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Abstract 
This report discusses the use of support vector machines (SVMs) to detect anomalies and isolate faults and 
failures in electronic systems. The output of the SV Classifier is calibrated to posterior probabilities thus 
improving the classical SVM deterministic predictor model to a more flexible probabilistic “soft” predictor 
model. This result is desirable because it is anticipated to reduce the false alarm rate in the presence of 
outliers and allow for more realistic interpretation of the system health. This report also investigates the use 
of a linear Karhunen – Loev decomposition of the input data into two lower dimension subspaces in order 
to decouple competing failure modes in the system parameters and uncover hidden features. The SV 
classification is then used in the two extracted orthonormal subspaces to determine a predictor model for 
each subspace respectively. A final decision function is constructed with the joint output of the two 
predictor models. The approach is tested on simulated and real data and the results are compared to the 
popular LibSVM software results.   

Introduction  
With increasing functional complexity of on-board autonomous systems, there is now an 

increasing demand for early system level health assessment, fault diagnostics, and prognostics. In 
the presence of high complexity and remote inaccessibility, the health of electronic parts and 
systems is difficult to monitor, diagnose and predict. Due to the micro scale packaging and 
material properties of the integrated components on electronic systems, performance and physics 
of failure (PoF) models are still uncommon and or intractable in application. There is a need for a 
fast and dependable way to detect when these systems are degrading, or have sustained a fault or 
failure that is critical. Also there is a need to predict their remaining useful life. In the absence of 
sustainable PoF models, a data driven approach in the machine learning framework is suitable for 
the first task, that of anomaly detection. 

A critical part of detection and in general health monitoring is the management of false and 
positive alarms. Decisions made by the algorithm will not always be ideally 100% accurate, and 
management of this accuracy is important. False alarms occur in the training and in the evaluation 
stage. In the training stage, the algorithm uses the training data to construct the predictor model, a 
model that will function as a decision boundary, inside of which incoming new observations will 
be classified as positive/healthy and outside of which negative/abnormal. Note that a negative 
classification is not necessarily unhealthy, but is at least abnormal. The diagnosis of health will 
need to consider other factors including further knowledge of the system itself. In the training 
stage, false alarms occur when some training data are misclassified; theoretically all training data 
should belong to the positive class. In the evaluation stage, the algorithm classifies new 
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observations against the predictor model constructed in the training stage. Here false alarms refer 
to the algorithms generalization ability to correctly classify data for the system it was training on. 
High false alarm rates can be indicative of bad training or indeed an unhealthy system. 

Existing approaches to health monitoring are more rudimentary and include the use of (1) 
built-in devices such as canaries and fuse devices that fail earlier than the host product to provide 
advance warning of failure; (2) monitoring and reasoning of parameters, such as shifts in 
performance parameters, progression of defects, that are precursors to impending failure; and (3) 
modeling stress and damage in electronics utilizing exposure conditions (e.g., usage, temperature, 
vibration, radiation) coupled with physics–of–failure (PoF) models to compute accumulated 
damage and assess remaining life [1], [2].   

Traditional univariate analyses analyze each parameter separately whereas an SVM approach 
evaluates the data as a whole, trying to differentiate or characterize the mixture of information 
without necessarily requiring all the system parameters. This is especially true when working 
with complex electronic systems, where hundreds of signals can coexist in the sample and it is 
very difficult to identify every single contributor to the final system output. The SVM approach 
will take advantage of the overlapping sensitivities and process the information generated by 
these sensors to improve the resolution and accuracy of the analysis, be much more economical 
and easier to build.  

