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Abstract 
Motivation: Numerous studies are currently underway to characterize the microbial 
communities inhabiting our world. These studies will dramatically expand our understanding of 
the microbial biosphere and, more importantly, will reveal the secrets of the complex symbiotic 
relationship between us and our commensal bacterial communities. An important prerequisite 
for such discoveries are computational tools able to rapidly and accurately compare large 
datasets generated from complex bacterial communities.  
Results: We describe a statistical method for detecting differentially abundant organisms 
between two populations using count data (e.g. 16S rRNA surveys). In high-complexity 
environments, our method employs the false discovery rate to improve specificity and properly 
handles low abundance taxa. We demonstrate the use of our tool by comparing publicly 
available human and mouse gut microbiome datasets to identify differences between these 
bacterial populations at different levels of resolution. We additionally re-analyze the data 
generated in a recent study on obesity and identify a previously uncharacterized difference 
between the gut flora of obese and lean human subjects. To illustrate the flexibility of our 
methods, we further assess differentially abundant metabolic subsystems from 85 newly 
generated microbial and viral metagenomes.        
Availability: A web server implementation of our methods is available at 
http://www.cbcb.umd.edu/~whitej/metastats/detection.shtml.  Source code is freely available at 
(sourceforge site).  
 
 
Introduction 
The increasing availability of high-throughput, inexpensive sequencing technologies has led to 
the birth of a new scientific field, metagenomics, encompassing large-scale analyses of the 
microbial communities that inhabit our bodies and our planet. Large-scale sequencing of 
bacterial populations allows us a first glimpse at the many microbes that cannot be analyzed 
through traditional means (only 1-5% of all bacteria can be isolated and independently cultured 
with current methods). Studies of environmental samples have initially focused on targeted 
sequencing of individual genes, in particular the 16S subunit of ribosomal RNA [1-7]. This gene 
is commonly used to characterize the diversity of an environment in studies that involve the 
random sampling of an environment’s genomic content.  
 
Several software tools have been developed in recent years for comparing different 
environments on the basis sequence data. DOTUR [8], Libshuff [9], S-libshuff [10], SONs [11], 
MEGAN [12], UniFrac [13], and TreeClimber [14] all focus on different aspects of such an 
analysis. DOTUR clusters sequences into operational taxonomic units (OTUs) and provides 
estimates of the diversity of a microbial population thereby providing a coarse measure for 
comparing different communities. SONs extends DOTUR with a statistical test for estimating 
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the similarity between two environments, specifically, the fraction of OTUs shared between 
two communities. Libshuff and ∫-libshuff provide a hypothesis test for deciding whether two 
communities are different, and TreeClimber and UniFrac frame this question in a phylogenetic 
context. Note that these methods aim to assess whether, rather than how two communities 
differ. The latter question is particularly important as we begin to analyze the contribution of 
the microbiome to human health. Metagenomic analysis in clinical trials will require information 
at individual taxonomic levels to aid the direction of future experiments and treatments. As an 
example, we would like to identify bacteria whose presence or absence contributes to human 
disease and develop antibiotic or probiotic treatments. The software MEGAN of Huson et al. is 
one of the first to addresses the nature of taxonomic differences between two environments, 
albeit at a qualitative level.  
 
A statistical bootstrap approach designed by Rodriguez-Brito et al. compares the abundances of 
subsystems (e.g. biochemical pathways, clusters of functionally related genes) in two 
environments using a difference of medians calculation [15]. Though this method does not 
depend on the distribution of the subsystems, it ignores variation between multiple subjects 
from a single environment, and lacks power, often requiring a prohibitive number of samples to 
achieve statistical significance. Accounting for inter-subject variation is essential for clinical trials 
when dozens or hundreds of subjects may be taken from each treatment.     
 
In this paper, we describe a rigorous statistical method for detecting differentially abundant taxa 
in two microbial populations and assess the significance of observed differences. Such rigor is 
particularly necessary as metagenomic studies are increasingly applied in a clinical setting (e.g. 
Human Microbiome Project [16]), as well as to cope with the increasing size and complexity of 
the datasets being analyzed. In high-complexity environments, our method estimates the false 
discovery rate (FDR) and separately evaluates low abundance taxa. While current microarray 
analysis packages implement the FDR, they are designed for continuous data rather than 
discrete counts, and therefore will fail to properly account for the significance of sparse 
observations in metagenomic data. 
 
