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Abstract

A numerical algorithm will be developed to study the phenomena of dynamic stalling, which

is frequently encountered in rotorcraft operations. The governing equations for this problem are

the Navier Stokes equations, which describe the behavior of a viscous, compressible fluid. A finite

volume algorithm is being proposed which will use a characteristic-based decoupling to compute

the fluxes, during the reconstruction stage. The dissipative terms are going to be computed

using central differencing of the required order. A time-marching algorithm is planned where the

Runge-Kutta class of ODE solvers will be used for the evolution stage. The resulting algorithm

is intended to be validated through various stages, beginning with simple benchmark problems

involving inviscid flows to viscous, unsteady flows around airfoils.

Introduction

The aim of the present study is to numerically simulate the phenomenon of dynamic stall [1], which is
commonly encountered in rotorcraft operations. It is one of the major factors which limit rotorcraft
performance, especially at high forward flight speeds and in high g maneuvers. Dynamic stalling on
the rotor blades is symptomized by high torsional forces on the blades as well as a drastic loss of
lift. Both of these are undesirable and therefore, accurate prediction of the occurrence and effect
of dynamic stalling during rotorcraft operation is important to the design process. The distinctive
feature of dynamic stalling which sets it apart from the aerodynamic stalling encountered by fixed-
wing aircraft is the unsteady nature of the flow. This is due to the time-varying angle of attack of
the rotor blade as well as the free-stream velocity that the blade cross-section sees.

Proper computation of the flow during stalling requires a model which can accurately predict
boundary layer transition as well as separation. Due to the nature of stalling, the flow is dominated
by reverse flow and a convecting vortex. Additionally, even at moderate free-stream velocities, local
pockets of supersonic flow can form over the blade upper surface, thus causing shocks in the flow. The
presence of shocks further complicates the process of boundary layer separation. To accurately capture
all the constituent phenomena in dynamic stalling, we need to solve the Navier Stokes equations, which
describe the behavior of a viscous, compressible fluid, along with an appropriate turbulence model.
The present study is aimed at solving the 2D flow around blade cross-sections (airfoils) and thus
getting an insight into the basic mechanisms behind dynamic stall. Thus, a 2D Navier Stokes solver
is planned to be developed which will be coupled with a turbulence model and used to simulate the
flow around 2D cross-sections of typical blades. The algorithm will initially be validated through
various stages as described later and then applied to the problem of dynamic stalling.

Dynamic Stall

In a steady flow around an airfoil, the flow, and thus the pressure distribution on the surface, is
dependent on the angle of attack, i.e, the angle between the free-stream velocity and the airfoil chord
(line joining leading and trailing edges). The higher the angle, the greater is the perturbation to the
flow, causing higher velocities and lower pressures over the upper surface. The pressure minimum
(suction peak) occurs towards the leading edge of the airfoil and the flow over the upper surface
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downstream of the suction peak experiences an adverse pressure gradient. Under usual conditions,
the momentum of the flow helps overcome the pressure gradient. However at high angles of attack, the
adverse pressure gradient become too high, causing the flow to separate from the surface of the airfoil.
The region of flow right next to the upper surface sees reverse flow and the pressure distribution over
the upper surface causing the lifting force is destroyed. This phenomena is termed “stalling” and is
characterized by a sudden loss of lift at a high angle of attack. The design of a fixed wing aircraft
involves making sure that the maximum angle of attack is never exceeded in any flight condition.

The flow around a rotor blade is complicated due to its unsteady nature. While the flow around
a fixed wing can be modeled using steady state flows, modeling flows around rotors has to take into
account the time-varying angles of attack as well as free-stream velocities. The rotor is constructed
such that during one full rotation, the angle of attack changes sinusoidally. It is at a minimum when
the blade is advancing and at a maximum when the blade is retreating. The free-stream velocity
that a given cross-section of the blade sees is also a function of time. While the blade is advancing,
the free-stream velocity is at a maximum since it is a sum of the forward flight speed as well as the
linear blade speed. On the other hand, while the blade is retreating, the free-stream velocity is at a
minimum since the blade movement and the rotorcraft motion are in opposite directions. In addition
to these unsteady effects, the blade is also subject to the wake from the preceding blade. However,
this will not be modeled in the present study.

