
 1

Anomaly detection through Bayesian Support Vector Machine
Classification {PROPOSAL}

Vasilis A. Sotiris

Department of Mathematics
PhD Candidate in Applied Mathematics and Scientific Computation

University of Maryland, College Park, MD
vsotiris@math.umd.edu

Michael Pecht
Department of Mechanical Engineering

Director of the Center for Advanced Life Cycle Engineering (CALCE)
University of Maryland, College Park, MD

 pecht@calce.umd.edu

Abstract
This report discusses the use of support vector machines (SVMs) to detect anomalies and isolate faults and
failures in electronic systems. The output of the SV Classifier is calibrated to posterior probabilities thus
improving the classical SVM deterministic predictor model to a more flexible probabilistic “soft” predictor
model. This result is desirable because it is anticipated to reduce the false alarm rate in the presence of
outliers and allow for more realistic interpretation of the system health. This report also investigates the use
of a linear Karhunen – Loev decomposition of the input data into two lower dimension subspaces in order
to decouple competing failure modes in the system parameters and uncover hidden features. The SV
classification is then used in the two extracted orthonormal subspaces to determine a predictor model for
each subspace respectively. A final decision function is constructed with the joint output of the two
predictor models. The approach is tested on simulated and real data and the results are compared to the
popular LibSVM software results.

Introduction
With increasing functional complexity of on-board autonomous systems, there is now an

increasing demand for early system level health assessment, fault diagnostics, and prognostics. In
the presence of high complexity and remote inaccessibility, the health of electronic parts and
systems is difficult to monitor, diagnose and predict. Due to the micro scale packaging and
material properties of the integrated components on electronic systems, performance and physics
of failure (PoF) models are still uncommon and or intractable in application. There is a need for a
fast and dependable way to detect when these systems are degrading, or have sustained a fault or
failure that is critical. Also there is a need to predict their remaining useful life. In the absence of
sustainable PoF models, a data driven approach in the machine learning framework is suitable for
the first task, that of anomaly detection.

A critical part of detection and in general health monitoring is the management of false and
positive alarms. Decisions made by the algorithm will not always be ideally 100% accurate, and
management of this accuracy is important. False alarms occur in the training and in the evaluation
stage. In the training stage, the algorithm uses the training data to construct the predictor model, a
model that will function as a decision boundary, inside of which incoming new observations will
be classified as positive/healthy and outside of which negative/abnormal. Note that a negative
classification is not necessarily unhealthy, but is at least abnormal. The diagnosis of health will
need to consider other factors including further knowledge of the system itself. In the training
stage, false alarms occur when some training data are misclassified; theoretically all training data
should belong to the positive class. In the evaluation stage, the algorithm classifies new

 AMSC663 Project Proposal

 2

observations against the predictor model constructed in the training stage. Here false alarms refer
to the algorithms generalization ability to correctly classify data for the system it was training on.
High false alarm rates can be indicative of bad training or indeed an unhealthy system.

Existing approaches to health monitoring are more rudimentary and include the use of (1)
built-in devices such as canaries and fuse devices that fail earlier than the host product to provide
advance warning of failure; (2) monitoring and reasoning of parameters, such as shifts in
performance parameters, progression of defects, that are precursors to impending failure; and (3)
modeling stress and damage in electronics utilizing exposure conditions (e.g., usage, temperature,
vibration, radiation) coupled with physics–of–failure (PoF) models to compute accumulated
damage and assess remaining life [1], [2].

Traditional univariate analyses analyze each parameter separately whereas an SVM approach
evaluates the data as a whole, trying to differentiate or characterize the mixture of information
without necessarily requiring all the system parameters. This is especially true when working
with complex electronic systems, where hundreds of signals can coexist in the sample and it is
very difficult to identify every single contributor to the final system output. The SVM approach
will take advantage of the overlapping sensitivities and process the information generated by
these sensors to improve the resolution and accuracy of the analysis, be much more economical
and easier to build.

