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Abstract. In this paper, we propose a technique for generat-
ing digital elevation models (DEM) of urban terrain from raw LI-
DAR point cloud data using an image processing technique, called
wedgelets, developed by Donoho. The advantage of this technique
is that the models it generates are very efficient in terms of storage
demands, and the technique is highly resistant to noise. We begin
by providing a mathematical justification for the use of wedgelets
on urban data and validate our technique by using it to create
DEMs using both an urban and non urban LIDAR point cloud.

1. Background

The use of aircraft-based LIDAR systems has become an important
tool for creating elevation models of terrain data. To summarize the
method: an aircraft is equipped with a laser range finder and a GPS
system. The laser range finder calculates the ground elevation while
the GPS system calculates the location of the aircraft over the surface
of the earth. The combination of these two data streams produces an
elevation model of a given area consisting of a large number of discrete
points in three-dimensional space. This set of points is called a point
cloud.

The problem of producing an image of the terrain from this point
cloud is subtle and difficult. The first problem is that the point cloud is
non uniformly sampled. This is due to altitude and airspeed changes,
as well as changes in the local curvature of the terrain being sampled.
This problem makes typical multiresolution analysis difficult due to the
varying density of information throughout the nested subspaces.

The second problem is that due to various issues arising from the
physical implementation of the LIDAR system, the resulting point
clouds tend to contain a relatively high level of noise. If the reflectance
or refraction index of a particular region being struck by the laser is
an extreme value, incorrect measurements may be obtained.

Most methods for creating a representation of the terrain from the
point cloud data focus on using interpolative processes to approximate
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the terrain locally, using low degree polynomials on arbitrary meshes.
These techniques have are disadvantaged in that they do not admit a
compact representation. Since the mesh is arbitrary, the sender needs
to transmit the mesh information as well as the local polynomial co-
efficients. Other methods, such as LOESS, require the original data
set to be present in order to reconstruct the visualization. All of these
methods prevent the real time transmission of terrain representations
obtained through LIDAR point cloud sampling.

The objective of this project is to develop software that will create a
visual representation of urban terrain using a LIDAR point cloud. The
method should be able to cope with the difficulties of non uniformly
sampled data and noisy data. The most important aspect, however, is
that the representation must be compact. This will enable real time
transmission of the representation.

2. Wedgelets

2.1. Justification for Development. The distinguishing feature of
urban terrain data is the presence of very strong edges. Therefore, we
must implement a technique designed to handle discontinuous data.
Wavelets have demonstrated excellent ability at decomposing piecewise
smooth, one dimensional signals with discontinuities. In particular, the
local support of the wavelet basis functions allows wavelets to efficiently
represent discontinuities in the signal. Wedgelets are shown to be a
class of approximating functions that perform optimally in the minimax
sense on a class of data similar in principle to urban data.

Definition 1. Let X be a set of signals (or images). An estimator
δm : X → Θ is called minimax with respect to a risk function R(θ, δ) if

supθ∈ΘR(θ, δm) = infδsupθ∈ΘR(θ, δ).

The risk function we will be considering will be the L2 error between
an image in the class X and its approximation θ.

Consider an orthonormal basis (ψλ)λ ∈ Λ for V, the set of piecewise
real (or complex) valued C2 functions on [0, 1]. For any f ∈ V and
n ∈ N let εn(f) be the best nonlinear approximation of f using a linear
combination of N basis elements.

εn(f) = inf{||f −
∑
λ∈Λ′

aλψλ||2 : |Λ′| = n}

It can be shown that the approximation error decays quadratically,
εn(f) = O(n−2). Furthermore, it is known that this result is optimal in
the minimax sense. The best minimax estimator for signals in V has
an approximation error that decays at rate on the same order.
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This optimality disappears when one moves into two dimensions. To
demonstrate this we need to develop some notation.

Definition 2. An image f defined on [0, 1]2 is in the Horizon Class pro-
vided there is a function H : [0, 1]→ R such that f(x, y) = 1{y≥H(x)} 0 ≤
x, y ≤ 1.

The function H is called the horizon of the image. These images are
binary, but the results below generalize to arbitrary piecewise constant,
horizon model images defined on the unit square.