The unsteady nature of the flow around the rotor blade makes it susceptible to dynamic stalling.
The general outline of the process can be describes as follows. As the angle of attack increases from
minimum, the lift generated increases as the pressures over the upper surface decrease. As the stall-
point is reached, the flow starts to separate from the trailing edge. As the angle of attack increases
further, beyond the static stall limit, the flow separation moves upstream to the leading edge. By
this time, the flow over the upper surface can separated completely and a vortex is formed in the
separated region. The vortex creates a region of low pressure and thus augments the lift, beyond its
static stall limit. However, as the vortex starts convecting downstream, it causes a high nose-down
pitching moment. This stage is referred to as the “moment stall” and causes high torsional loads on
the blade. As the angle of attack increases further, the vortex convects downstream and is shed off
the trailing edge, thus causing a sudden loss of lifting force. This stage is called as the “lift stall”.
By this time, the airfoil is at its highest angle of attack and starts pitching downwards. As the angle
of attack decreases, the flow starts reattaching and by the time the airfoil is at its minimum angle of
attack, the flow is attached and well-behaved.

Governing Equations

The behavior of a compressible, inviscid fluid is governed by the Euler equations of gas-dynamics.
They consist of the mass, momentum and energy conservation laws applied to a fluid element. They
can be expressed in the differential form, for flows involving smooth density and pressure distributions,
or in the integral form for flows containing shock waves and contact discontinuities. The Euler
equations can be solved to obtain the inviscid flow-field around a given body and thus, they can be
used to get a first approximation of the lift and pressure drag generated by the body. However, for
proper prediction of dynamic stall and all the accompanying phenomena, the Navier Stokes equations
need to be solved. They are a more general case of the Euler Equations, incorporating lossy terms in
the momentum and energy conservation equations. These are the terms involving viscous forces and
thermal dissipation. Similar to the Euler equations, the Navier Stokes equations can be expressed in
a differential form as well as in an integral form. Since the flow involves the possible transition from
laminar to turbulent flow, a suitable turbulence model needs to be incorporated into the governing
equations.

From the mathematical standpoint, the Euler equations form a set of hyperbolic partial differential
equations. The present study aims at solving the flow around airfoil cross-sections and thus, the 2D
Euler equations are going to be considered. They form a 4 × 4 system, with a complete set of
eigenvalues and eigenvectors. Each eigenvalue-eigenvector pair represent a characteristic field and
there are two acoustic and two entropy characteristic fields. At each point, the acoustic waves
propagate in each direction at the speed of sound, relative to the fluid element, while the entropy
waves convect with the fluid element at the same velocity. The Navier Stokes equations has the same
hyperbolic flux function as the Euler equations. In addition, it has a dissipative source term, thus
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forming a mixed hyperbolic - parabolic system.

Numerical Scheme

The 2D Euler equations can be expressed in conservative form as

∂u

∂t
+ ∇.F = 0 (1)
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Here, ρ is the fluid density, u, v are the Cartesian components of the velocity, P is the pressure and
E is the internal energy. As mentioned before, the system is hyperbolic with four eigenvalues as
u, u, u± a and a complete set of eigenvectors. In the present study, a finite volume approach is going
to be used were the fluxes are resolved along the normals to the cell interfaces. The semi-discrete
equation, using the finite volume formulation is given as:

duij

dt
Vij +

∑

faces

F.n̂dS = 0 ⇒
duij

dt
= Res(i, j) (3)

Here, Vij is the area of the cell. The residual is given by (for a quadrilateral cell)

