NUMERICAL SIMULATION OF DYNAMIC STALL

Debojyoti Ghosh

Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Proposal

- To study the **Dynamic Stalling** of rotor blade cross-sections
- Unsteady Aerodynamics:
 - Time varying angle of attack and free-stream velocities.
 - Affects the lift, drag and pitching moment of the rotor
- Numerical Simulation:
 - Solution of the Navier Stokes equations with an appropriate turbulence model
 - "First Step" → Solve the Euler Equations (inviscid aerodynamics)

Introduction

• Airfoil:

Wing / Rotor cross section – basic 2D lifting surface

- Lift and Drag are functions of angle of attack, free-stream fluid velocity and shape of the airfoil
- Higher velocities on upper surface create pressure difference resulting in aerodynamic forces
- Inviscid flow over airfoil → only pressure forces, no shear stresses on the surface
 - Inviscid drag less than actual drag

Inviscid Compressible Aerodynamics

- Governing Equations: Euler Equations
 - Conservation of Mass, Momentum and Energy
- Obtained from the Navier Stokes equations by neglecting viscosity and heat conduction
- Importance: (High Speed Flows)
 - Flow around any solid body = viscous "boundary layer" + outer flow
 - Flow away from the surface can be approximated as inviscid flow (negligible cross-derivatives of fluid velocity)

Finite Volume (FV) Formulation

Discretizations based the Integral form of the governing equation

$$\int_{V} \frac{\partial \mathbf{u}}{\partial t} dV + \int_{\partial V} \mathbf{F} \cdot \hat{\mathbf{n}} dS = 0$$

- Also called as "Conservation form" since u is a conserved variable
- Does not assume smooth solutions (unlike differential form)
 - → More appropriate for hyperbolic systems with discontinuous solutions

Governing Equations

Conservation form of the Euler Equations

 $\frac{\partial \mathbf{u}}{\partial t} + \nabla \mathbf{F} = 0; \mathbf{F}(\mathbf{u}) = \mathbf{f}(\mathbf{u})\hat{\mathbf{i}} + \mathbf{g}(\mathbf{u})\hat{\mathbf{j}}$ $\mathbf{u} = \begin{bmatrix} \rho \\ \rho u \\ \rho u \\ \rho v \\ E \end{bmatrix}, \mathbf{f}(\mathbf{u}) = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uv \\ (E+p)u \end{bmatrix}, \mathbf{g}(\mathbf{u}) = \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (E+p)v \end{bmatrix}$

ρ - Density, (u, v) - Velocity components,p - Pressure, E - Internal Energy

Equ

Lation of State
$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho(u^2 + v^2)$$

Numerical Scheme

Semi-discrete equation using the FV formulation:

$$\frac{d\mathbf{u}_{ij}}{dt} + \sum_{faces} \mathbf{F} \cdot \hat{\mathbf{n}} dS = 0 \Longrightarrow \frac{d\mathbf{u}_{ij}}{dt} = \mathbf{Res}(i, j)$$

Flux Computation normal to cell interfaces

Upwinded to account for wave nature of the solution

Essentially Non Oscillatory Schemes (2nd, 3rd order)

Time Marching using Total Variation Diminishing Runge Kutta (2nd, 3rd order) schemes

Validation

- D Riemann Problems on Cartesian grids
 - Discontinuous initial data on a square domain
 - Unsteady problems
- Mach 2.9 Oblique Shock Reflection problem
 - Oblique shock wave at 30° reflects off a flat wall
- Supersonic flow on 15° compression ramp
 - Compression ramp causes an oblique shock followed by an expansion
- Inviscid flow around the NACA0012 airfoil
 - Subsonic and Transonic cases studied and validated
 - Results validated with UM TURNS code
 - developed and used by the Rotorcraft Center
 - Implicit time stepping with MUSCL-type reconstruction

2D Riemann Problems

Oblique Shock Reflection

Oblique Shock Pressure Contours and Streamlines

Exact Solution obtained through Oblique Shock relations

3rd order ENO + 3rd order TVD Runge Kutta

Mach 2.9 Inflow

Flow through Compression Ramp

Mach 3.3 Inflow

Compression Ramp Pressure Contours and Streamlines Solution validated with exact solution obtained from oblique shock relations and Prandtl-Myer expansion fan relations

Airfoil Computations - Domain

C-Type Structured Mesh with outside boundary 20 chords away

Freestream boundary conditions on outer boundary

Magnified view of mesh around airfoil (unit chord)

Curved Wall Boundary Conditions at Airfoil Surface

NACA0012 Subsonic

- Coefficient of Pressure

$$C_p = \frac{p - p_{\infty}}{\rho_{\infty} u_{\infty}^2/2}$$

- Results validated with TURNS code

Higher order schemes capture suction peak better than 1st order

NACA 0012 - Mach 0.63, Angle of Attack 2 degrees

Pressure and streamlines around the airfoil at Mach 0.63 and 2 degrees angle of attack

NACA0012 Transonic

Pressure and streamlines around the airfoil at Mach 0.85 and 1 degrees angle of attack **Results validated with TURNS code**

Higher order schemes show better shock resolution than 1st order

Conclusions

- D Euler code validated for various cases
- Next steps:
 - Incorporating viscosity terms in the code to make in a Navier Stokes solver
 - Validation of the Navier Stokes solver on 2D problems (Cartesian and non Cartesian)
 - Incorporating a turbulence model
- □ Timeline → Running slightly late but will make up
 - Finished with building and validating 2D Euler code
 - Started reading up on solution to Navier Stokes equations
 - Have coded in the viscous terms for the Navier Stokes solver (will start validating soon)

