
GENERATING COMPRESSED POINT CLOUD IMAGE
REPRESENTATIONS

Christopher Miller; cmillerATmath.umd.edu

Advisor: Dr. John Benedetto; jbbATmath.umd.edu

Abstract. Urban terrain data can be conceptualizes as a piece-
wise two dimensional manifold embedded in a compact subset of
R3. A problem arising frequently in image analysis is; given a dis-
crete set of points sampled from a manifold called a point cloud,
how can one form an approximation to the manifold. In this pa-
per we document the implementation of a image transform called
wedgelets to accomplish this task. The key advantage of this algo-
rithm over others is that the image representation will be highly
compressed. This will allow data acquisition, transmission, and
use to occur in real time.

1. Background

The use of aircraft-based Light Detection and Ranging (LIDAR)
systems have emerged as an important tool for creating digital terrain
elevation models. An aircraft equipped with a LIDAR system trans-
mits pulses of short wavelength laser light towards the ground. The
time the beam takes to travel to the earth’s surface and back coupled
with the airplane’s internal GPS navigation system provides accurate
terrain elevation data. The data gathered from this procedure consists
of a large number of points in R3. This set of points is referred to as a
point cloud.

A problem exists when one attempts to consider these point clouds as
images of terrain. The sampling rate within the point cloud is generally
non uniform due to variations in airspeed, altitude, terrain curvature
etc. Furthermore, the points are not aligned to a grid meaning that
the natural interpretation of points as image pixels is not valid.

Methods for generating a representation of the terrain from point
cloud data generally focus on using interpolative processes to approxi-
mate local terrain behavior using low degree polynomials on arbitrarily
shaped meshes. Wedgelets is such a technique with the exception that
there are regularity conditions imposed on the mesh. These conditions

Date: 20 December 2007.
1



2 GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS

allow the information encoded by the wedgelet transform to be encoded
in a compact data structure.

2. Wedgelet Transform

The wedgelet transform was first described by Donoho for represent-
ing functions f : [0, 1]2 → R such that f is piecewise constant with C2

boundaries between constant regions. The transform works by parti-
tioning I2 into a set of overlapping dyadic squares Qj of size 2−j.

Qj = {[2jk, 2j(k + 1)]× [2jm, 2j(m+ 1)] : 0 ≤ j ≤ J, 0 ≤ k,m < 2J−j}
[3] This partitioning induces a quadtree structure on the unit interval.

Divide each dyadic square into two ’wedges’ by drawing a line through
the square. On each side of the line approximate the function by a con-
stant. Let gi,j be the approximation on the i’th dyadic square at scale
j. If fi,j is the restriction of f to the given square, find the line that
minimizes ||fi,j − gi,j||2.

The above transform described by Donoho naturally generalizes if
’piecewise constant’ is replaced by ’piecewise linear’ or ’piecewise n’th
degree polynomial’. In the case where f can be reasonably approx-
imated by a piecewise linear function minimizing ||fi,j − gi,j||2 is a
relatively cheaply computed linear least squares optimization. For
functions requiring higher degree polynomials computing the optimal
approximating function is nonlinear least squares which may require
substantial computational resources.

3. Implementation

3.1. Wedgelet Transform. Our implementation of the wedgelets trans-
form was written in C using the GNU GSL science libraries to perform
the matrix computations. It currently runs on a 2.2ghz intel dual core
system with 4GB of RAM. Our algorithm for computing the wedgelet
transform works as follows. The point cloud is inputed to the algory-
thm as an n by three matrix of floating point numbers.

PC =


x0 y0 z0

x1 y1 z1

x2 y2 z2
...

...
...

xn−1 yn−1 zn−1


From this the matrix P = [~x, ~y,~1] and the vector ~b = [~z] are initialized.

The user must choose several parameters.

• The number of angles to be used.



GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS 3

Figure 3.1. Illustration of User Set Parameters

• The minimum line translation ∆k.
• The stop width: the minimum dyadic square size.

The first two parameters define the discrete set of lines to be used in
dividing the wedges and the second stops the recursive process.

For each line in the chosen discrete set the matrix P and vector ~b
are divided into the two partitions induced on the point cloud by the
given line.

P =


x1 y1 1
x2 y2 1
x3 y3 1
x3 y3 1
...

...
...

P1 =


x1 y1 1
x3 y3 1
x4 y4 1
x7 y7 1
...

...
...

P2 =


x2 y2 1
x3 y3 1
x5 y5 1
x6 y6 1
...

...
...