We demonstrate the use of our tool by comparing publicly available human and mouse gut 
microbiome datasets to identify differences between these microflora at different levels of 
resolution. Furthermore, we re-analyze the data generated in a recent study on obesity and 
identify a previously uncharacterized difference between the gut flora of obese and lean human 
subjects. Finally, we apply our methods to metabolic data and determine differentially abundant 
subsystems between 85 microbial and viral metagenomes. The methods described in this paper 
have been implemented as a web server 
(www.cbcb.umd.edu/~whitej/metastats/detection.shtml) and are available as source code at 
(sourceforge site). 
 
Methods  
Our method relies on the following assumptions: (i) we are given data corresponding to two 
populations (e.g. sick and healthy human gut communities, or individuals exposed to different 
treatments), each consisting of multiple individuals (or samples); (ii) for each sample we are 
provided with a list of taxonomic units (taxa) present in the sample (whether individual 
organisms or phylogenetic groupings) as well as an estimate of the relative abundance of these 



J. R. White and M. Pop 

 3 

taxa in the sample.  Our goal is to identify individual taxa in such datasets that “explain” the 
difference between the two populations, i.e. taxa whose abundance in the two populations is 
different. Furthermore, we develop a statistical measure of our confidence in the observed 
differences.  In this paper we focus on data generated through 16S rRNA surveys, however the 
methods can be applied to any other experimental technique that provides abundance data.  
 
The taxa abundance matrix 
The input to our method consists of taxonomic counts from multiple subjects in two 
populations. A taxa abundance matrix (TAM) can be created using the frequency of each taxon 
observed within each individual. The ith row of this matrix represents a specific taxon, while the 
jth column represents a single individual. Thus, the cell in the ith row and jth column is the total 
number of observations of taxon i in subject j (fig. 1). Every distinct observation is represented 
only once in the matrix, i.e. overlapping taxa are not allowed. If there are g subjects in the first 
population, they are represented by the first g columns of the matrix; the remaining columns 
represent subjects from the second population.   
 

 

 
Figure 1 Format of the taxa abundance matrix. Each row represents a specific taxon, while 
each column represents a subject (replication). The frequency of the ith taxon in the jth subject 
(f(i,j)) is recorded in the corresponding cell of the matrix. If there are g subjects in the first 
population, they are represented by the first g columns of the matrix, while the remaining 
columns represent subjects from the second population. 

 
T statistic computation 
To allow the comparison of abundance numbers across multiple individuals, we convert the raw 
abundance measure to a fraction representing the relative contribution of each taxon to each of 
the individuals (columns in TAM). This results in a relative proportion matrix (RPM) of the 
same dimensions as the TAM, but the cell in the ith row and the jth column (which we shall 
denote aij) is the proportion of taxon i observed in individual j. Note when there are differences 
in the total number of observations from each subject, it is necessary to use a normalization 
procedure prior to calculation of sample mean and variance.     
 
For each taxon i, we compare its abundance across the two populations using the standard 
two-sample t statistic.  Specifically, we calculate the mean proportion 
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Similarly, we calculate 

! 

x 
i2
 and s2

i2 for treatment 2. Note n1 and n2 are the number of subjects in 
treatment 1 and treatment 2, respectively. Finally, the two-sample t statistic for each taxon i is 
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A challenge in analyzing count data is that the t statistic is not accurate in the case of low 
frequency organisms. We performed multiple simulation studies to uncover the limits of this 
technique. The first simulation involved 10 subjects from the same population in which the true 
mean proportion of an organism (X) is known, which we’ll denote pX. The population is 
normally distributed with a standard deviation pX*0.1. A single experiment k begins by choosing 
10 subjects randomly from the population and simulating 50 taxonomic observations for each 
subject.  Each sample is classified as organism X or not organism X in a taxa abundance matrix 
based on the true proportion of the organism in each subject. The resulting table is converted 
to proportions from which we calculate the one-sample t statistic for relative abundances of 
organism X: 
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As the population is normally distributed, tk follows an approximate t-distribution with 9 
degrees of freedom for adequately large values of pX. We ran simulations of 250,000 
experiments using pX = {0.5, 0.2, 0.1, 0.05, 0.01} and found the t-distribution to be reasonably 
valid for all values above pX= 0.05. This particular proportion implies we expect to see 2.5 
observations per subject on average, and so, 25 observations over all subjects. Our simulations 
indicate that accurate results can be obtained for taxa containing 25 or more observations 
within each population, therefore, as a heuristic, taxa rows corresponding to fewer than 25 
observations in both populations are removed from the RPM described above, and analyzed 
separately as described below. Additional simulations varying sampling rates between subjects 
and increasing sampling depth also supported this heuristic. 
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Figure 2 Distribution of one-sample t statistics for simulated values of pX. As the value of pX 
becomes small, the t-distribution no longer accurately approximates the true distribution.  One 
can see that the distribution of t statistics becomes sparse and asymmetric due to the limited 
number of observations in each experiment.   

