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Abstract 
 
We propose the development of new software to statistically determine differentially abundant 
taxa between two populations.  Using only randomly selected 16S rRNAs from environmental 
samples, our goal is to assign each sequence to its appropriate taxon and analyze a taxa 
abundance matrix to find significantly overrepresented or underrepresented groups between 
two populations.  Our problem is analogous to finding differentially expressed genes, and we 
aim to modify and implement methods already in practice in the microarray community.  
Specifically, we shall use the false discovery rate (FDR) and its corresponding 
measurement, the q-value, to control the number of false positives that frequently occur 
when performing multiple hypothesis tests.   



Introduction 
 
• The 16S rRNA gene and data collection 
Currently, ~99% of all microbes cannot be isolated from their environments and cultured in a 
lab1.  This statistic reveals our shallow understanding of the true complexity of microbial 
environments.  Nevertheless, researchers are pushing to understand the structures of microbial 
communities in the rapidly expanding field of metagenomics.  An increasing number of 
metagenomics studies focusing on species diversity within environments have been largely 
based on small subunit ribosomal RNA (SSU rRNA), particularly, the 16S rRNA gene.  The 16S 
rRNA gene is ubiquitous to all known bacteria and archaea, and is highly conserved because of 
its essential function.  However, there is enough divergence among these genes such that 
researchers can identify a species simply by sequencing its 16S gene.  Typically, scientists take 
samples from an environment and extract DNA from captured microbes.  Molecular biologists 
then sequence randomly selected 16S genes using PCR (polymerase chain reaction) and 
“universal” 16S primers.  Note that the DNA of genes themselves is sequenced, not the mRNA 
transcript, thus there are no issues involving rates of transcription.  Each 16S gene sequenced 
acts as a “bar code” or tag for a particular organism (fig. 1).  Analyzing these genes, researchers 
have been able to describe the microflora of several environments2-12.  
 
 

 

 
Figure 1  Metagenomic 16S rRNA sequencing. Single-celled organisms are collected from an environmental 
sample, and DNA is extracted.  Universal PCR primers are used to amplify 16S rRNA genes from extracted DNA 
are sequenced.  Each sequence is then classified to a particular taxon. 

 
Several statistical software tools for 16S analysis have been developed such as DOTUR13, S-
libshuff14, SONs15, UniFrac16, and TreeClimber17.  Though these packages provide some 
information about community structure overlap and phylogenetic diversity, they are not 
designed for comparing hundreds of different communities simultaneously, and often fall short 
of providing researchers with enough information to make conclusions about environment 
composition.         
 
We seek to find out not if two populations are different, but exactly how they differ.  Our 
objective is to determine which taxa in two populations are differentially abundant, that is, 
make up different proportions of the organisms in the environments.  Our problem is 



analogous to finding differentially expressed genes between two populations, a problem that has 
been researched for the past 10 years.  Determining differentially expression can be easily 
conceptualized as a statistical hypothesis test.  Consequently, statisticians working with 
microarrays have developed new methods for performing many hypothesis tests 
simultaneously. 
 
• Multiple hypothesis testing  
Over the past decade, significant attention has been given to multiple hypothesis testing, due in 
part to the development of high-throughput biological studies.  For any single hypothesis test, 
there is a null hypothesis (H0) and an alternative hypothesis (HA).  The goal is to correctly 
determine whether H0 or HA is true.  H0 can be rejected or accepted depending on a 
measurement of significance such as a p-value and prior criteria set before the test.  If one 
rejects the null hypothesis when it is true, this is a false positive (type I error).  If one accepts 
the null when it is false, this is a false negative (type II error).  Figure 2 provides an overview of 
the possible outcomes associated with performing M hypothesis tests.  We denote the number 
of rejected hypotheses as Mr and the number of correctly rejected hypotheses as MrT.  Note 
that we do not know MrT. 
 