Methodology
An important consideration for this work is to design a detection algorithm that can be used

in real time, which means that it has to be fast and robust. A main focus is to process high
dimensional and correlated parameter information fast without compromising the original
information. For this, a Karhunen-Loev decomposition is used to compress the training data into
two lower dimensional distributions; one that estimates the maximum variance and the other the
error in the Karhunen-Loev model selection [6]. The compressed data will retain most of the
original information and provide insight to the variance of the system, which can be used to
detect anomalies, which is anticipated to enhance the interpretation of the SVM output.

Model space
R kxm

k<n

Residual space
R lxm

l<n

PCA

Residual
Positive class

Likelihood
function

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

Probability
matrix

Probability
matrix

Health
Decision

Trending of joint
probability
distributions

Joint
ProbabilitiesResidual Decision boundary

Model Decision boundary

D2(y2)

D1(y1)

SVM

Model
Positive class

Probability Model

Input space R nxm

Training data

y1

y2

Model space
R kxm

k<n

Residual space
R lxm

l<n

PCA

Residual
Positive class

Likelihood
function

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

Probability
matrix

Probability
matrix

Health
Decision

Trending of joint
probability
distributions

Joint
ProbabilitiesResidual Decision boundary

Model Decision boundary

D2(y2)

D1(y1)

SVM

Model
Positive class

Probability Model

Input space R nxm

Training data

Model space
R kxm

k<n

Residual space
R lxm

l<n

PCA

Residual
Positive class

Likelihood
function

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

Probability
matrix

Probability
matrix

Health
Decision

Trending of joint
probability
distributions

Joint
ProbabilitiesResidual Decision boundary

Model Decision boundary

D2(y2)

D1(y1)

SVM

Model
Positive class

Probability Model

Model space
R kxm

k<n

Residual space
R lxm

l<n

PCA

Residual
Positive class

Likelihood
function

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

Likelihood
function

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

p

0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

0

1

0
D(x)

-1 +1
0

1

0
D(x)

-1 +1

0

1

0
D(x)

-1 +1

Likelihood
function

p

0

1

0
D(x)

-1 +1

Likelihood
function

p

Probability
matrix

Probability
matrix

Probability
matrix

Probability
matrix

Health
Decision

Trending of joint
probability
distributions

Health
Decision

Trending of joint
probability
distributions

Joint
ProbabilitiesResidual Decision boundary

Model Decision boundary

D2(y2)

D1(y1)

Residual Decision boundary

Model Decision boundary

D2(y2)

D1(y1)

Model Decision boundary

D2(y2)

D1(y1)

SVM

Model
Positive class

Probability Model

Input space R nxm

Training data

y1

y2

Figure 1: Algorithm flow chart

 3

Figure 1 illustrates the approach methodology. The multivariate training data X ∈ Rnxm where

n is the number of observations and m the number of parameters. The Karhunene-Loev, or
otherwise known as Principal component analysis (PCA), decomposes the signal into two
orthonormal subspaces, the model [S] and the residual [R] subspaces. The distribution of the
projected data in the model subspace is used to estimate the maximum variance in the original
parameters and the distribution on the residual is used to test the fit of the model to the data.
Greater variance in the residual distribution is an indication of a poorly chosen model subspace.
In addition, the residual subspace is anticipated to uncover hidden behaviors in the system
degradation by highlighting abnormal variation in parameters that are overshadowed by dominant
ones.

The two resulting distributions are then used as the training stage for the SV classifier, which
constructs two predictor models D1(y1) and D2(y2) for each distribution respectively. The
“training” of the SV classifier is an important part of this work, and is further discussed in the
implementation section of this report. For now, these predictor models are constructed by using
the given PCA output from two subspaces and a distribution of negative class data. One class
classifiers would be more appropriate in this situation where negative class data (representing
faulty behavior) are not available. A soft decision boundary can be constructed by fitting the
training data with a likelihood function that maps SVM output to probabilities. In the evaluation
stage, a new observation is processed through the same algorithmic steps; it is projected onto the
model and residual subspaces and classified with the SVM predictor model. The new observation
will be classified twice and with two probabilities. The joint class probability from the two
subspaces will in the end be used for the decision classification.

