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Background

® Every microbe has a Bacillus anthracis
conserved gene G
called| 6S rDNA. E coli
R

® FEasy to recognize
and exists in all Mycobacterium tuberculosis

- « Y
known microbes.
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Background

® VWe have technology to take a sample from an
environment, and read the |6S genes from every
microbe we capture.

® This is how we can tell what’s living in your gut,
skin, eyes, mouth, ocean, desert, soil, sewage, ...
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The problem

(Healthy ears) (Sick ears)
How do two

environments

- - differ?




Differentially abundant
organisms

® Strategy:

® input species abundance matrix
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©)) Difterentially abundant
organisms

® Strategy:

® change to proportions and normalize the
data.

® perform 2 sample t-test for each taxa.

® for a particular taxa, what’s the null
hypothesis! alternative!?



t-test

® Two populations: Healthy, Sick.
® For each taxa j:

® Ho: Lhealthy = Msick

® Ha: Mhealthy = Msick

® [wo-tailed test



Differentially

expressed genes

® Genes are portions of DNA that are literally
decoded (expressed) into larger molecules which
keep every function in our bodies going.

® A genetic disorder usually alters gene expression in
some way for the worse.
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Differentially
expressed genes

® When a sick population decodes a gene more or
less often than a healthy population, this is
differential expression.

® Someday your doctor will be able to test
expression levels of thousands of your genes.

® thousands of genes = thousands of hypothesis tests.



7)) Differentially expressed

genes

(Hedenfalk, PNAS, 100, 2001)
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Multiplicity!

Testing 1000 genes in humans
| have alpha = 5% threshold for t-test
expect 50 false positives!

need to reduce false positives when dealing
with multiple hypothesis tests
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() Multiplicity controls

® false discovery rate - 1995.

® expected proportion of rejected null
hypotheses which are false positives.

e different than false positive rate:

® expected proportion of all significance
tests which are false positives.
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Multiplicity controls

® p-value => individual false positive rate for
a single test.

® g-value => individual false discovery rate
for a single test.

® thresholding by g-values instead of p-
values greatly reduces the number of false

positives.
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® cluster samples based
on differentially
abundant taxa.

® single, average, and
complete linkage
algorithms.

® cluster taxa into higher
levels and repeat
hypothesis testing.

Cluster taxa
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(R. Ley, Nature, 444, 2006)
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Schedule

e Fall 07’ - functioning implementation of g-

value algorithm with clustering algorithms
in C++,

® |mplement algorithms in R or Matlab,
transition to C++.

® Spring 08’- validation and applications,
address independent visualization and
statistical concerns.
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Resources

® CBCB servers: 2x and 4x Opterons - 8 and
32GB of RAM.

® Dell 2x 3.0 GHz, 2GB (Linux)
® Mac OS X 2.16 GHz,2GB
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Validation

® Validate statistical calculations using SAS, R.

® (Classical dataset (Hedenfalk, 2001) - differentially

expressed genes related to two independent forms
of breast cancer.

® Final application to the human gut samples of obese
and lean individuals.
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Questions!
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