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Abstract

A two-dimensional flow solver is developed and applied to flow around airfoils. It is

intended to be a first step in the numerical solution of dynamic stalling of rotor blades.

The inviscid Euler equations are solved and the algorithm is validated on benchmark

problems, on Cartesian as well as curvilinear meshes. The Essentially Non-Oscillatory

class of schemes are used in conjunction with Local Lax-Friedrich’s upwinding for high

order spatial accuracy. Explicit time integration is carried out using the Runge-Kutta

family of ODE solvers. The algorithm is extended to the Navier Stokes equations. Im-

plicit time integration based on the Backward Euler scheme is used because of the overly

restrictive time step restriction for explicit time integration. The algorithm is validated

on simple test problems as well as viscous flows around airfoils.

1 Introduction

Dynamic stalling of the rotor blade [1] is one of the major factors limiting the performance of

rotorcrafts, especially when they are operating at high angles of attack and/or high forward

flight velocities. It is essentially an unsteady phenomenon where the time-varying velocity of

the incoming flow as well as time-varying angle of attack of the rotor blade have a substantial

effect on the aerodynamic nature of the flow. Dynamic stalling causes the aerodynamic loads

on the blade to change drastically but the nature and timing of this change is different from

that seen for steady flow around airfoils. There is a sudden loss in lift as well as a sudden

increase in the torsional forces on the blade, both of which are undesirable from aerodynamic

and structural considerations. Thus, the accurate computation of the unsteady flow around

a rotor blade and the prediction of dynamic stall is of utmost importance in the field of

rotorcraft aerodynamics.

The goal for this project was to develop a two-dimensional viscous flow solver, with spe-

cific application for flow around airfoils. This is required for the broader objective of numer-

ically simulating the dynamic stalling of rotor blades. Initially the inviscid Euler equations

were to be solved and the algorithm validated for several 1D and 2D benchmark problems.

∗Department of Mathematics, University of Maryland, College Park, Email: ghosh [at] umd.edu
†Department of Aerospace Engineering, University of Maryland, College Park, Email: baeder [at]

eng.umd.edu

1



These problems would test the accuracy and robustness of the algorithm, especially with

respect to shock capturing. The Euler solver would then be extended to the Navier Stokes

equations by including the dissipative terms. It was also planned to include a turbulence

model for more accurate computations in the boundary layer. The algorithm would then be

validated on problems already solved in literature and subsequently used to generate results

pertinent to dynamic stalling.

The airfoil is a basic 2D lifting body and can be thought of as a cross-section of a typical

wing or rotor blade. While flow around wings and rotors are three-dimensional by nature,

involving cross-flows, a 2D computation of the flow, assuming uniform flow along the span of

the wing/blade gives a preliminary idea of the flow and the aerodynamic forces. While the

3D effects are important near the root and tip of the wing/blade, flow over large parts in the

interior can be modeled as a two-dimensional flow with flow properties assumed constant in

the span-wise direction. Thus, computation and analysis of the flow around an airfoil is a

starting point in the modeling of flows past wings and blades. The present study is aimed

at simulating and analyzing the 2D flow around an airfoil when subjected to conditions seen

by rotorcraft blades.

The inviscid Euler equations [2, 3] can be derived from the Navier-Stokes equations by

assuming an inviscid fluid with no heat conduction. They are considerably simpler and easier

to solve. While the Euler equations model an ideal fluid, they are still very important in

high speed flows. A typical solid body in high speed flow is immersed in a boundary layer

in which the velocity of the fluid varies drastically as one moves away from the surface.

This is because a viscous fluid sticks to the body at the surface (hence a zero velocity)

while it flows at a certain velocity away from the surface. Typically, in high speed flows, the

thickness of this boundary layer is very small compared to the characteristic dimensions of the

flow. Therefore, it is a reasonable approximation to model the flow outside the boundary

layer by inviscid flow equations (the Euler equations) and then make corrections for the

viscous effects inside the boundary layer. While computing flows around airfoils, inviscid

computations provide a very accurate idea of the lifting forces (which are primarily caused

by the pressure differences).

