# NUIMERICAL SIMULATION OF DYNAMIC STALL 

Debojyoti Ghosh
Adviser: Dr. James Baeder
Alfred Gessow Rotorcraft Center
Department of Aerospace Engineering

## Proposal

- To study the Dynamic Stalling of rotor blade cross-sections
- Unsteady Aerodynamics:
- Time varying angle of attack and free-stream velocities.
- Affects the lift, drag and pitching moment of the rotor
- Numerical Simulation:
- Solution of the Navier Stokes equations with an appropriate turbulence model
- "First Step" $\rightarrow$ Solve the Euler Equations (inviscid aerodynamics)


## Introduction

- Airfoil:

Wing / Rotor cross section - basic 2D lifting surface

- Lift and Drag are functions of angle of attack, free-stream fluid velocity and shape of the airfoil
- Higher velocities on upper surface create pressure difference resulting in aerodynamic forces
- Inviscid flow over airfoil $\rightarrow$ only pressure forces, no shear stresses on the surface
- Inviscid drag less than actual drag


## Inviscid Compressible Aerodynamics

- Governing Equations: Euler Equations
- Conservation of Mass, Momentum and Energy
- Obtained from the Navier Stokes equations by neglecting viscosity and heat conduction
- Importance: (High Speed Flows)

Flow around any solid body = viscous "boundary layer" + outer flow

- Flow away from the surface can be approximated as inviscid flow (negligible cross-derivatives of fluid velocity)


## Finite Volume (FV) Formulation

- Discretizations based the Integral form of the governing equation

$$
\int_{V} \frac{\partial \mathbf{u}}{\partial t} d V+\int_{\partial V} \mathbf{F} \cdot \hat{\mathbf{n}} d S=0
$$

- Also called as "Conservation form" since $\mathbf{u}$ is a conserved variable
- Does not assume smooth solutions (unlike differential form)
$\rightarrow$ More appropriate for hyperbolic systems with discontinuous solutions


## Governing Equations

- Conservation form of the Euler Equations

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathbf{F}=0 ; \mathbf{F}(\mathbf{u})=\mathbf{f}(\mathbf{u}) \hat{\mathbf{i}}+\mathbf{g}(\mathbf{u}) \hat{\mathbf{j}} \\
\mathbf{u}=\left[\begin{array}{l}
\rho \\
\rho \mathrm{u} \\
\rho \mathrm{v} \\
E
\end{array}\right], \mathbf{f}(\mathbf{u})=\left[\begin{array}{l}
\rho \mathrm{u} \\
\rho \mathrm{u}^{2}+\mathrm{p} \\
\rho \mathrm{uv} \\
(\mathrm{E}+\mathrm{p}) \mathrm{u}
\end{array}\right], \mathbf{g}(\mathbf{u})=\left[\begin{array}{l}
\rho \mathrm{v} \\
\rho \mathrm{uv} \\
\rho \mathrm{v}^{2}+\mathrm{p} \\
(\mathrm{E}+\mathrm{p}) \mathrm{v}
\end{array}\right]
\end{gathered}
$$

$\rho$ - Density, (u, v) - Velocity components, p - Pressure, E - Internal Energy
Equation of State $E=\frac{p}{\gamma-1}+\frac{1}{2} \rho\left(u^{2}+v^{2}\right)$

## Numerical Scheme

- Semi-discrete equation using the FV formulation:

$$
\frac{d \mathbf{u}_{i j}}{d t}+\sum_{\text {faces }} \mathbf{F} \cdot \hat{\mathbf{n}} d S=0 \Rightarrow \frac{d \mathbf{u}_{i j}}{d t}=\boldsymbol{\operatorname { R e s }}(i, j)
$$

- Flux Computation normal to cell interfaces
- Upwinded to account for wave nature of the solution
- Essentially Non Oscillatory Schemes (2 $2^{\text {nd }}, 3^{\text {rd }}$ order)
- Time Marching using Total Variation Diminishing

Runge Kutta ( $2^{\text {nd }}, 3^{\text {rd }}$ order) schemes

## Validation

- 2D Riemann Problems on Cartesian grids
- Discontinuous initial data on a square domain
- Unsteady problems
(- Mach 2.9 Oblique Shock Reflection problem
- Oblique shock wave at $30^{\circ}$ reflects off a flat wall
- Supersonic flow on $15^{\circ}$ compression ramp
- Compression ramp causes an oblique shock followed by an expansion
- Inviscid flow around the NACA0012 airfoil
- Subsonic and Transonic cases studied and validated
- Results validated with UM TURNS code
- developed and used by the Rotorcraft Center
- Implicit time - stepping with MUSCL-type reconstruction


## 2D Riemann Problems


$1^{\text {st }}$ Order


My results

$3^{\text {rd }}$ Order
"Configuration 6" (Density)
Results from Kurganov-Tadmor


## Oblique Shock Reflection



\[

\]

## Oblique Shock Pressure Contours and Streamlines

Exact Solution obtained through Oblique Shock relations

$3^{\text {rd }}$ order ENO + $3^{\text {rd }}$ order TVD
Runge Kutta
Mach 2.9 Inflow

## Flow through Compression Ramp

$2^{\text {nd }}$ order ENO + $2^{\text {nd }}$ order TVD Runge Kutta

Mach 3.3 Inflow


Compression Ramp Pressure Contours and Streamlines
Solution validated with exact solution obtained from oblique shock relations and Prandtl-Myer expansion fan relations


## Airfoil Computations - Domain



> C-Type Structured Mesh with outside boundary 20 chords away

Freestream boundary conditions on outer boundary

Magnified view of mesh around airfoil (unit chord)


Curved Wall Boundary Conditions at Airfoil Surface

## NACA0012 Subsonic

- Coefficient of Pressure $C_{p}=\frac{p-p_{\infty}}{\rho_{\infty} U_{\infty}{ }^{2} / 2}$
- Results validated with TURNS code

Higher order schemes capture suction peak better than $1^{\text {st }}$ order



Pressure and streamlines around the airfoil at Mach 0.63 and 2 degrees angle of attack

## NACA0012 Transonic



Pressure and streamlines around the airfoil at Mach 0.85 and 1 degrees angle of attack

Results validated with TURNS code

Higher order schemes show better shock resolution than $1^{\text {st }}$ order


## Conclusions

- 2D Euler code validated for various cases
- Next steps:
- Incorporating viscosity terms in the code to make in a Navier Stokes solver
- Validation of the Navier Stokes solver on 2D problems (Cartesian and non Cartesian)
- Incorporating a turbulence model
- Timeline $\rightarrow$ Running slightly late but will make up
- Finished with building and validating 2D Euler code
- Started reading up on solution to Navier Stokes equations
- Have coded in the viscous terms for the Navier Stokes solver (will start validating soon)


## END