Definition 3. For 0 < α ≤ 1 H ∈ Holderα(C) if

(1) |H(x)−H(x′)| ≤ C|x− x′|α, 0 ≤ x, x′ ≤ 1

For 1 < α ≤ 2 H ∈ Holderα(C) if

(2) |H ′(x)−H ′(x′)| ≤ C|x− x′|α−1, 0 ≤ x, x′ ≤ 1

The Holder classes imply a level of fractional regularity on the hori-
zon function. For α = 1 we are imposing a Lipschitz condition on H
and for α = 2 we are imposing a Lipschitz condition on H ′.

Definition 4. Horizα(C1, Cα) = {f : H ∈ Holderα(Cα)∩Holder1(C1)}

We would hope that in improving the Holder regularity of the hori-
zon function we could use the additional information encoded by the
smoothness to obtain better nonlinear estimates. It can be shown for
images in the class Horizα that the approximation error for wavelets
using a standard tensor product construction to create a basis for [0, 1]2

is εn(f) = O(n−1). However, it can be shown that the optimal minimax
estimator is

M∗(n,Horizα) = O(n−2α/α+1).

Thus, the standard tensor product wavelet approximation no longer
realizes the optimal minimax error estimates. Heuristically the tensor
wavelets are interpreting the horizon as a collection of isolated points
instead of capturing the ’edginess’ as a whole.

2.2. The Wedgelet Transform. We proceed as Führ in [3]. Again
let f be a piecewise constant function defined on [0, 1]2 with piecewise
C2 boundaries between regions. Our objective is to derive an approx-
imating scheme that realizes, up to a constant, the optimal minimax
estimate for functions in Horizα(C1, Cα). We begin by partitioning the
unit square into dyadic partitions at multiple scales.

Definition 5. Qj = {[2−jk, 2−j(k + 1)]× [2−jl, 2−j(l + 1)] : 0 ≤ k, l ≤
2j} is the set of syadic squares on [0, 1]2 at scale j.
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• Let Q =
⋃∞
j=0Qj.

• A dyadic partition Q of [0, 1]2 is a tiling of [0, 1]2 by disjoint
dyadic squares.
• A wedglet partition W = {(Qj,k,l, ω1, ω2)} splits each element of
Q into at most two wedges ω1, ω2 along a given line parameter-
ized by an angle θ and an offset k.

Definition 6. A wedgelet segmentation is a pair (g,W ) consisting of
a wedge partition W and a function g which is constant on each ω ∈ W
[3].
The wedgelet approximation of f is given by

min(g,W )||f − g||22 + λ|W |

The constant value that is chosen for g|ωi on a given dyadic square is
obviously the average value of the function f on that restricted domain.
The function of the wedgelet partition is to capture edges that are not
aligned with the coordinate axes at each dyadic scale. Constructing our
approximating functions in this way leads us to the following theorem.

Theorem 2.1. Let f be piecewise constant with C2 boundary. Assume
that the set Lj consists of all lines taking the angles {−π/2 + 2−jlπ :
0 ≤ l ≤ 2j}. Then the nonlinear wedgelet approximation rate for
f is O(|W−2|), i.e., there exists a wedglet segmentation (g,W ) with
||f − g||22 ≤ C|W |−2.[3]

We will not reproduce the proof here. The basic procedure is to
count the number of dyadic squares at scale j that meet the bound-
ary between two constant regions. One then uses Taylor’s theorem to
approximate the error on each of those dyadic squares where the par-
titioning wedge line on those squares is a linear approximation to the
boundary between the two regions.

We have thus recovered the optimal minimax convergence rate for
this class of images. Our justification for using wedgelets to model ur-
ban terrain data stems from the fact that urban data is characterized
by the presence of strong (usually straight) edges. It was necessary to
expand the class of approximating functions from piecewise constant.
This allowed us to better approximate structures with sloped roofs.

3. Use of Wedgelets on Digital Elevation Data

3.1. Data Sets. The elevation data is generated by a survey aircraft
equipped with a LIDAR system. The data returned by the aircraft is
called a point cloud.
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Definition 7. A point cloud is an n× 3 matrix with coefficients in R
where each row represents a point in R3.