The Euler solver can then be extended to solve the Navier Stokes equations. While

the convective part remains the same in these two systems of equations, the Navier Stokes

contains dissipative terms which account for the effect of viscous forces and heat conduction

on the momentum and energy conservation equations. The accurate prediction of drag

requires the inclusion of viscous terms to account for the shear forces on the body and thus,

the solution of the Navier Stokes equations provides a more complete picture of the flow

near solid surfaces (boundary layers). Additionally, some important features of flows around

airfoils like flow separation and stalling are viscous phenomena and thus can be modeled

with a Navier Stokes solver.

The present report concentrates on the development of a 2D Navier Stokes solver through

various stages, starting with 1D Euler computations to viscous flow computations over an air-

foil. For the Euler equations, a finite volume approach [4] is used to discretize the governing

equations. Since the governing equations are hyperbolic in nature, the solution is composed

of waves traveling in various directions and a characteristic based algorithm has been used

to model this. Additionally, the solution to a hyperbolic system need not be smooth and to

prevent the numerical scheme from exhibiting oscillations around discontinuities for higher

order computations, the Essentially Non-Oscillatory (ENO) schemes [5] are used for flux
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reconstruction. While inviscid computations have been carried out using explicit time in-

tegration, the geometric stiffness associated with stretched meshes for viscous solutions has

necessitated the use of implicit time integration. The extension of the Euler solver to Navier

Stokes involved the adoption of the curvilinear form of the governing equations and Euler

backward time stepping while retaining the finite volume based computation of convective

terms. These aspects of the algorithm are described more elaborately in subsequent sections.

The report is outlined in the following manner. Section 2 describes the phenomenon of

dynamic stalling in brief. Section 3 provides the governing equations as well a brief explana-

tion. Section 4 briefly describes the Essentially Non-Oscillatory technique of interpolation

which is used in the numerical treatment of the governing equations. Section 5 describes

the numerical scheme used to discretize and solve these equations while Section 5 gives an

overview of the boundary conditions required. Subsequent sections deal with the validation

of the algorithm over a number of 1D and 2D problems which are considered as benchmarks.

2 Flow around Airfoils - Brief Description

In a steady flow around an airfoil, the flow, and thus the pressure distribution on the surface,

is dependent on the angle of attack, i.e, the angle between the free-stream velocity and the

airfoil chord (line joining leading and trailing edges). The higher the angle, the greater is

the perturbation to the flow, causing higher velocities and lower pressures over the upper

surface. The pressure minimum (suction peak) occurs towards the leading edge of the airfoil

and the flow over the upper surface downstream of the suction peak experiences an adverse

pressure gradient. Under usual conditions, the momentum of the flow helps overcome the

pressure gradient. However at high angles of attack, the adverse pressure gradient become

too high, causing the flow to separate from the surface of the airfoil. The region of flow

right next to the upper surface sees reverse flow and the pressure distribution over the upper

surface causing the lifting force is destroyed. This phenomena is termed “stalling” and is

characterized by a sudden loss of lift at a high angle of attack. The design of a fixed wing

aircraft involves making sure that the maximum angle of attack is never exceeded in any

flight condition.

The flow around a rotor blade is complicated due to its unsteady nature. While the flow

around a fixed wing can be modeled using steady state flows, modeling flows around rotors

has to take into account the time-varying angles of attack as well as free-stream velocities.

The rotor is constructed such that during one full rotation, the angle of attack changes

sinusoidally. It is at a minimum when the blade is advancing and at a maximum when the

blade is retreating. The free-stream velocity that a given cross-section of the blade sees

is also a function of time. While the blade is advancing, the free-stream velocity is at a

maximum since it is a sum of the forward flight speed as well as the linear blade speed.

On the other hand, while the blade is retreating, the free-stream velocity is at a minimum

since the blade movement and the rotorcraft motion are in opposite directions. In addition

to these unsteady effects, the blade is also subject to the wake from the preceding blade.