 
 
Permuted p-values 
To determine a threshold for detecting differentially abundant taxa, and to assign accurate 
confidence values to the observed differences between populations, we estimate the null 
distribution of ti nonparametrically using a permutation method as described in Storey and 
Tibshirani (2003). Specifically, we randomly permute the treatment labels of the columns of the 
RPM and recalculate the t statistics. Note that the permutation maintains that there are n1 
replications for treatment 1 and n2 replications for treatment 2. Repeating this procedure for B 
trials, we obtain B sets of t statistics: t1

0b, …, tM
0b, b = 1, …, B, where M is the number of taxa in 

the RPM. 
 
Finally, the p-values for each taxon i, (i = 1, …, M) are calculated as the fraction of permuted 
tests with a higher t statistic than the original: 
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All experiments described below set B = 1000, and so the precision of the p-values will be at 
worst on the order of 1/B. One should cautiously set the number of permutations so that the 
precision of the p-values is well below the significance threshold used to call taxa differentially 
abundant.  In our studies, 1000 permutations are appropriate because our significance 
thresholds are greater than 0.01. 
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Low frequency taxa 
We do not include low frequency taxa (< 25 observations in either treatment) in the analysis 
presented above because the null distribution of the t statistic for these rare organisms varies 
widely depending on their relative abundance. However, the probability of observing a rare 
taxon is approximately equal for all individuals in a treatment, therefore, we can test rare taxa 
for differential abundance using Fisher’s exact test. Fisher’s exact test models sampling 
infrequent categories according to a hypergeometric distribution (sampling without 
replacement), rather than a binomial distribution. The frequencies of the TAM for each low 
frequency taxon are pooled to create a 2x2 contingency table (fig. 3), which acts as input for a 
two-tailed test.  Using the notation from figure 3, the null hypergeometric probability of 
observing a 2x2 contingency table is: 
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By calculating this probability for a given table, and all tables more extreme than that observed, 
one can calculate the exact probability of obtaining the original table by chance assuming that 
the null hypothesis (i.e. no difference abundance) is true [17]. There have been decades of 
debate over Fisher’s exact test as possibly being too conservative [18, 19]. However, for 
practical purposes, a conservative significance test is preferable over encountering additional 
type I error.        
 

 
Figure 3 Format of a 2x2 contingency table used in testing for differential abundance between 
rare taxa. f11 is the number of observations of taxon i in all individuals from treatment 1. f21 is 
the number of observations that are not taxon i in all individuals from treatment 1. f12 and f22 are 
similarly defined for treatment 2.  
 
 
The false discovery rate 
For complex environments (many taxa), the direct application of the t statistic as described 
above is inappropriate as we are faced with a multiple hypothesis testing scenario. An intuitive 
correction involves decreasing the p-value cutoff proportional to the number of tests 
performed (a Bonferroni correction), thereby reducing the number of false positives. This 
approach, however, results in a significant decrease in statistical power, making detection of 
differential abundance difficult. 
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An alternative approach aims to control the false discovery rate (FDR), which is defined as the 
proportion of false positives within the set of predictions [20], in contrast to the false positive 
rate defined as the proportion of false positives within the entire set of tests. In this context, 
the significance of a test is measured by a q-value, an individual measure of the FDR for each 
test [21].  
 
We implemented the following algorithm, adapted from Storey and Tibshirani (2003), for the 
automated computation of q-values: 

  
Given an ordered list of p-values, p(1) ≤ p(2) ≤ … ≤ p(M), and a range of values λ = 0, 0.01, 0.02, 
…, 0.90, we compute 
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Thus, the hypothesis test with p-value

! 

p
(i) has a corresponding q-value of 
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ˆ q p
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method yields conservative estimates of the true q-values, i.e. 