The data set can be thought of as a discrete random sample of the
continuous elevation function.

3.2. Implementation. Let Atop = [ ~xtop, ~ytop,~1] contain the (x,y) posi-
tions for all of the points in a give dyadic square on one side of a given
line. Let Abottom = [ ~xbottom, ~ybottom,~1] contain the same information for
the other side of a given line dividing the dyadic square. The optimal
approximating function on this dyadic square for this particular line
can be defined as

g(x, y)|ω1 = dx1x+ dy1y + z1

g(x, y)|ω2 = dx2x+ dy2y + z2

where ~gω1 = [dx1, dy1, z1] is the least squares solution to Atop ~gω1 = ~ztop
and ~gω2 = [dx2, dy2, z2] is the least squares solution to Abottom ~gω2 =
~zbottom.
Note that on any wedge, the approximating function g has three

degrees of freedom. On a particular dyadic square, the approximating
function has eight degrees of freedom.

• Three; dx1, dy1, z1, determine the function g|ω1 .
• Three; dx2, dy2, z2, determine the function g|ω2 .
• Two specify the location of the line in the dyadic square that

separates ω1 and ω2.

Our algorithm at each step stores the best wedge configuration in terms
of L1 error for each dyadic square in a quad-tree data structure. The
L1 norm was chosen over the L2 error norm because the L1 decision
tended to pay more respect to discontinuities in that data than the L2

norm, which is known as a smoothing norm.
The following parameters are user set:

• jmax, The smallest scale for the dyadic squares.
• ∆k The minimum line translation.
• |θ| The number of angles used in parameterizing lines.

jmax and ∆k should be chosen small enough to capture all of the in-
formation at the scale of interest.

The parameters ∆k and |θ| serve to parameterize a dictionary of lines
for the algorithm to use as wedge partitions. Namely, if the domain
in which the x,y coordinates of the point cloud are contained lies in a
square [a, a+c]× [b, b+c], then there are on the order of θc

∆k
lines in the

dictionary. The angles used are in a uniform partition of [−π/4, 3π/4].
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The parameter jmax serves as a recursion stop.

Pseudo Code for the Wedgelet Transform
For θ1, θ2, ...θ|θ|

For k = kmin : ∆k : kmax
• Split the point cloud matrix into two parts PCtop and PCbottom
• Approximate the points in PCtop by the best fit least squares

regression plane.
• Approximate the points in PCbottom by the best fit least squares

regression plane.
• If the sum of the residuals is the smallest compared to all lines

checked so far, store this wedge configuration for this dyadic square at
the root of a quadtree.

• Dyadically subdivide PCtop and PCbottom each into four sub-
matricies and recurse until jmax is reached, storing intermediate results
in the quad-tree as you move down.
kmin and kmax are determined by the minimal and maximal values

for the line offset that cause lines with slope θ to intersect the point
cloud domain. PCtop and PCbottom refer to points in a particular dyadic
square that are above or below a given line.

Generally the QR factorization is used to compute the regression
planes. There are a few special cases which deserve comment. If there
are fewer than three data points in a given wedge, then the corre-
sponding regression problem is ill defined. As a preprocessing step, we
preform regression on each dyadic square with no line passing through
it. Then when the situation occurs in which either PCtop or PCbottom
is empty, we do not need to do anything. If either PCtop or PCbottom
contains one point, then the plane is set to be a constant taking the
value of that point. If either matrix contains two points, then we sim-
ply average.

Also, if either matrix contains fewer than 20 points, then we use
SVD instead of QR to find the best fit plane. We do this because as
the number of points shrinks, the probability of the points contained
in the matrix become linearly dependent increases. SVD allows us to
zero out singular values that are close to zero and solve the regression
equations in terms of the other values. This helps ensure stability of
the algorithm.
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4. Results

4.1. Sample Data Sets. To test wedgelets on real LIDAR data we
used two ready made DEMs. One was taken over Ft. Belvior, VA. The
other was taken over New Orleans, LA.

Figure 1. New Orleans

Figure 2. Ft. Belvor
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The New Orleans data set was our canonical urban data set while the
Ft. Belvior data set was our canonical non urban data set. To generate
point clouds from this data, we randomly sampled the domain and
assigned values to the points using bilinear interpolation. We sampled
so that our point cloud has an average density of 3 data points/m2.

