AMSC 663 midterm progress report

# Application of the false discovery rate to microbial community comparison 

james robert white
Fall 2007

Advisor: Mihai Pop, CBCB.

## Outline

- Brief background in biology,"microbial census"
- Introduce problem of comparing communities
- Multiple hypothesis testing solution
- Validation
- Application
- Future work


## Background

- Every microbe has a

Bacillus anthracis conserved gene called 6 SRNA.

## E. coli

- Easy to recognize and exists in all known microbes.


## Mycobacterium tuberculosis

## Metagenomics



## Background

Environment
(radioactive waste)


## Background

Environment
(radioactive waste)


## The Problem



## Taxa abundance matrix

Healthy ears
Sick ears

|  | $p 1$ | $p 2$ | $p 3$ | $p 4$ | $p 5$ | $p 6$ | $p 7$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tl | 243 | 300 | 120 | 0 | 43 | 21 | 66 |
| t 2 | 12 | 34 | 32 | 0 | 0 | 0 | 0 |
| t 3 | 0 | 3 | 10 | 200 | 140 | 134 | 70 |
| t 4 | 42 | 4 | 12 | 54 | 76 | 80 | 60 |
| t 5 | 2 | 0 | 10 | 4 | 6 | 0 | 0 |
| t 6 | 5 | 5 | 3 | 15 | 12 | 0 | 43 |

## Differential abundance

- convert frequencies to relative proportions.
- compute sample means, variances.

|  | pl | p 2 | p 3 | p 4 | p 5 | p 6 | p 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tI | .37 | .42 | .35 | 0.0 | .10 | .05 | .17 |

$$
\begin{aligned}
& \bar{x}_{i 1}=\frac{1}{n_{1}} \sum_{j \in \text { treatment } 1} a_{i j} \\
& s_{i 1}^{2}=\frac{1}{n_{1}-1} \sum_{j \in \text { treatment } 1}\left(a_{i j}-x_{i 1}\right)^{2}
\end{aligned}
$$

$$
t_{i}=\frac{\bar{x}_{i 1}-\bar{x}_{i 2}}{\sqrt{\frac{s_{i 1}^{2}}{n_{1}}+\frac{s_{i 2}^{2}}{n_{2}}}}
$$

## Hypothesis tests

- So for each taxa, $\mathrm{T}_{i}$, we perform a hypothesis test of proportions:
- $\mathrm{H}_{\mathrm{o}}: \mu_{\text {healthy }}=\mu_{\text {sick }}$
- $\mathrm{H}_{\mathrm{A}}: \mu_{\text {healthy }}!=\mu_{\text {sick }}$
- We obtain a test statistic $t i$
- Reject or accept the null hypothesis?


## Hypothesis tests

- suppose we perform $M$ tests:

|  | accept null | reject null | total |
| :---: | :---: | :---: | :---: |
| null true | $M_{a T}$ | $M_{r T}$ | $M T$ |
| null false | $M a F$ | $M_{r F}$ | $M_{F}$ |
| total | $M-M_{r}$ | $M_{r}$ | $M$ |

## Hypothesis tests

- criteria for rejecting H
- $p$-value and $q$-value estimates of significance
- choose a threshold $\alpha$, and reject if $p$ or $q \leq$ $\alpha$
- same criteria for all tests


## $p$ vs. $q$ values

- if you reject all Howith $p \leq 0.05$, you expect $5 \%$ of all true $H_{o}$ to be false positives.
- if you reject all Howith $q \leq 0.05$, you expect $5 \%$ of all rejected $H_{o}$ to be false positives.
- $M=10$ tests? 1000 tests?


## Project

- implement algorithms for calculating $p$ and $q$ values for hypothesis tests
- coded in R: free statistical software package with great visualization features.
- validation
- applied to real I6S data


## Validation

- Hedenfalk dataset, 2001, NEJM.
- microarray study of two forms of hereditary breast cancer (BRCAI and BRCA2)
- looking for differentially active genes among 3, I70 total genes.
- activity level of a gene <=> abundance level of a taxa.


## Validation

- Storey \& Tibshirani, 2003, PNAS, calculated $q$ and $p$ values for all 3,170 genes.
- I computed my own p's and q's using my software.
- |Pstorey - Pwhite|, |Qstorey - Qwhite|
- rejected all Howith Qwhite $\leq 0.05$.


## Hedenfalk $p$ values



## Hedenfalk $q$ values



## Differential expression BRCAI BRCA2



## Real I6S data

- Ley et al. 2006, Nature
- metagenomic study of differentially abundant taxa between human guts of obese (I2) and lean (5) people
- found significant differences between two high level taxa: Bacteroidetes and Firmicutes
- we generated taxa abundance matrices from original data and tried to replicate their results.


## Ley et al. data



| 0 | .01 | .05 | .1 | .2 | .3 | .4 | $.5<$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

Classes


## Future work

- December
- Consider statistical methodology given sampling issues.
- Develop at least two methodologies to compare.
- Design broad simulation to test q values vs. $p$-values.
- January
- Finish broad simulation.
- Finalize statistical methodology.
- Finish application of software to Ley data.
- February
- Apply best method to additional metagenomic data.
- Develop documentation for software.
- April
- Complete final draft of report including edits from advisor.
- Submit polished version of our software to BioConductor group.
- May
- Deliver final report.
- Final presentation.


## Acknowledgments

- Mihai Pop, CBCB
- Frank Siewerdt, ANSC
- Ken Ryals,AMSC
- Paul Smith, STAT
- Radu Balan, CSCAMM
- Aleksey Zimin, IPST


## Questions?