However, this will not be modeled in the present study.

The unsteady nature of the flow around the rotor blade makes it susceptible to dynamic

stalling. The general outline of the process can be describes as follows. As the angle of attack

increases from minimum, the lift generated increases as the pressures over the upper surface

decrease. As the stall-point is reached, the flow starts to separate from the trailing edge. As
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the angle of attack increases further, beyond the static stall limit, the flow separation moves

upstream to the leading edge. By this time, the flow over the upper surface can separated

completely and a vortex is formed in the separated region. The vortex creates a region of

low pressure and thus augments the lift, beyond its static stall limit. However, as the vortex

starts convecting downstream, it causes a high nose-down pitching moment. This stage is

referred to as the “moment stall” and causes high torsional loads on the blade. As the angle

of attack increases further, the vortex convects downstream and is shed off the trailing edge,

thus causing a sudden loss of lifting force. This stage is called as the “lift stall”. By this

time, the airfoil is at its highest angle of attack and starts pitching downwards. As the angle

of attack decreases, the flow starts reattaching and by the time the airfoil is at its minimum

angle of attack, the flow is attached and well-behaved.

3 Governing Equations

3.1 Inviscid Euler Equations

The Euler equations are the governing equations for an inviscid, compressible fluid. They

consist of the conservation of mass, momentum and energy, when applied to a fluid element

in the flow. In the present study, the ID Euler equations are solved initially to validate

the algorithm and its performance for various orders of accuracy. Simple benchmark 1D

problems provide good validation cases which may not be possible in 2D because of the more

complicated nature of flow. Subsequent to validating the algorithm in 1D, it is extended to

2D and validated. The 1D and 2D Euler equations are presented below in their differential

forms.

1D Euler Equations

ut + fx = 0 (1)

u =







ρ

ρu

E






, f(u) =







ρu

ρu2 + P

(E + P )u






, (2)

Here, ρ is the fluid density, u is the velocity, P is the pressure and E is the total energy. In

addition to these three equations, the equation of state relates the total energy to the flow

variables.

E =
P

γ − 1
+

1

2
ρu2 (3)

where γ is the ratio of specific heats.

2D Euler Equations

∂u

∂t
+ ∇.F = 0 (4)

where the flux is F = f î + ĝj, and

u =













ρ

ρu

ρv

E













, f(u) =













ρu

ρu2 + P

ρuv

(E + P )u













, g(u) =













ρv

ρuv

ρv2 + P

(E + P )v













(5)
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The variables have the same meaning as in 1D and u, v are the Cartesian components of the

fluid velocity. The equation of state for 2D flow is

E =
P

γ − 1
+

1

2
ρ(u2 + v2) (6)

The Euler equations, both in 1D and 2D, form a hyperbolic system of partial differential

equations. The flux Jacobian matrix yields a complete set of eigenvalues (three for 1D and

four for 2D) and eigenvectors, representing the waves and their directions in the solution.

The eigenvalues are a function of the fluid velocity and the speed of sound in the medium.

From a numerical standpoint, this enables the use of characteristic based algorithm where

the flux function is reconstructed in a biased way which models the direction of information

flow. The details of this are presented in subsequent sections.

3.2 Navier Stokes Equations

The Navier Stokes equations are an extension of the Euler equations to include the dissipative

terms. While the conservation of mass remains unchanged, the equations for the momentum

and energy conservation are modified to account for the viscous forces and heat conduction.

The 2D Navier Stokes equations are

∂u

∂t
+

∂f(u)

∂x
+

g(u)

∂y
=

fv(u)

∂x
+

gv(u)

∂y
(7)

The terms on the left hand side have the same definitions as in the case of the 2D Euler

equations. The terms on the right hand side account for viscosity and heat conduction and

are defined as

fv(u) =













0

τxx

τxy

k∂xT + uτxx + vτxy













, gv(u) =













0

τyx

τyy

k∂yT + uτyx + vτyy













(8)

where

τxx = (λ + 2µ)
∂u

∂x
+ λ

∂v

∂y

τxy = τyx = µ(
∂u

∂y
+

∂v

∂x
)

τyy = λ
∂u

∂x
+ (λ + 2µ)

∂v

∂y
(9)

The equation of state, eqn. (6), relates the energy to the pressure and flow velocity while

the ideal gas law relates the temperature to the pressure and the density.