For each of these matrices the least squares solution to the system

P1[dx1, dy1, z1]
t = ~b1, P2[dx2, dy2, z2]

t = ~b2 is computed. The planes de-
fined by gi,j,1 = dx1x+dy1y+z1 and gi,j,2 = dx2x+dy2y+z2 are the best
linear approximations to the data on each side of that given wedge. If
||fi,j−gi,j||2 is minimal then the coefficients (θ, k, dx1, dy1, z1, dx2, dy2, z2)
are stored. Each of P1 and P2 are dyadically divided into four sub-
matrices and the above process is recursively applied.

When the dyadic squares are sufficiently small the matrices can be-
come underdetermined. These cases are handled as follows.



4 GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS

Figure 3.2. Instability using the QR factorization

• Either matrix contains zero points: In this case the wedge is
discarded.
• A matrix contains one point: In this case the underdetermined

system is set to a constant.
• A matrix contains two points: The wedge is set to zero in the

undetermined dimension and the system is solved. This pro-
duces a unique solution

If either matrix contains few points then there is a stronger possibility
that it will be nearly rank deficient. This produces a stability issue
when solving the least squares problem using the QR factorization. If
a matrix contains fewer than twenty points the SVD is used instead of
the QR factorization for computing the least squares solution. If small
singular values exist they are zeroed out and the system is solved only
in terms of the larger singular values.

3.2. Pruning. We now have a representation of the function sampled
by the point cloud at multiple dyadic levels. A criterion is needed to
control which wedges are used to approximate the function. For fixed
λ ≥ 0 Donoho defined the optimal wedgelet partition of an image to



GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS 5

Figure 4.1. Image Reconstructed from Point Cloud us-
ing Matlab’s Gridding

be the minimizer of the functional, F (|W |, λ) = ||f −g||+λ|W |, where
|W | is the number of dyadic squares used in the approximation, and g
is the approximating function. λ acts as a penalty for approximations
using large numbers of wedges. Larger values of λ result in a coarser
approximation while smaller values of λ produce a more detailed im-
age at the cost of additional storage. In practice the minimizer can be
found using any norm. In practice it has been experimentally verified
that the L1 norm produces optimal results.

Once a suitable set of wedges has been chosen the function is recon-
structed using the approximating functions on each dyadic square.

4. Sample Images

The sample point cloud came from the Army Corps of Engineers
TEC division. The point cloud was taken over Ft. Belvior VA. The
average sampling density was 2 sample

m2 . The following images are dis-
played at a scale 1pixel = 1m2.

The following plots show wedgelet reconstructions for several values
of lambda. The last plot compares the structural similarity between
the wedgelet approximation and the gridded image as a function of λ
chosen during pruning, Information on the structural similarity index
(TSSIM) can be found in [1]



6 GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS

Figure 4.2. Using Wedgelets λ = 1

Figure 4.3. Using Wedgelets λ = 75



GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS 7

Figure 4.4. Structural Similarity Index (TSSIM) Be-
tween Original and Reconstructions

One would expect the quality index to be monotonically decreasing
in λ and this is indeed the behavior we observe.

5. Further Work

January

• Implement de-noising algorithms. [5]
• Assess Compression Rates.
• Parallelize wedgelets algorithm.

February

• Assess effectiveness of de-noising algorithms.
• Implement Moenning and Dodgson’s point cloud reduction al-

gorithm. [4]
• Assess effectiveness.

March

• Develop GUI front end.
• Begin Final Report.



8 GENERATING COMPRESSED POINT CLOUD IMAGE REPRESENTATIONS

April

• Complete Final Report First Draft.

May

• Present Results.
• Deliver Final Report.

References

[1] Honghua Chang, Jianqui Zhang Evaluation of Human Detection Performance
Using Target Structure Similarity Clutter Metrics, Optical Engineering, Sep-
tember 2006, Vol. 45, Issue 9, 096404.

[2] David L. Donoho Wedgelets: Nearly Minimax Estimation of Edges, The Annals
of Statistics, Vol. 27, No. 3. (Jun., 1999), pp. 859-897.

[3] Laurent Demaret, Felix Friedrich, Hartmut Fhr, Tomasz Szygowski, Multiscale
Wedgelet Denoising Algorithms, Proceedings of SPIE, San Diego, August 2005,
Wavelets XI, Vol. 5914, X1-12

[4] Moenning C., Dodgson N. A.: A New Point Cloud Simplification Algorithm.
Proceedings 3rd IASTED Conference on Visualization, Imaging and Image
Processing (2003).

[5] S. Sotoodeh , Outlier Detection In Laser Scanner Point Clouds, IAPRS Volume
XXXVI, Part 5, Dresden 25-27 September 2006