Methodology 
An important consideration for this work is to design a detection algorithm that can be used 

in real time, which means that it has to be fast and robust. A main focus is to process high 
dimensional and correlated parameter information fast without compromising the original 
information. For this, a Karhunen-Loev decomposition is used to compress the training data into 
two lower dimensional distributions; one that estimates the maximum variance and the other the 
error in the Karhunen-Loev model selection [6]. The compressed data will retain most of the 
original information and provide insight to the variance of the system, which can be used to 
detect anomalies, which is anticipated to enhance the interpretation of the SVM output.  
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Figure 1: Algorithm flow chart  
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Figure 1 illustrates the approach methodology. The multivariate training data X ∈ Rnxm where 

n is the number of observations and m the number of parameters. The Karhunene-Loev, or 
otherwise known as Principal component analysis (PCA), decomposes the signal into two 
orthonormal subspaces, the model [S] and the residual [R] subspaces. The distribution of the 
projected data in the model subspace is used to estimate the maximum variance in the original 
parameters and the distribution on the residual is used to test the fit of the model to the data. 
Greater variance in the residual distribution is an indication of a poorly chosen model subspace. 
In addition, the residual subspace is anticipated to uncover hidden behaviors in the system 
degradation by highlighting abnormal variation in parameters that are overshadowed by dominant 
ones. 

The two resulting distributions are then used as the training stage for the SV classifier, which 
constructs two predictor models D1(y1) and D2(y2) for each distribution respectively. The 
“training” of the SV classifier is an important part of this work, and is further discussed in the 
implementation section of this report. For now, these predictor models are constructed by using 
the given PCA output from two subspaces and a distribution of negative class data. One class 
classifiers would be more appropriate in this situation where negative class data (representing 
faulty behavior) are not available. A soft decision boundary can be constructed by fitting the 
training data with a likelihood function that maps SVM output to probabilities. In the evaluation 
stage, a new observation is processed through the same algorithmic steps; it is projected onto the 
model and residual subspaces and classified with the SVM predictor model. The new observation 
will be classified twice and with two probabilities. The joint class probability from the two 
subspaces will in the end be used for the decision classification. 

This work will attempt to address some present issues in health monitoring of electronic 
systems: a) false negative alarms in the training stage b) false positive alarms in the training stage 
c) hidden degradation of system parameters and d) presence of intermittent faults in healthy 
system performance.  

Support vectors produce an uncalibrated value that is not a probability. By constructing the 
classifier to produce a posterior probability P(class|input) the predictor model can benefit from an 
uncertainty to each prediction and give realistic interpretations for the classification output. The 
soft decision boundary can reduce the false alarms in both the training and evaluation stage by 
accepting new observations inside the SVM predictor boundary and also within the soft 
boundary. The issue of hidden degradation can be addressed with the PCA decomposition of the 
input space, where the residual subspace can uncover parameters that are overshadowed by 
dominantly varying ones. 

 
Subspace decomposition into Principal Components can be accomplished using singular 

value decomposition of matrix the input data X [3] [4]. The two orthogonal matrices U and V are 
called the left and right eigen matrices of X. The training data (xi,yi) in each subspace, x ∈ Xm, and 
the class yi ∈ {+1,-1},  i=1,…,n can be separated by the hyperplane decision function D(x) with 
appropriate w and b: 

 

( ) ( ) ∑
=

+=+=
n

i
ii

T bxwbxwxD
1

   (1) 

 
where w=[w1,…,wn]T  is the weight vector of the hyperplane and x=[x1,…xn]T. Thus, training data 
with yi=+1 will fall into D(x)>0 while the others with yi=-1 will fall into D(x)<0.  The separating 
hyperplane will function as the predictor model and is chosen to maximize the distance between 
the two classes, a distance called the margin M given by M=2/||w||, called the objective function. 
The objective function is penalized by adding an error term ξ to the optimization equation: 
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subject to ( ) 1     for    1,...,T

i i iy b i nξ+ ≥ − =w x  where C is the margin penalty parameter that 
determines the trade-off between the maximization of the margin and minimization of the 
classification error, and therefore the false alarm rate. 
 