P = ρRT (10)

The fluid properties in the above equations are µ (fluid viscosity coefficient), λ = −2µ/3

(bulk viscosity coefficient), k (thermal conductivity) and R (universal gas constant). The

two relevant similarity parameters for viscous flows are the Mach number and the Reynold’s

number.

M =

√

(u2 + v2)

γRT
; Re =

ρuc

µ
(11)

where c is a characteristic length of the flow.
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4 Essentially Non-Oscillatory Schemes

The Essentially Non-Oscillatory (ENO) class of schemes for spatial reconstruction has proved

to be highly successful in finding the numerical solution of the Euler equations [5]. As men-

tioned in the previous section, the Euler equations constitute a set of hyperbolic partial

differential equations whose solutions consist of smooth regions as well as discontinuities

(shocks and contact discontinuities). Along a given direction, the system consists of three

characteristic fields, two of which are acoustic waves and the third is an entropy wave [3].

For the numerical solution, the spatial reconstruction of the flux at the interfaces from the

flow data given at discrete points is an important step. The ENO schemes [5] provide a tool

for high order interpolation in smooth regions while avoiding oscillations near discontinu-

ities. This is achieved by using piecewise continuous polynomials and adaptive stenciling for

the interpolation process. For a given order, the smoothest stencil (based on the divided

differences) is chosen.

The ENO technique is essentially applicable to a scalar function and can be extended to a

system of equations in two ways. One is to apply the scalar interpolation to each component

of the system, as expressed in primitive or conservative form. Another way to extend this

concept is by decomposing the conservation laws into its constituent characteristic fields and

applying the ENO procedure along each characteristic. The latter method has the advantage

of following the physics of the problem, i.e, the wave nature of the solution.

The implementation of the ENO schemes can be described by the following iterative

algorithm, based on polynomial interpolation in the Newton form. For a set of data given

at discrete points xi, fi
n
i=1, the (N + 1)th order Newton polynomial is given by

pN+1(x) = f [x0] +
N

∑

i=1

f [x0, ..., xi]Π
i−1
j=0(x− xj) (12)

where x0 is the starting point (arbitrarily chosen) and xi, i = 1, ..., N are successively cho-

sen points in the stencil (without any assumption on their order). Square brackets denote

divided differences and f [x0] = f (x0). Based on this, the ENO implementation for a left-

biased reconstruction can be expressed as follows:

Initialize fi+1/2 = f(xi) (Starting value)

Initialize X = (xi+1/2 − xi)

low = i, up = i (lower and upper boundaries of stencil)

Till desired order is reached

c1 = f [xlow−1, xup], c2 = f [xlow, xup+1] (Creating two candidate stencils by adding points)

if (|c1| < |c2|) (Choosing the left stencil)

fi+1/2 = fi+1/2 + c1 ∗ X

low = low − 1

X = X ∗ (xi+1/2 − xlow)

else, (choosing the right stencil)

fi+1/2 = fi+1/2 + c2 ∗ X

up = up + 1

X = X ∗ (xi+1/2 − xup)

End Loop
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For an uniform grid, the ENO schemes can be simplified to yield relatively simple recon-

struction formulae for the interface flux. Choice of the stencil can be made using undivided

differences and the coefficients of each point in the stencil can be determined, thus simplify-

ing the implementation of the ENO procedure. The coefficients for different orders as well

as the simplified implementation has been described in [5]. While these simplifications have

been derived for an uniform grid, they have often been used to implement the ENO/WENO

scheme for non-uniform meshes for algorithms reported in literature. The assumption is

that for a fine enough mesh, the non-uniformity over the stencil will be very small and thus

the resultant error will be negligible. However, using these simplified schemes results in a

loss of the order of interpolation. While the errors may be negligible for meshes with slight

non-uniformity, they have the potential to spoil the solution for highly twisted or deformed

meshes. This is especially pronounced for higher orders where the stencil size is large. Along

with a loss of accuracy, the reconstructed values may be incorrect if the geometry of the

mesh is not taken into account. In the present study, the ENO schemes in their original

form (as expressed in the iterative procedure above) are used for the computations involving

non-uniform meshes.

