AMSC 663 midterm progress report

Application of the false discovery rate to microbial community comparison

james robert white Fall 2007

Advisor: Mihai Pop, CBCB.

Outline

- Brief background in biology, "microbial census"
- Introduce problem of comparing communities
- Multiple hypothesis testing solution
- Validation
- Application
- Future work

Background

- Every microbe has a conserved gene called 16S rRNA.
- Easy to recognize and exists in all known microbes.

E. coli

Mycobacterium tuberculosis

Metagenomics

I6S geneTAGTCCATGACAG TACCGTACAAAA

Prochlorococcus marinus

The Problem

(Healthy ears)

How do two environments differ?

Which organisms are differentially abundant? (Sick ears)

Taxa abundance matrix

	Healthy ears			Sick ears			
	рI	р2	р3	р4	р5	р6	р7
tl	243	300	120	0	43	21	66
t2	12	34	32	0	0	0	0
t3	0	3	10	200	140	134	70
t4	42	4	12	54	76	80	60
t5	2	0	10	4	6	0	0
t6	5	5	3	15	12	0	43

Differential abundance

• convert frequencies to relative **proportions**.

• compute sample means, variances.

Hypothesis tests

- So for each taxa, T_i, we perform a hypothesis test of proportions:
 - Ho: μ healthy = μ sick
 - H_A : μ healthy $!= \mu$ sick
 - We obtain a test statistic ti
 - Reject or accept the null hypothesis?

Hypothesis tests

• suppose we perform *M* tests:

accept null reject null total

null true	МаТ	МrТ	Мт
null false	MaF	M rF	MF
total	M-Mr	Mr	М

Hypothesis tests

- $\bullet\,$ criteria for rejecting H_{\circ}
 - *p*-value and *q*-value estimates of significance
 - choose a threshold α , and reject if p or $q \leq \alpha$
 - same criteria for all tests

pvs.qvalues

- if you reject all H₀ with p ≤ 0.05, you expect
 5% of all true H₀ to be false positives.
- if you reject all H_0 with $q \le 0.05$, you expect 5% of all rejected H_0 to be false positives.
- *M* = 10 tests? 1000 tests?

Project

- implement algorithms for calculating p and q values for hypothesis tests
- coded in R: free statistical software package with great visualization features.
- validation
- applied to real 16S data

Validation

- Hedenfalk dataset, 2001, **NEJM**.
- microarray study of two forms of hereditary breast cancer (BRCA1 and BRCA2)
- looking for differentially active genes among 3,170 total genes.
- activity level of a gene <=> abundance level of a taxa.

Validation

- Storey & Tibshirani, 2003, PNAS, calculated q and p values for all 3,170 genes.
- I computed my own p's and q's using my software.
- |Pstorey Pwhite|, |Qstorey Qwhite|
- rejected all H_{\circ} with $Q_{white} \leq 0.05$.

IPstorey – Pwhitel

Hedenfalk p values

genes

Hedenfalk q values

18

Real 16S data

• Ley et al. 2006, Nature

- metagenomic study of differentially abundant taxa between human guts of obese (12) and lean (5) people
- found significant differences between two high level taxa: *Bacteroidetes* and *Firmicutes*
- we generated taxa abundance matrices from original data and tried to replicate their results.

Future work

December

- Consider statistical methodology given sampling issues.
- Develop at least two methodologies to compare.
- Design broad simulation to test qvalues vs. p-values.

• January

- Finish broad simulation.
- Finalize statistical methodology.
- Finish application of software to Ley data.
- February
 - Apply best method to additional metagenomic data.
 - Develop documentation for software.

• April

- Complete final draft of report including edits from advisor.
- Submit polished version of our software to BioConductor group.
- May
 - Deliver final report.
 - Final presentation.

- Mihai Pop, CBCB
- Frank Siewerdt, ANSC
- Ken Ryals, AMSC
- Paul Smith, STAT
- Radu Balan, CSCAMM
- Aleksey Zimin, IPST

Questions?