! 

ˆ q p
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Data used in this paper 
Human gut 16S rRNA sequences were prepared as described in Eckburg et al. and Ley et al. 
(2006) and are available in GenBank, accession numbers: DQ793220-DQ802819, DQ803048, 
DQ803139-DQ810181, DQ823640-DQ825343, AY974810-AY986384.  Mouse gut 16S rRNA 
sequences were prepared as described in Ley et al. (2005) and obtained from GenBank 
accession numbers: DQ014552-DQ015671, AY989911-AY993908. We acquired metabolic 
functional profiles of 85 metagenomes from the online supplementary materials of Dinsdale et 
al. (2008) (http://www.theseed.org/DinsdaleSupplementalMaterial/). 
 
16S rRNA taxonomic assignment 
There are several widely used methods for taxonomic assignment of 16S rRNA. Different 
approaches include sequence comparison, sequence composition, and phylogenetic analysis. In 
our experiments we assigned all 16S sequences to taxa using a naïve Bayesian classifier 
currently employed by the Ribosomal Database Project II (RDP) [22]. This software rapidly 
classifies sequences from kingdom to genus according to Bergey's Taxonomic Outline of the 
Prokaryotes [23]. Trained on ~23,000 pre-classified 16S sequences, the RDP classifier provides a 
statistical confidence for each classification, and is available for use online 
(http://rdp.cme.msu.edu/classifier/classifier.jsp).  
 
 
Results 
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Taxa associated with human obesity 
Recently Ley et al. (2006) published a study of gut microbes associated with obesity in humans 
and concluded that obesity has a microbial element, specifically that Firmicutes and 
Bacteroidetes are differentially abundant between lean and obese humans. Obese subjects had a 
significantly higher relative abundance of Firmicutes and a lower relative abundance of 
Bacteriodetes than the lean subjects. Furthermore, obese subjects were placed on a calorie-
restricted diet for one year, after which the subjects’ gut microbiota more closely resembled 
that of the lean individuals.   
 
We obtained the 20,609 16S rRNA genes sequenced in Ley et al. and assigned them to taxa at 
different levels of resolution (note that 2,261 of the 16S sequences came from a previous study 
[2]). We initially sought to re-establish the primary result from this paper using our 
methodology. Figure 4 illustrates the shift in Firmicutes and Bacteroidetes abundances before 
and after the obese subjects’ diets, and our method agreed with the results of the original 
study: Firmicutes are significantly more abundant in obese subjects (P = 0.003) and 
Bacteroidetes are significantly more abundant in the lean population (P < 0.001). Furthermore, 
our method also detected Actinobacteria to be differentially abundant, a result not reported by 
Ley et al. Approximately 5% of the gut population was composed of Actinobacteria in obese 
subjects and was significantly less frequent in lean subjects (P = 0.004) (fig. 5). This result 
indicates our method is more sensitive than the approach used in the original study.  
 
To explore whether we could refine the broad conclusions of the initial study, we re-analyzed 
the data at the class level.  We identified four classes of organisms that were differentially 
abundant: Clostridia (P = 0.006), Bacteroidetes (P < 0.001), Actinobacteria (P = 0.003), and 
Delta-proteobacteria (P = 0.003) (fig. 6). The first three were the dominant members of the 
corresponding phyla (Firmicutes, Bacteroides, Actinobacteria, respectively) and followed the 
same distribution as observed at a coarser level. At the phylum level, Proteobacteria (the 
phylum parent to Delta-proteobacteria) were not found to be differentially abundant between 
lean and obese individuals, however, at the class level, delta-proteobacteria were significantly 
enriched in lean individuals.  Proteobacteria were not detected as differentially abundant due to 
a severe bloom of Gamma-proteobacteria in a single obese subject (15% of the individual’s 16S 
sequences), leading to a high sample variance in obese subjects and a small overall t statistic. 
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Figure 4 Mean relative abundances (%) of Firmicutes and Bacteroidetes (± s.e.) in lean and 
obese subjects, as well as obese subjects after a 52-week calorie-restricted diet. After the 
obese subjects finished the diet, their microbial communities began to resemble that of the lean 
individuals. 