5 Numerical Scheme

5.1 1D Euler Equations

The semi-discrete form of eq. (1), using finite volume formulation is

dui

dt
= Res(ui); Res(ui) = −

1

∆x
(Fi+1/2 − Fi−1/2) (13)

where i is the cell index and δx is the cell width. Fi−1/2 and Fi+1/2 are the numerical

fluxes evaluated at the left and right interfaces of the ith cell. A characteristic-based scheme

is used where the flux is reconstructed by decoupling along the characteristic directions.

The eigenvalues, the left and right eigenvectors at the interface (λk
i+1/2

, Lk
i+1/2

and Rk
i+1/2

respectively for k = 1, ..., m where m is the number of characteristic directions of the system)

used for decoupling, upwinding and re-coupling the fluxes are evaluated at an arithmetically

averaged state. The flux is evaluated as:

Fi+1/2 =
m

∑

k=1

fk
i+1/2R

k
i+1/2 (14)

where fk
i+1/2

is the component of the flux vector along the kth characteristic direction,

evaluated numerically. For a scheme using a stencil S, characteristic flux at the interface is

a function of those evaluated at cell centers lying in the stencil,

fk
i+1/2 = Rec(fk

j ; j ∈ S) (15)

where Rec is the reconstruction procedure, dependent on the scheme used. In the present

study, the Roe-Fixed (RF) formulation [5] is used to evaluate the characteristic flux in an

upwinded fashion. The RF formulation is given as

fk
i+1/2 = fk

L, if λk
i , λk

i+1/2, λ
k
i+1 > 0

= fk
R, if λk

i , λk
i+1/2, λ

k
i+1 < 0

=
1

2
[fk

L + fk
R + αi+1/2(u

k
R − uk

L)], otherwise (16)
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where αi+1/2 = max(|λk
i |, |λ

k
i+1/2

|, |λk
i+1|). The RF formulation uses the LLF flux formulation

[5] as an entropy fix to the Roe’s scheme by introducing extra dissipation and thus breaking

up non-physical expansive shocks. Using the RF formulation is also computationally cheaper

than the LLF flux formulation since reconstruction of the state vector is required only in

cases where entropy fix is required. The interpolated values of the decoupled fluxes fk
L,R

at the interface are found (from the cell-centered values) using the ENO reconstruction

technique described in the previous section. The procedure outlined in the previous section

is for the left-biased term fk
L and the corresponding procedure for the right-biased term fk

R

can be easily derived. The semi-discrete equation, eq. (13), is advanced in time using the

Runge-Kutta (RK) family of schemes like in the case of the scalar hyperbolic equation. The

1st order (Forward Euler), 2nd and 3rd order accurate Total Variation Diminishing (TVD)

RK and 4th order RK schemes [5] have been used in the present study in conjunction with

the high order ENO spatial discretization.

5.2 2D Euler Equations

For the 2D Euler equations, the semi-discrete form of eq. (4) using the finite volume formu-

lation is given as:
duij

dt
Vij +

∑

faces

F.n̂dS = 0 ⇒
duij

dt
= Res(i, j) (17)

Here, Vij is the area of the cell. The residual is given by (for a quadrilateral cell)

Res(i, j) =
−1

Vij
[

4
∑

l=1

F.n̂ldSl (18)

dSl is the length of the cell interfaces. The semi-discrete equation, as given by eq. (17)

is marched in time using the multi-stage Runge-Kutta (RK) algorithm (similar to the 1D

case). It is to be noted that F.n̂ = nxf + nyg is a vector representing the normal flux at a

given interface. Thus it can be reconstructed in the same way as described for the 1D Euler

equations, using characteristic decoupling based on the eigenstructure evaluated at the cell

interface, normal to it.