Res(i, j) =
−1

Vij
[

4
∑

l=1

F.n̂ldSl (4)

dSl is the length of the cell interfaces. The semi-discrete equation, as given by eq. (3) is marched
in time using the multi-stage Runge-Kutta (RK) algorithm (the order of the RK scheme is chosen
to match the spatial accuracy of the flux reconstruction). Note that F.n̂ = nxf + nyg is a vector
representing the normal flux at a given interface and thus, it can be reconstructed in a 1D manner,
along a dimension normal to the cell interface. To exploit the wave nature of the solution, the flux is
reconstructed through a characteristic-based process, as outlined below for the flux at the interface
between the cells (i, j) and (i + 1, j). It is easily extensible to all other interfaces of a given cell.

To compute the interface flux Fi+1/2,j = (nxf + nyg)i+1/2,j , the eigenvalues and the left and

right eigenvectors at the interface (λk
i+1/2,j , Lk

i+1/2,j and Rk
i+1/2,j respectively for k = 1, ..., 4) are

evaluated at an averaged state (obtained from Roe averaging). The flux is evaluated as:

Fi+1/2,j =
4

∑

k=1

fck
i+1/2,jR

k
i+1/2,j (5)

where fck
i+1/2,j is the component of the flux vector along the kth characteristic direction, evaluated

numerically. For a scheme using a stencil S, the characteristic flux at the interface is a function of
those evaluated at cell centers lying in the stencil,

fck
i+1/2,j = Rec(fck

i,j ; i ∈ S) (6)

where Rec is the reconstruction procedure, dependent on the scheme used and the stencil lies along
the i-coordinate. In the present study, the Roe-Fixed (RF) formulation [3] is used to evaluate the
characteristic flux in an upwinded fashion. The RF formulation is given as

fck
i+1/2,j = fck

L, if λk
i,j , λ

k
i+1/2,j , λ

k
i+1,j > 0

= fck
R, if λk

i,j , λ
k
i+1/2,j , λ

k
i+1,j < 0

=
1

2
[fck

L + fck
R + αi+1/2,j(u

k
R − uk

L)], otherwise (7)
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where αi+1/2,j = max(|λk
i,j |, |λ

k
i+1/2,j |, |λ

k
i+1,j |). The terms uk

R, uk
L represent the characteristic com-

ponents of the state vector u, decoupled in the same way as the flux. The RF formulation uses the
LLF flux formulation [3] as an entropy fix to the Roe’s scheme by introducing extra dissipation and
thus breaking up non-physical expansive shocks. Using the RF formulation is also computationally
cheaper than the LLF flux formulation since reconstruction of the state vector is required only in
cases where entropy fix is required.

Computation of the decoupled fluxes fk
L,R is done using the Essentially Non-Oscillatory (ENO) and

Weighted Essentially Non-Oscillatory (WENO) class of reconstruction schemes [3]. The subscripts
L,R denote the function interpolated using a left and right biased stencil respectively. The RF
formulation, described above, thus represents an upwinding where the left-biased interpolated value
is used if the eigenvalues are positive while a right-biased interpolated value is used if the eigenvalues
are negative. If the eigenvalue changes sign across the interface, an averaged value is used.

The Navier Stokes equations can be expressed in the same form as Equation (1), except with a
source term in the right hand side, which represents the dissipative mechanisms. It is a parabolic
term involving the second derivatives of the flow variables. The computation of this source term is
typically done through a central differencing procedure, whose order is the same as the overall spatial
order of the algorithm. Thus, the Navier Stokes solver involves modifying the Euler solver, described
above, by adding an additional subroutine to compute the source term at each iteration.

The above numerical scheme is planned to be implemented in C/C++. As is expected out of most
finite volume solutions of the Navier Stokes equations, the solver will be computationally intensive.
Since, the aim of the study is to solve for 2D flows around airfoils, it is felt that a serial code will
suffice and it is planned to run the code on single CPU machines. The author has available three
such machines, with processor speeds 2.4 GHz and 3.6 GHz, and 4 GB memory each. Any one of
these machines will do for the desired computations.