 
 

 
Figure 5 Differentially abundant phyla detected using our method (mean percentage ± s.e., p-
value ≤ 0.05). No p-value correction for multiple hypothesis tests was employed. We 
successfully re-established the major result of Ley et al., and discovered that Actinobacteria are 
also differentially abundant. Both Firmicutes and Actinobacteria have significantly higher relative 
abundances in obese people than lean people. In the lean population, Bacteroidetes make up a 
higher proportion of the gut microbiota than in the obese population.  
 
 

 
Figure 6 Differentially abundant classes detected (mean percentage ± s.e., p-value ≤ 0.05). No 
p-value correction for multiple hypothesis tests was employed. Mean proportion of 
Deltaproteobacteria in obese and lean subjects was 0.03% and 0.44%, respectively. Clostridia 
are responsible for the differential abundance of Firmicutes.    
 
 
Human vs. mouse gut microbial communities 
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Mouse models are important research tools in many biomedical areas, including the study of 
the commensal microbial populations [24]. To evaluate the differences between human and 
mouse gut microbial communities, we applied our methods to 6,250 16S rRNA sequences from 
the 7 human and 12 mouse control subjects of two obesity studies [4, 5]. We discovered seven 
differentially abundant classes (see table 1). Two of the three most abundant classes, Clostridia 
and Bacilli, were differentially abundant: humans maintained higher levels of Clostridia (P = 
0.018) while mice had more abundant Bacilli (P = 0.003).          
 
We also applied our methods at the genus level (101 genera were identified in these two 
datasets), employing the false discovery rate method for assessing the significance of our results 
using a q-value cutoff of 0.05. We identified 21 differentially abundant genera, several of which 
were well-represented taxa (see table 2). Surprisingly, we found virtually no Lactobacillus in the 
human samples, a genus previously characterized in the human gut [25, 26]. However, our 
result is consistent with a prior study which also found a low abundance of Lactobacilli in the 
distal human gut [27]. These results indicate substantial interspecies variation between human 
and mouse gut microbial communities, and these differences should be taken into account when 
using the mouse models in microbiome studies. 
 
 

Class name Human Mouse p-value 

Clostridia 66.9 ± 5.8 49.1 ± 3.2 0.019 

Bacilli 4.27 ± 0.97 12.1 ± 1.9 0.003 

Actinobacteria (class) 0.447 ± 0.18 0.979 ± 0.17 0.041 

Verrucomicrobiae 0.162 ± 0.14 0 0.006 

Alphaproteobacteria 0.115 ± 0.12 0 0.026 

Epsilonproteobacteria 0 0.261 ± 0.17 0.002 
TM7 genera incertae 

sedis 0 0.220 ± 0.10 0.032 

Table 1  Differentially abundant classes of organisms from human and mouse gut microbiota 
(p-values ≤ 0.05).  Human and mouse columns display mean relative abundance (%) ±  standard 
error.  Cells containing ‘0’ indicate that no observations of the taxa were found.  Clostridia and 
Bacilli, two of the three most abundant classes observed were differentially abundant.    

 
 

Genera Human Mouse q-value 

Bacteroides 14.6 ± 4.44 0.51 ± 0.40 0.025 

Faecalibacterium 12.4 ± 2.27 0 < 0.001 

Ruminococcus 10.7 ± 2.09 0.78 ± 0.30 < 0.001 
Roseburia 8.58 ± 2.05 2.00 ± 0.44 0.025 

Dorea 1.97 ± 0.59 6.35 ± 0.89 0.002 
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Tannerella 0.99 ± 0.68 31.9 ± 3.18 < 0.001 

Sporobacter 0.73 ± 0.42 0.03 ± 0.03 < 0.001 

Syntrophococcus 0.67 ± 0.34 2.77 ± 0.62 0.038 

Mahella 0.50 ± 0.22 0 < 0.001 

Succiniclasticum 0.35 ± 0.35 0 < 0.001 

Phascolarctobacterium 0.22 ± 0.17 0 0.025 

Akkermansia 0.16 ± 0.14 0 0.040 

Bryantella 0.15 ± 0.10 9.75 ± 1.30 < 0.001 
Eggerthella 0.10 ± 0.07 0.84 ± 0.16 0.003 

Parasporobacterium 0.09 ± 0.09 1.92 ± 0.62 0.040 

Hespellia 0.07 ± 0.06 0.46 ± 0.09 0.047 

Lactobacillus 0 4.76 ± 1.50 0.025 

Sporobacterium 0 0.51 ± 0.21 < 0.001 

Acetitomaculum 0 0.47 ± 0.23 < 0.001 
Oribacterium 0 0.37 ± 0.15 0.011 

Helicobacter 0 0.26 ± 0.17 0.020 

Table 2  Differentially abundant genera of organisms from human and mouse gut microbiota 
(q-values ≤ 0.05).  Human and mouse columns display mean relative abundance (%) ±  standard 
error.  Cells containing ‘0’ indicate that no observations of the taxa were found.  Since we 
thresholded using q-values, we expect that only one of these 21 genera is a false positive.  