 
Figure 2  When performing M hypothesis tests, each test must accept or reject the null hypothesis H0.  Of the 
number of tests that reject H0 (Mr), if some of the null hypotheses are in fact true (MrT), then this is type I error.  
Of the tests that accept H0, if some of these null hypotheses are actually false (MaF), then this is type II error. 

 
One of the difficulties of multiple hypothesis testing is controlling type I error (i.e. reducing 
MrT).  Traditionally, p-value cutoffs of 0.01 and 0.05 have been used for rejecting null 
hypotheses.  However, when testing hundreds or thousands of null hypotheses, the typical p-
value thresholds will result in a burdensome number of false positives.  For example, if one 
performs 6000 tests, and rejects all null hypotheses with a p-value ≤ 0.05, one expects to have 
300 false positives.  This type I error rate is unacceptable for scientists who need to perform 
costly and time-consuming experiments.  An intuitive modification would be to decrease the p-
value cutoff to a very low value, thereby reducing the number of false positives, but this strict 
control results in a significant decrease in statistical power, leading to many incorrectly 
accepted null hypotheses. 
 
• The false discovery rate 
Recently, statisticians have succeeded in reducing the number of false positives by using the 
false discovery rate (FDR), which is defined to be the proportion of rejected null hypotheses 
that are false positives18.  This is different from the false positive rate, which is defined as the 



proportion of true null hypotheses that are rejected.  As an example, a false positive rate of 1% 
means that 1% of all true null hypotheses are expected to be rejected.  A false discovery 
rate of 1% means that 1% of all rejected null hypotheses are expected to be false 
positives.     
 
Each hypothesis test has an individual measure of the false positive rate called the p-value. A 
separate measure of significance called the q-value has been recently developed as an individual 
measure of the FDR for each test19. The difference between the q-value and the p-value is 
subtle but important.  Rejecting all tests with a p-value ≤ α implies that one expects an overall 
false positive rate of α.  If all tests with a q-value ≤ α are called significant, then one expects a 
false discovery rate of α.  While the p-value provides information on all true null hypotheses, 
the q-value specifically provides information only on tests that reject H0.   
 
•  Strategy                                                                      
The aim of this project is to apply the false discovery rate to metagenomic analysis in order to 
determine differentially abundant taxa between two environments.  We have developed 
software that takes a species abundance matrix as input, and outputs an automated analysis of 
this matrix, isolating differentially abundant taxa using the q-values.  Additionally, we have 
implemented a method for clustering species into higher groups (such as phyla, classes, orders, 
families, genera), and performing hypothesis tests on these larger categories of life.  At species 
resolution, life forms may be too specific to the environment, and the true significance can be 
detected only by observing higher taxa.  
 
 
Methods 
 
• Taxa abundance matrix (TAM) 
This matrix is provided as input to our method.  The ith row of the matrix represents a specific 
taxon, while the jth column represents a single replication of a treatment.  Thus, the cell in the ith 
row and jth column is the total number of occurrences of taxon i in replication j (fig. 3).  Every 
16S rRNA sequence can only be counted once in the matrix, i.e. overlapping taxa are not 
allowed.  We assume that there are only two treatments (e.g. sick and healthy), and that there 
are multiple replications per treatment.  If there are g subjects in the first treatment, they are 
represented by the first g columns of the matrix, while the remaining columns represent 
subjects from the second treatment.         

 



 

 
Figure 3 Format of the taxa abundance matrix.  Each row represents a specific taxon, while each column 
represents a subject (replication).  The frequency of the ith taxon in the jth subject (f(i,j)) is recorded in the 
corresponding cell of the matrix.  If there are g subjects in the first treatment, they are represented by the first g 
columns of the matrix, while the remaining columns represent subjects from the second treatment. 

 
• Taxonomic assignment 
There are several widely used methods for taxonomic assignment of 16S rRNA.  Different 
approaches include sequence comparison, sequence composition, and phylogenetic analysis.  In 
our experiments, we have assigned all 16S sequences to taxa using a naïve Bayesian classifier 
currently employed by the Ribosomal Database Project II (RDP)20.  This software rapidly 
classifies sequences from kingdom to genus according to Bergey's Taxonomic Outline of the 
Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004).  Trained on ~23,000 
pre-classified 16S sequences, the RDP classifier provides a statistical confidence (%) for each 
classification, and is available for use online (http://rdp.cme.msu.edu/classifier/classifier.jsp).         
 