Validation

The validation process is going to be in stages. The first part involves the validation of the 2D Euler
code. The simplest benchmark problems for the 2D Euler equations require a square/rectangular
domain (with a Cartesian mesh). The first set of such problems are the 2D Riemann problems
formulated in [4]. They involve a square domain, divided into four quadrants. The initial conditions
involve four different constant states in each of the quadrants. The second Cartesian problem is the
shock wave reflection which consists of an oblique shock wave reflecting off a solid wall. This problem
tests the ability of the algorithm to capture shocks in a supersonic flow and the imposition of solid
wall boundary conditions. These problems have been studied exhaustively in literature and serve
as standard test problems for any 2D solver. Thus, it will suffice to compare the obtained results
with those in literature. Additionally, the shock wave reflection problem has an analytical solution
to which the computed results can be compared to.

The next stage involves validation of the Euler code on non-Cartesian meshes. The main advantage
of the finite volume formulation is its ability to be applied to a body-fitted curvilinear mesh without
the use of transformation metrics. Thus, it is expected that the same algorithm will be able to
compute solutions on non-Cartesian meshes without further modifications. The first non-Cartesian
case is the compression ramp problem, which involves supersonic flow negotiating an inward ramp,
thus forming a shock wave at the beginning of the ramp and an expansion wave at the end of the
ramp. The mesh for this domain is mildly non-Cartesian. Following this, it is intended to use the
algorithm to solve for supersonic flow around a cylindrical blunt body, which involves the capturing
of a detached bow shock in the solution. Finally, the algorithm will be used to solve for steady flows
around standard airfoil shapes, for which experimental and computational results are available. The
algorithm will yield the flow quantities (pressure, velocity, density, etc) at each point in the domain
and thus, a post-processing stage is required to compute the lift, drag and moment coefficients from
the flow data.

Following the validation of the Euler solver, the Navier Stokes solver will be developed. This
requires an additional module computing the dissipative source terms at each iteration. Additionally,
a turbulence model needs to incorporated such that physically relevant solutions are obtained which
model the transition of flow from laminar to turbulent. To start with, it is planned to validate
the Navier Stokes solver for steady flow around airfoils and prediction of the lift, drag and moment
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coefficients. Since the Navier Stokes equations include the dissipative mechanisms present in the flow,
the drag coefficients are expected to be much more realistic and thus, easily validated by experimental
results.

After the above mentioned validation stages, the Navier Stokes solver will be used to solve for
unsteady flow around airfoils, which includes cases with well-behaved flows as well as dynamic stalling.
There are a number of experimental and computational results for unsteady flow around standard
airfoil shapes and thus, the obtained results can be easily validated. It is planned that the airfoils
studied will include the symmetric NACA 0012 and 0015 airfoils as well as airfoils designed specifically
for rotor blades [2]. The comparison of the results for these different classes of airfoils is expected to
further the author’s understanding of this complicated phenomenon.

Timeline

• October - Submission of proposal, writing the basic 2D Euler code, validating it on Cartesian
benchmark problems

• November - Application of 2D Euler code to non-Cartesian meshes (compression ramp, blunt
body problem and steady flow over airfoils), Beginning of literature survey on the Navier Stokes
equations and algorithms used to solve them

• December - Modifying Euler code to solve the Navier Stokes equations, preliminary validation,
Submission of mid-year progress report, literature survey various turbulence models used and
the selection of one specific model for the present study

• February - Incorporation of turbulence model, application of Navier Stokes solver to steady
flows around airfoils, computing aerodynamic coefficients for various airfoils, comparison with
available results, correction of code if necessary

• March & April - Study of unsteady flow around airfoils, including dynamic stall, comparison
with experimental and computational results, study of the flow around various airfoils (general
purpose as well as rotor-specific shapes)

• May - Submission of final report
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