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Abstract. Urban terrain data can be conceptualizes as a piece-
wise two dimensional manifold embedded in a compact subset of
R3. A problem arising frequently in image analysis is; given a dis-
crete set of points sampled from a manifold called a point cloud,
how can one form an approximation of the manifold. We propose
the development of software suited to this task when the point
cloud is formed by an aircraft using a Light Detection and Rang-
ing (LIDAR) system to create a point cloud from a section of urban
terrain. The key advantage of this algorithm over others is that
the image representation will be highly compressed. This will allow
data acquisition, transmission, and use to occur in real time.
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1. Background

The use of aircraft-based LIDAR systems have become an important
tool for creating elevation models of terrain data. To summarize the
method: an aircraft is equipped with a laser range finder and a GPS
system. The laser range finder calculates the ground elevation while
the GPS system calculates the location of the aircraft over the surface
of the earth. The combination of these two data streams produces an
elevation model of a given area consisting of a large number of discrete
points in three-dimensional space. This set of points is called a point
cloud.

The problem of producing an image of the terrain from this point cloud
is subtle and difficult. The first problem is that the point-cloud is non
uniformly sampled. This is due to altitude and airspeed changes, as
well as changes in the local curvature of the terrain being sampled.
This problem makes typical multiresolution analysis difficult due to
the varying density of information throughout nested subspaces.

The second problem is that due to various issues arising from the phys-
ical implementation of the LIDAR system, the resulting point clouds
tend to contain a relatively high level of noise. If the reflectance or
refraction index of a particular region being struck by the laser is an
extreme value, incorrect values may be obtained.

Most methods for creating a representation of the terrain from the
point cloud data focus on using interpolative processes to approximate
the terrain locally using low degree polynomials on arbitrary meshes.
These techniques have the disadvantage that they do not admit a com-
pact representation. Since the mesh is arbitrary the sender needs to
transmit the mesh information as well as the local polynomial coef-
ficients. Other methods such as LOESS require the original data-set
to be present in order to reconstruct the visualization. All of these
methods prevent the real time transmission of terrain representations
obtained through LIDAR point cloud sampling.

The objective of this project is to create software that will create a
visual representation of urban terrain using a LIDAR point cloud. The
method should be able to cope with the difficulties of non-uniformly
sampled data and noisy data. The most important aspect however, is
that the representation must be compact. This will enable real time
transmission of the representation.
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2. Approach

The algorithm we plan to implement was first proposed by Donoho
called wedgelets[1]. Consider a point cloud of the form (x, y, z) where
x ∈ [0, 1], y ∈ [0, 1]. The algorithm induces a multiresolution dyadic
partition of the image space. D1 = [0, 1] × [0, 1], D2 = [0, 1/2] ×
[0, 1/2], D3 = [0, 1/2]× [1/2, 1], D4 = [1/2, 1]× [0, 1/2], D5 = [1/2, 1]×
[1/2, 1].... A line is drawn through each dyadic square dividing it into
two disjoint sets called a wedge. On each wedge the function is ap-
proximated with a plane fitted using least squares regression. Donoho
proved that for horizon model images this technique produced conver-
gence on the order of h2 where h is the scale of the smallest used dyadic
square [1]. It is due to the rectilinear nature of urban terrain that we
believe wedgelets is a promising representation.

The approximation on a given dyadic square can be described by eight
parameters. Two parameters define the line while three parameters
define each plane. It is clear that if the approximation introduces tol-
erable error on a particular dyadic and the original subset of the data
contained in that square was large that there is considerable poten-
tial for compression. The wedgelet approximation to the surface will
be taken to be some spanning set on the image space where the ap-
proximation on each square satisfies a user specified error bound on
the residuals between the fitted planes and the data points. The data
structure that wedgelets produces is a quad tree. By virtue of its struc-
ture we will need to encode little data regarding the location of each
dyadic square relative to the entire image space.

One can define several norms over which to minimize the error. We
will test several to determine which produces the best representation.

Noisy point clouds will present a problem. Wedgelets have noted some
success in de-noising images[2]. De-noising using wedgelets however
requires the user to accept a coarser mesh. This introduces greater
approximation error which may or may not be tolerable. Most LI-
DAR noise consists of abnormally high or low values relative to a local
neighborhood. We plan to deal with this problem by testing and im-
plementing the outlier detection techniques outlined by [4].

Another problem is presented by the computational complexity of the
algorithm. If the data set is large then the wedgelets algorithm will be
required to preform QR factorizations on very large matrices several
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thousand times to find the optimal wedge setup on each dyadic square.
To combat this problem we plan to implement an algorithm described
by Moenning and Dodgson[3]. Their algorithm reduces a point cloud
by eliminating redundant sets of data. This process is lossy but will be
vital to keeping running time reasonable.

3. Implementation

The fully recursive nature of the algorithm makes it a prime can-
didate to be paralyzed. We plan to run the algorithm on a dual core
Intel Xenon running at 2.20 GHz. It is our hope that the algorithm
for creating these representations will be able to be implemented in
real time in the field. The platform we are currently using should be
indicative of the type of computer that is readily available.

The algorithm will be implemented in C++. We plan on using only
open source libraries so that the code should compile on any architec-
ture without need for adjustment.

4. Testing and Validation

The Army Corps of Engineers has provided us with several point
clouds taken from New Orleans, LA. They have also given us gridded
images produced from those point clouds. Validation will be accom-
plished by comparing the result of our algorithm on the point cloud
data with the gridded image. We should expect that the resulting im-
age will correspond to the gridded image in terms of basic features.
Our image may not be completely as accurate due to the compression
but, our representation should be much smaller in memory.

We have access to a tool called TSSIM which compares two images.
It gives special weight to the features of urban terrain that we are in-
terested in. This tool will be the basis of our comparison.

Additional LIDAR point clouds and corresponding gridded images are
available from the USGS via ”http://lidar.cr.usgs.gov/”.

5. Project Schedule

October.

• Present Project Proposal.
• Implement a first draft of the wedgelet algorithm.
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November.

• Implement TSSIM
• Compare results with gridded images.
• Assess image quality and running time.

December.

• If deemed to be an issue reduce running time.
• Implement error norms other than L2.
• Assess image quality when the optimal wedge is computed using

other norms.
• Deliver Midterm Report.

January.

• Implement de-noising algorithms.
• Parallelize wedgelets algorithm. (time permitting)

February.

• Assess effectiveness of de-noising algorithms.
• Implement Moenning and Dodgson’s point cloud reduction al-

gorithm.
• Assess effectiveness.

March.

• Develop GUI front end.
• Begin Final Report.

April.

• Complete Final Report First Draft.
• Edit Final Report.

May.

• Present Results.
• Deliver Final Report.
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