This work will attempt to address some present issues in health monitoring of electronic
systems: a) false negative alarms in the training stage b) false positive alarms in the training stage
c) hidden degradation of system parameters and d) presence of intermittent faults in healthy
system performance.

Support vectors produce an uncalibrated value that is not a probability. By constructing the
classifier to produce a posterior probability P(class|input) the predictor model can benefit from an
uncertainty to each prediction and give realistic interpretations for the classification output. The
soft decision boundary can reduce the false alarms in both the training and evaluation stage by
accepting new observations inside the SVM predictor boundary and also within the soft
boundary. The issue of hidden degradation can be addressed with the PCA decomposition of the
input space, where the residual subspace can uncover parameters that are overshadowed by
dominantly varying ones.

Subspace decomposition into Principal Components can be accomplished using singular

value decomposition of matrix the input data X [3] [4]. The two orthogonal matrices U and V are
called the left and right eigen matrices of X. The training data (xi,yi) in each subspace, x ∈ Xm, and
the class yi ∈ {+1,-1}, i=1,…,n can be separated by the hyperplane decision function D(x) with
appropriate w and b:

() () ∑
=

+=+=
n

i
ii

T bxwbxwxD
1

 (1)

where w=[w1,…,wn]T is the weight vector of the hyperplane and x=[x1,…xn]T. Thus, training data
with yi=+1 will fall into D(x)>0 while the others with yi=-1 will fall into D(x)<0. The separating
hyperplane will function as the predictor model and is chosen to maximize the distance between
the two classes, a distance called the margin M given by M=2/||w||, called the objective function.
The objective function is penalized by adding an error term ξ to the optimization equation:

 4

∑
=

−=
n

i
iCwbwD

1

2

2
1),,(ξξ (2)

subject to () 1 for 1,...,T

i i iy b i nξ+ ≥ − =w x where C is the margin penalty parameter that
determines the trade-off between the maximization of the margin and minimization of the
classification error, and therefore the false alarm rate.

One way of producing probabilistic outputs for the SV classifier output D is to fit a sigmoid
likelihood function [7] such that:

() () ())(exp1
1)(|1|

jxD
xpxyPInputClassP

−+
==+== (3)

() () ())(exp1
11)(1|1|

jxD
xpxyPInputClassP

−+
−=−=−== (4)

where D is defined as in (2), index j refers to the projected data coming from either the model or
residual subspaces. So the above equation says that the probability that a data point x is positively
(normal) classified is defined by the exponential function in equation 3. Each prediction will be
given as two probabilities for each subspace prediction, a total set of four probabilities. The joint
probabilities from the two predictors (model and residual) are used to formulate a final
probabilistic prediction.

Implementation
One of the main motivations in designing a detection algorithm is its generality; that is to be

suitable for a broad range of applications regardless of the data type or system purpose. For this,
its online computational performance characteristics are important factors in programming the
algorithm into stand alone software/tools, which should be able to perform on a standard dual
processor PC with 2.2 GHz. A proof of concept will be performed using Matlab .m and .mex
files. A C based code will be attempted for the final tool.

For the proof of concept, the quadratic programming solution to the quadratic optimization
problem will be addressed with existing matlab/C code available in LibSVM and other matlab
based SVM code. Singular value decomposition will be used for computations of matrix inverses
and eigenanalysis. A complexity analysis of the algorithm will be provided and a discussion of
potential improvements noted.

