm does a good job at identifying the outlier. The current state of 
the algorithms calls for a user defined number of negative class data points to look for. This task in itself is 
a bottleneck in the analysis because a selection of too few negative class data points causes a larger 
proportion of positive misclassification (that is estimating healthy when in fact the data is unhealthy) and a 
selection of too many negative class data points causes a larger proportion of positive misclassification 
(estimating unhealthy when in fact the data is healthy). For the purpose of part I of this project the size of 
the negative class is chosen based on the user input only. For later analysis the plan is to optimize the size 
of the negative class by minimizing the volume within the SVM generated boundary. This should 
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theoretically converge to an optimum size for the negative class population. This optimization will be 
designed as part of the one – class training module. 
 
Table 1 shows the results of the analysis on the simulated data. The first three columns show the test data 
where the fourth row highlights the outlier. The fourth column shows the results of the classification 
prediction of the SVM on the model and residual spaces respectively. Both outputs detect the presence of 
the outlier, as indicated in the fourth row.  
 

Table 1 - Test Data with one outlier and prediction results 

X Y Z 
Prediction on 
Model Space 

Prediction on 
Residual Space 

3.14439 21.42006 42.25756 -1 -1 
2.524949 23.41016 6.106023 -1 -1 
2.255137 20.06534 38.8432 -1 -1 

7.7 21.94482 3.382264 +1 +1 
2.515579 23.16903 3.858731 -1 -1 
0.781046 22.91557 12.18433 -1 -1 
0.564716 23.96737 37.2265 -1 -1 
2.028987 20.68384 17.43634 -1 -1 
0.576191 23.15583 42.13435 -1 -1 

 

Summary 
 

In part I of the project, PCA and SVM were successfully integrated and used to detect outliers in a 
simulated data set. The preliminary results are promising and show that the algorithm can accurately detect 
anomalies in non Gaussian data. Concerns exist regarding the one – class training stage of the algorithm, in 
which the negative class data are generated based on outlying positive class data. The method for selection 
of both the size and actual data points for the negative class is still in question. Currently, the user specifies 
the size of the negative class and the actual points that represent it are chosen based on the sum of the 
second norm distances of each data point to each of their neighbors. The cross space detection results will 
be further investigated and the posterior probabilities, as discussed, used to compute the joint classification 
probabilities. It is anticipated that the trend of these joint class probabilities can be used to predict the future 
system performance. 

 
In Part II of the project,  the plan is to develop the one – class training algorithm, compute the 

maximum likelihood of the sigmoid parameters a and b,  implement the joint class probability model and 
design a performance tracker to tabulate and compare the performance characteristics of CALCEsvm with 
LibSVM. In terms of the data, get access to experimental data on tested electronic systems from CALCE 
and run both tools on the same data. Additionally the CALCEsvm will be compared against the Classical 
hard classifier SVM to compare and find potential improvements or benefits in using the probabilistic 
approach. 
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Tasks Title Task Description Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Apr-08 May-08 
Probability Model 

Joint probability model for  SVM output                                           
Matlab code for Posterior Probability Function (PPF) selection                                           
Theoretical background of MLE with SVM                                           
Matlab code for MLE of PPF parameters                                           

  Build decision function (health assessment)                                           
Support Vector Machines (SVM) 

Theoretical background for SVM                                           
Set up LibSVM                                           
Matlab code for CALCEsvm (MAIN)                                           
Matlab code for SVM model parameter tuning                                           
Matlab code for kernel functions                                           

  Matlab code to interface with PCA                                           
Principal Component Analysis (PCA) 

Write up theoretical background for PCA decomposition                                           
  Code PCA in matlab                                           
Data Acqusition & Storage 

Create training data set for simulated test case                                           
Create test data set for simulated test case                                           
Get experimental data (identify faults)                                           
One Class Training Algorithm                                           

  Matlab to Database interface                                           
Testing & Validation 

Test and debug CALCEsvm                                           
Run LibSVM on test data                                           
Run CALCEsvm on test data ( likelihood fncs)                                           

  Comparison of CALCEsvm and LibSVM                                           
Reports and Software 

Write report for full description of CALCEsvm                                           
Write doumentation for software                                           

  Transition matlab code to C                                           
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