• Matrix analysis 
We first compute the relative proportions of each taxon within each subject using the TAM.  
This results in a matrix of the same dimensions as the TAM, but the cell in the ith row and the jth 
column (which we shall denote aij) is the relative proportion of taxon i in subject j.  For each 
taxon i, we calculate the mean proportion 
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Similarly, we calculate 
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Note that n1 and n2 are the number of subjects in treatment 1 and treatment 2, respectively.  
Finally, the two-sample t statistic for each taxon i is calculated as:    
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• Permuted p-value calculations 
We do not assume that the calculated t statistics follow a t distribution.  Thus, we estimate the 
null distribution of ti nonparametrically using a permutation method described by Storey and 
Tibshirani (2003).  Specifically, we randomly permute the treatment labels of the columns and 
recalculate the t statistics for the entire matrix.  Note that the permutation maintains that there 
are n1 replications for treatment 1 and n2 replications for treatment 2.  Repeating this 
procedure for B trials, we obtain B sets of t statistics: t1

0b, …, tM
0b, b = 1, …, B, where M is the 

number of taxa in the TAM.  Memory space and computational efficiency should be considered 
when deciding how many permutations to use.  If M = 1,000 and B = 10,000, then this algorithm 
will need to calculate 107 t statistics and store them in memory.  
 
Finally, the p-values for each taxon i, (i = 1, …, M) are calculated by pooling the null statistics: 
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• Q-value calculations 

The following algorithm is adapted from Storey and Tibshirani (2003) for automated 
computation of q-values: 
  
Given an ordered list of p-values, p(1) ≤ p(2) ≤ … ≤ p(M), and a range of values λ = 0, 0.01, 0.02, 
…, 0.90, we compute 
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Next, we fit 
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Thus, the hypothesis test with p-value
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• Computational implementation 
The algorithms designed for analysis of the taxa abundance matrix were implemented in R, a 
freely available statistical software package.  Validation and application studies were performed 
on a MacBook Pro laptop (Mac OS X) with a dual core processor, 2.2GHz, and 2 GB of RAM. 
 
 
Validation 
 
• Hedenfalk dataset 
To validate our p-value and q-value calculations, we have analyzed a classic microarray dataset 
and compared it to a published q-value analysis of the same data19,21.  Originally, 3,226 genes 
were studied using microarrays from 15 breast cancer subjects.  Seven of these subjects had a 
genetic mutation called “BRCA1” while the other eight had a different genetic mutation, 
“BRCA2.”  Both mutations are sources of hereditary breast cancer, and the initial study 
attempted to determine which genes could provide a distinctive diagnostic to identify 
hereditary breast cancer from microarray data.  Storey and Tibshirani (2003) calculated high-
quality p and q values for 3,170 of these candidate genes, where the null hypothesis for each 
test was that the expression level of the gene is the same in both populations.     
 
Using the same 3,170 genes as the previous q-value study, we computed permutation-based p-
values and corresponding q-values for each gene.  P-values were calculated using B = 200 
permutations and a threshold of q ≤ 0.05 was used to call hypothesis tests significant.  
Furthermore, all genes called significant were collected and clustered using a UPGMA method 
and visualized in a heat map (using the R function heatmap).  Figures 4 and 5 display the small 
differences between our calculated p and q values and the published study.  These results 
validate our statistical calculations.  Figure 6 displays the expression profiles for all genes we 
called significant.   



 
Figure 4  Differences in p-value calculations for 3,170 genes tested in the Hedenfalk classic microarray dataset.  
The published permuted p-values are all within 0.007 of our p-values, indicating that our permutation algorithm has 
been implemented correctly. 