4.2. Comparing Images: Choosing a Quality Metric. In order
to assess the quality of the DEMs generated from the wedgelet trans-
form, we compared them to the reference DEMs provided by the Army
Corps of Engineers. The measure of quality used is a variation of the
Sturctural Similarity Index described in [6]. This is a full reference
measure. If X is an image recovered using wedgelets and Y is the
reference image, the TSSIM measure has the following properties:

• Symmetry: TSSSIM(X, Y ) = TSSIM(Y,X)
• Boundedness: TSSIM(X, Y ) ≤ 1
• Unique Maximum: TSSIM(X, Y ) = 1 ⇐⇒ X = Y

TSSIM is computed by computing image statistics locally and then
computing a similarity measure for both the contrast and image struc-
ture.

c(Xlocal, Ylocal) =
2σxσy
σ2
x + σ2

y

s(Xlocal, Ylocal) =
σxy
σxσy

These indivudal measurements both satisfy the properties of TSSIM
listed in the previous frame. The global TSSIM measure is computed
by averaging the products of c(X, Y ), s(X, Y ) over all of the local ob-
servations. Empirical observation has shown that a TSSIM at or above
0.75 indicates a very strong similarity between two images.

Observation has shown TSSIM to be an excellent indicator of ob-
jective image quality. It is better suited to the task of assessing the
qualities of images than the standard mathematical error norms, as it
pays more attention to local structures.

4.3. Compression Rates. The reference models are 5122 pixels. We
determine the compression rate by comparing the number of doubles
that need to be stored to create a given wedgelet approximation to
5122. The results are shown below.
For the urban DEM we were able to reconstruct to an acceptable level

of quality at 85% compression. The rural data fared much worse. This
is intuitive, however, as the trees in the Ft. Belvior data will not yield
themselves to approximation by planes. The Ft. Belvior data is too
far from the class of images that wedgelets were intended for.

It should also be noted that increasing the angular resolution in-
creased the quality of approximation only slightly.



COMPRESSED POINT CLOUD TERRAIN MODELS USING WEDGELETS 9

Figure 3. Percentage of Retained Data vs TSSIM

4.4. Wedgelet Denoising. Using wedgelets to denoise images con-
taining gaussian noise is described in [2]. The basic idea is to find
a sweet spot where the wedges you use are large enough so that the
interpolative process removes the noise but small enough that detail
is preserved. We took our the urban reference point cloud and added
gaussian white noise with zero mean and σ = 1

3
. Resulting wedgelet

reconstructions are shown below.
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Figure 5. 30% retained data

Figure 4. 15% retained data

Note the sudden disappearance of noise between the 30% and 15%
compression levels. A plot of percentage of retained data vs TSSIM
illustrates this well.
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Figure 6. Percentage of Retained Data vs. TSSIM For
noisy data

It is obvious that increasing the sampling density of the point cloud
and/or reducing the level of noise will move the peak in the above plot
toward the right. This indicates that de-noising could be done in these
cases with a less significant loss of image detail. We do not quantify
these observations here.

We also examined the case where instead of perturbing the elevation
portion of the data, the (x, y) information was perturbed. We took
each point in our urban reference point cloud and added a gaussian
random variable with mean zero and σ = 1

15
to both the x and y co-

ordinate. The value for σ was chosen to be similar to realistic sensor
noise associated with a GPS system. The reconstruction was preformed
using a very small level of compression (≈ 5% compression).

Under these circumstances wedgelets performed very well. The in-
teresting observation is that on the interior of buildings, the wedgelet
reconstruction was essentially perfect. When the perturbation ’kicks’
points over an existing edge, there is a small yet measurable distor-
tion. This manifests as edge blurring. Figure seven is a plot of the
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absolute value of the difference between the reference DEM and the
reconstruction with noisy data. The deep blue regions are within sin-
gular precision of zero. This demonstrates that wedgelets is having
no problem coping with this type of noise on the interior of bounded
regions.

Figure 7. Difference Between Reference Image and Re-
construction From Noisy Data
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