One way of producing probabilistic outputs for the SV classifier output D is to fit a sigmoid 
likelihood function [7] such that: 
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where D is defined as in (2), index j refers to the projected data coming from either the model or 
residual subspaces. So the above equation says that the probability that a data point x is positively 
(normal) classified is defined by the exponential function in equation 3. Each prediction will be 
given as two probabilities for each subspace prediction, a total set of four probabilities. The joint 
probabilities from the two predictors (model and residual) are used to formulate a final 
probabilistic prediction. 

Implementation 
One of the main motivations in designing a detection algorithm is its generality; that is to be 

suitable for a broad range of applications regardless of the data type or system purpose. For this, 
its online computational performance characteristics are important factors in programming the 
algorithm into stand alone software/tools, which should be able to perform on a standard dual 
processor PC with 2.2 GHz. A proof of concept will be performed using Matlab .m and .mex 
files. A C based code will be attempted for the final tool.  

For the proof of concept, the quadratic programming solution to the quadratic optimization 
problem will be addressed with existing matlab/C code available in LibSVM and other matlab 
based SVM code. Singular value decomposition will be used for computations of matrix inverses 
and eigenanalysis. A complexity analysis of the algorithm will be provided and a discussion of 
potential improvements noted. 

Testing and Validation 
The Center for Advanced Life Cycle Engineering at University of Maryland has extensive 

experimental data for electronic parts and systems under accelerated condition testing. The testing 
plan will utilize two data sets: 
a) A simulation of training data for a multivariate system with non-uniformly scaled parameter 

distributions. The test data is identical to the training data, but with artificially injected faults. 
The injected faults will also differ in degree, where one parameter will be subjected to gross 
changes in variance other parameters will be subjected to finer changes in variance and other 
still to just Gaussian noise ~ N(0,σ2) and the remaining will be unchanged.  
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b) Experimental data for training and experimental data with faults and failures. The 
experimental data includes intermittent faults and failures as part of the training and 
evaluation stage. 

 
The output of the algorithm will be tested against the LibSVM software output on four 

categories: a) False negative and false positive alarm rate for training stage b) False negative and 
false positive alarm rate for the evaluation stage c) Accuracy and timeliness in detecting known 
faulty periods, including intermittent faults d) Computation time. Data will generally be stored in 
.mat or excel files 

Training strategy 
The training stage is critical, and in this two class approach the negative set should represent 

an abnormal situation. The training strategy is to generate an artificial negative class based on two 
distributions: 1) A uniform random distribution in the range of the training set without 
overlapping data points. This training is identifying the space not claimed by the training data, 
theoretically it represents all the situations of abnormal system behavior. 2) A Gaussian 
concentric distribution, with a radius the lengths the first and second largest eigenvectors of the 
training data. A one class classifier is also going to be discussed but not considered for the 
software development.  
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Project Schedule and Milestones 
Tasks Title Task Description

Joint probability model for  SVM output
Matlab code for likelihood function selection
Build decision function (health assessment)

Write up theretical background for SVM
Set up LibSVM
Matlab code for CALCEsvm 
Matlab code for SVM model parameter tuning
Matlab code for kernel functions
Matlab code to interface with PCA

Write up theoretical background for PCA decomposition
Code PCA in matlab

Create training data set for simulated test case
Create test data set for simulated test case
Get experimental data (identify faults)
Write code for negative class generation
* For Uniformly distributed case
* For Gaussian distributed case
into a database

Run LibSVM on test data
Run CALCEsvm on test data ( likelihood fncs)

Write report for full description of CALCEsvm
Write doumentation for software
Transition matlab code to C

Deliver research interest presentation
Deliver project proposal presentation
Deliver project proposal report
Deliver midterm report
Deliver midterm presentation
Deliver final report
Deliver final presentation

Testing & Validation

Reports and Software

Deliverables

Probability Model

Support Vector Machines (SVM)

Principal Component Analysis (PCA)

Data Acqusition & Storage

Mar-08 Apr-08 May-08Nov-07 Dec-07 Jan-08 Feb-08
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