 
 

 
Figure 5  Differences in q-value calculations for 3,170 genes tested in the Hedenfalk classic microarray dataset.  
The y-axis is the absolute value of the difference between Storey’s q-value (Qstorey) and our q-value (Qwhite).   
All differences are within 0.02, indicating correct implementation of the automated q-value algorithm.   

 



 
Figure 6   Expression profiles for genes called significant by thresholding q-values at α = 0.05.  The first 7 
columns represent profiles for the BRCA1 subjects, the last 8 columns are the BRCA2 subjects.  The heatmap 
clearly displays the clusters of differentially expressed genes.  We expect that 5% of these genes are false positives. 

   

 
• Ley dataset 
As an initial application of our software to real 16S data, we have retrieved all sequences used 
in a recently published study of the human gut8.  Using 12 obese subjects and 5 lean control 
subjects, Ley et al. found statistically significant differences in relative taxa abundance between 
the two groups: the Bacteroidetes and Firmicutes – the two dominant phyla in the human gut.    
This study found that the relative proportion of Bacteroidetes is decreased in obese people.  
Additionally, each obese subject was put on one of two calorie-restricted diets for one year, 
and as the obese subjects lost weight over the course of the year, their gut microflora began to 
resemble that of their lean counterparts.   
 
Our first goal was to reproduce the Ley et al. result that the two dominant phyla have 
significantly different relative abundances in lean and obese people.  We classified 29,923 16S 
rRNA sequences, and created taxa abundance matrices comparing obese subjects to lean 
controls.  Note that three of the control subjects were taken from another study4.  A TAM 
corresponding to phyla was created containing observations of six distinct phyla, but the 
Bacteroidetes and Firmicutes dominated the samples.  Since there were only six phyla observed, 
our algorithm only performed six hypothesis tests, so we decided to reject null hypotheses 
corresponding to a p-value of 0.05 or less.  P-values were calculated using B = 1,000 
permutations.   
 
Using our p-values, we were able to replicate the results given by the Ley study.  The relative 
abundances of Bacteroidetes and Firmicutes were both significantly different between obese and 
lean subjects.  Additionally, we discovered a third phylum was also significantly different 



between the two treatments.  Actinobacteria is a less dominant phylum making up less than 10% 
of the gut microbial population.  Figure 7 displays the relative abundances of each significant 
taxa.      
 

 
Figure 7  Relative proportions of significantly different taxa between obese and lean subjects, (p ≤ 0.05).  Our 
results indicate that a third phylum, Actinobacteria, is also differentially abundant, adding to the results of the initial 
study.   

 
 
Future studies 
 
The statistical analysis of microarray data is quite different from 16S rRNA frequency data.  
Continuous data and discrete data need different treatments.  After consulting with two 
statisticians at the University of Maryland, I am directing my attention to the statistical 
methodology for handling the 16S data, rather than re-implementing the currently working 
software in C++.  There are no major computational issues associated with the current 
implementation, and I plan to submit a small suite of tools to the BioConductor R project at 
the end of next semester. 
 
It is likely that I will develop several competing statistical methods for this analysis, and so I plan 
to create a sufficient simulation of a 16S study to determine which methods are more sensitive 
and more accurate.  Additionally, I shall apply these methods to at least one additional 
metagenomic data set.   
 



Proposed remaining schedule 
Milestone’s are highlighted in blue. 
 
2007  
December 
• Consider statistical methodology given sampling issues. 
• Develop at least two methodologies to compare. 
• Design broad simulation to test q-values vs. p-values. 
 
2008 
January  
• Finish broad simulation. 
• Finalize statistical methodology. 
• Finish application of software to Ley data. 
 
February 
• Apply best method to additional metagenomic data. 
• Develop documentation for software. 
 
March 
• Begin final report write-up. 
 
April 
• Complete final draft of report including edits from advisor.        
• Submit polished version of our software to BioConductor group. 
 
May 
• Deliver final report. 
• Final presentation (40 minutes). 
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