Testing and Validation
The Center for Advanced Life Cycle Engineering at University of Maryland has extensive

experimental data for electronic parts and systems under accelerated condition testing. The testing
plan will utilize two data sets:
a) A simulation of training data for a multivariate system with non-uniformly scaled parameter

distributions. The test data is identical to the training data, but with artificially injected faults.
The injected faults will also differ in degree, where one parameter will be subjected to gross
changes in variance other parameters will be subjected to finer changes in variance and other
still to just Gaussian noise ~ N(0,σ2) and the remaining will be unchanged.

 5

b) Experimental data for training and experimental data with faults and failures. The
experimental data includes intermittent faults and failures as part of the training and
evaluation stage.

The output of the algorithm will be tested against the LibSVM software output on four

categories: a) False negative and false positive alarm rate for training stage b) False negative and
false positive alarm rate for the evaluation stage c) Accuracy and timeliness in detecting known
faulty periods, including intermittent faults d) Computation time. Data will generally be stored in
.mat or excel files

Training strategy
The training stage is critical, and in this two class approach the negative set should represent

an abnormal situation. The training strategy is to generate an artificial negative class based on two
distributions: 1) A uniform random distribution in the range of the training set without
overlapping data points. This training is identifying the space not claimed by the training data,
theoretically it represents all the situations of abnormal system behavior. 2) A Gaussian
concentric distribution, with a radius the lengths the first and second largest eigenvectors of the
training data. A one class classifier is also going to be discussed but not considered for the
software development.

 6

Project Schedule and Milestones
Tasks Title Task Description

Joint probability model for SVM output
Matlab code for likelihood function selection
Build decision function (health assessment)

Write up theretical background for SVM
Set up LibSVM
Matlab code for CALCEsvm
Matlab code for SVM model parameter tuning
Matlab code for kernel functions
Matlab code to interface with PCA

Write up theoretical background for PCA decomposition
Code PCA in matlab

Create training data set for simulated test case
Create test data set for simulated test case
Get experimental data (identify faults)
Write code for negative class generation
* For Uniformly distributed case
* For Gaussian distributed case
into a database

Run LibSVM on test data
Run CALCEsvm on test data (likelihood fncs)

Write report for full description of CALCEsvm
Write doumentation for software
Transition matlab code to C

Deliver research interest presentation
Deliver project proposal presentation
Deliver project proposal report
Deliver midterm report
Deliver midterm presentation
Deliver final report
Deliver final presentation

Testing & Validation

Reports and Software

Deliverables

Probability Model

Support Vector Machines (SVM)

Principal Component Analysis (PCA)

Data Acqusition & Storage

Mar-08 Apr-08 May-08Nov-07 Dec-07 Jan-08 Feb-08

 7

Bibliography

[1] G. Jie, N.Vichare, T. Tracy, M. Pecht, “Prognostics Implementation Methods for Electronics”, 53rd Annual

Reliability & Maintainability Symposium (RAMS), Florida, 2007
[2] Vichare, N. and Pecht, M.; “Prognostics and Health Management of Electronics,” IEEE Transactions on

Components and Packaging Technologies, Vol. 29, No. 1, March 2006. pp. 222–229.
[3] Haifeng Chen, Guofei Jiang, Cristian ungureanu and Kanji Yoshihira, 2005, “Failure Detection and

Localization in Component Based Systems by Online Tracking”, KDD, August 2005, Chicago Illinois
[4] Jun Liu, Khiang-Wee Lim, Rajagopalan Srinivasan and Xuan-Tien Doan, 2005, “ On-Line Process

Monitoring and Fault Isolation Using PCA”, IEEE 2005
[5] C. J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and

Knowledge Discovery, 2, 121–167 (1998)
[6] J. A. K. Suykens, T. Van Gestel, J. Vandewalle, and B. De Moor, “A Support Vector Machine Formulation

to PCA Analysis and Its Kernel Version”, IEEE Transactions on Neural Networks, 14, 2, 2003
[7] J.C. Platt, “Probabilistic outputs for Support Vector Machines and Comparisons to Regularized Likelihood

Methods”, March 6, 1999