 
 
Differentially abundant metabolic subsystems in microbial and viral metagenomes 
While assessing the population microbes in a community is useful, it does not provide a detailed 
description of the metabolic potential of the microbial community. The discovery of rapidly 
changing elements in the genome such as CRISPRs [28-30] has shown that although two 
organisms have identical 16S genes, their functions may be variable. Thus, recent studies have 
proposed examining the pan-genome of an environment rather than organisms individually [31, 
32].  Recently, Dinsdale et al. profiled 87 different metagenomic samples (~15 million 
sequences) using the SEED platform (http://www.theseed.org) [33]. We obtained functional 
profiles from 45 microbial and 40 viral metagenomes analyzed in this study to identify 
differentially abundant subsystems. Of the 26 subsystems detected in the profiles, 11 were 
found to be significantly different (p-values ≤ 0.02) (fig. 7). Thus, we expect less than one false 
positive overall. Subsystems for nucleotides and DNA metabolism were significantly more 
abundant in viral metagenomes, while nitrogen metabolism, membrane transport, and 
carbohydrates were all enriched in microbial communities.  In contrast to the original study, 
virulence subsystems were less abundant than previously reported, and they were not 
differentially abundant between the microbial and viral metagenomes.               
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Figure 7 Differentially abundant metabolic subsystems between microbial and viral 
metagenomes (mean percentage ± s.e., p-values ≤ 0.02).  We find that viral metagenomes are 
significantly enriched for nucleotides and nucleosides (P < 1e-6) and DNA metabolism (P < 1e-
4). Processes for respiration, photosynthesis, and carbohydrates are all overrepresented in 
microbial metagenomes.   

 
Discussion and Conclusions 
We have presented a statistical method for handling frequency data to detect differentially 
abundant categories between two populations. While this method has been described in the 
context of 16S data, it can be applied to the analysis of frequency data generated through other 
means, including random shotgun sequencing of environmental samples (binning tools could 
provide the abundance information in this case), or microarray-based comparisons between 
environments (e.g. using the PhyloChip [6]). Detection of differentially abundant subsystems 
with multiple subjects from each environment will also benefit from this approach. Our method 
can also be generalized to experiments with more than two populations by substituting the t 
test with a one-way ANOVA test. Furthermore, if only a single sample from each treatment is 
available, a chi-squared test could be easily substituted for a t test, which is known to be 
appropriate for cases in which a category is observed ≥ 10 times for each treatment [17].   
 
In the coming years metagenomic studies will increasingly be applied in a clinical setting, 
requiring new algorithms and software tools to be developed that can exploit data from 
hundreds to thousands of patients.  The methods described above represent an initial step in 
this direction by providing a robust and rigorous statistical method for identifying organisms 
whose differential abundance correlates with disease.  These methods are available via web 
server through www.cbcb.umd.edu/~whitej/metastats/detection.shtml. 
 
Acknowledgments 
The authors were funded in part by a grant from the Bill and Melinda Gates Foundation.  
 



J. R. White and M. Pop 

 13 

References 
1. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser 

MJ, Relman DA: Molecular analysis of the bacterial microbiota in the 
human stomach. Proc Natl Acad Sci U S A 2006, 103(3):732-737. 

2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson 
KE, Relman DA: Diversity of the human intestinal microbial flora. Science 
2005, 308(5728):1635-1638. 

3. Gao Z, Tseng CH, Pei Z, Blaser MJ: Molecular analysis of human forearm 
superficial skin bacterial biota. Proc Natl Acad Sci U S A 2007, 104(8):2927-2932. 

4. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI: Obesity 
alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102(31):11070-11075. 

5. Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut 
microbes associated with obesity. Nature 2006, 444(7122):1022-1023. 

6. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO: Development of the 
Human Infant Intestinal Microbiota. PLoS Biol 2007, 5(7):e177. 

7. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl 
GJ: Microbial diversity in the deep sea and the underexplored "rare 
biosphere". Proc Natl Acad Sci U S A 2006, 103(32):12115-12120. 

8. Schloss PD, Handelsman J: Introducing DOTUR, a computer program for 
defining operational taxonomic units and estimating species richness. 
Applied and environmental microbiology 2005, 71(3):1501-1506. 

9. Singleton DR, Furlong MA, Rathbun SL, Whitman WB: Quantitative comparisons 
of 16S rRNA gene sequence libraries from environmental samples. 
Applied and environmental microbiology 2001, 67(9):4374-4376. 

10. Schloss PD, Larget BR, Handelsman J: Integration of microbial ecology and 
statistics: a test to compare gene libraries. Applied and environmental 
microbiology 2004, 70(9):5485-5492. 

11. Schloss PD, Handelsman J: Introducing SONS, a tool for operational 
taxonomic unit-based comparisons of microbial community 
memberships and structures. Applied and environmental microbiology 2006, 
72(10):6773-6779. 

12. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic 
data. Genome Res 2007, 17(3):377-386. 

13. Lozupone C, Knight R: UniFrac: a new phylogenetic method for comparing 
microbial communities. Applied and environmental microbiology 2005, 71(12):8228-
8235. 

14. Schloss PD, Handelsman J: Introducing TreeClimber, a test to compare 
microbial community structures. Applied and environmental microbiology 2006, 
72(4):2379-2384. 

15. Rodriguez-Brito B, Rohwer F, Edwards RA: An application of statistics to 
comparative metagenomics. BMC Bioinformatics 2006, 7:162. 

16. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The 
human microbiome project. Nature 2007, 449(7164):804-810. 

17. Zar JH: Biostatistical analysis, 4th edn. Upper Saddle River, N.J.: Prentice Hall; 
1999. 



J. R. White and M. Pop 

 14 

18. Agresti A: A Survey of Exact Inference for Contingency Tables. Statistical 
Science 1992, 7(1):131-153. 

19. Yates F: Tests of Significance for 2 X 2 Contingency-Tables. J Roy Stat Soc a 
Sta 1984, 147:426-463. 

20. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical 
and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met 1995, 
57(1):289-300. 

21. Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc 
Natl Acad Sci U S A 2003, 100(16):9440-9445. 

22. Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. 
Applied and environmental microbiology 2007, 73(16):5261-5267. 

23. Bergey's Taxonomic Outline of the Prokaryotes, 2nd edn. New York, NY: 
Springer-Verlag; 2004. 

24. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-
associated gut microbiome with increased capacity for energy harvest. 
Nature 2006, 444(7122):1027-1031. 

25. Conway PL, Gorbach SL, Goldin BR: Survival of lactic acid bacteria in the 
human stomach and adhesion to intestinal cells. Journal of dairy science 1987, 
70(1):1-12. 

26. Kullen MJ, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR: Use of the DNA 
sequence of variable regions of the 16S rRNA gene for rapid and 
accurate identification of bacteria in the Lactobacillus acidophilus 
complex. Journal of applied microbiology 2000, 89(3):511-516. 

27. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman 
DA, Fraser-Liggett CM, Nelson KE: Metagenomic analysis of the human distal 
gut microbiome. Science 2006, 312(5778):1355-1359. 

28. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, 
Horvath P: CRISPR provides acquired resistance against viruses in 
prokaryotes. Science 2007, 315(5819):1709-1712. 

29. Haft DH, Selengut J, Mongodin EF, Nelson KE: A guild of 45 CRISPR-associated 
(Cas) protein families and multiple CRISPR/Cas subtypes exist in 
prokaryotic genomes. PLoS computational biology 2005, 1(6):e60. 

30. Kunin V, Sorek R, Hugenholtz P: Evolutionary conservation of sequence and 
secondary structures in CRISPR repeats. Genome Biol 2007, 8(4):R61. 

31. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar 
MO, Alexander S, Alexander EC, Jr., Rohwer F: Using pyrosequencing to shed 
light on deep mine microbial ecology. BMC genomics 2006, 7:57. 

32. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-
genome. Current opinion in genetics & development 2005, 15(6):589-594. 

33. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, 
Haynes M, Li L et al: Functional metagenomic profiling of nine biomes. 
Nature 2008, 452(7187):629-632. 

 
 