5.3 2D Navier Stokes Equations

In typical computations for flow around airfoils, a highly stretched mesh is used with very

small cells near the surface to capture the boundary layer. The time step size in explicit

time integration is bounded by the CFL stability condition [3, 4, 5] which is very restrictive

for the meshes typically used for airfoil computations. This leads to very slow convergence

to the steady state solution. Implicit time integration, on the other hand, has unconditional

stability and the time step size can be decided based on accuracy rather than stability. While

implicit time stepping is computationally more intensive per time step, the larger time step

sizes allows for faster convergence rates. In the present study, the Euler solver described

previously is extended to the Navier Stokes equations by using implicit time integration.

While the finite volume formulation of the governing equations in the Cartesian coordinates

can handle curvilinear meshes, parts of the implicit time algorithm as well as the viscous

terms are treated using finite differences and thus, the governing equations in curvilinear

coordinates are used.

8



The Navier Stokes equations in curvilinear coordinates are given as

∂û

∂t
+

∂f̂ (û)

∂ξ
+

ĝ(û)

∂η
=

f̂v(û)

∂ξ
+

ĝv(û)

∂η
(19)

where

û = J−1













ρ

ρu

ρv

E













, f̂(û) = J−1













ρU

ρuU + ξxP

ρvU + ξyP

(E + P )U − ξtP













, ĝ(û) = J−1













ρV

ρuV + ηxP

ρvV + ηyP

(E + P )V − ηtP













(20)

with

U = ξt + ξxu + ξyv, V = ηt + ηxu + ηyv (21)

The viscous terms are

f̂v(û) = J−1(ξxfv + ξygv)ĝv(û) = J−1(ηxfv + ηygv) (22)

The terms on the left hand side have the same definitions as in the case of the 2D Euler

equations. The terms on the right hand side account for viscosity and heat conduction and

are defined as

fv(u) =













0

τxx

τxy

k∂xT + uτxx + vτxy













, gv(u) =













0

τyx

τyy

k∂yT + uτyx + vτyy













(23)

where

τxx = (λ + 2µ)
∂u

∂x
+ λ

∂v

∂y

τxy = τyx = µ(
∂u

∂y
+

∂v

∂x
)

τyy = λ
∂u

∂x
+ (λ + 2µ)

∂v

∂y
(24)

The stress and heat conduction terms are transformed into the curvilinear coordinates as

τxx = µ(4(ξxuξ + ηxuη) − 2(ξyvξ + ηyvη))/3

τxy = τyx = µ(ξyuξ + ηyuη + ξxvξ + ηxvη)

τyy = µ(−2(ξxuξ + ηxueta) + 4(ξyvξ + ηyvη))/3

∂xT = ξxTξ + ηxTη

∂yT = ξyTξ + ηyTη (25)

A family of implicit schemes were proposed in [6] for the inviscid Euler equations and ex-

tended to the Navier Stokes equations in [7] for Cartesian meshes. Their implementation on

a curvilinear mesh is described in [8] with several examples of airfoil computations. While

these schemes used finite differences with second order central stencils, an upwinded scheme

with mixed finite-difference and finite volume discretization is implemented in the present

study. The implicit integration for a differential equation in time is

un+1 = un + δt[
∂u

∂t

n+1

] (26)

9



Considering the inviscid form of eq. (19) (with zero right hand side), the implicit time

integration can be expressed as (dropping the hats for convenience)

un+1 = un − δt[(
∂f

∂ξ
+

∂g

∂η
)n+1] (27)

Since the fluxes f , g are non-linear, their evaluation at the next time level requires their

linearization with respect to time,

fn+1 = fn + An(∆u) + O(δt2)

gn+1 = gn + Bn(∆u) + O(δt2) (28)

where ∆u = un+1 − un. A = ∂f/∂u and B = ∂g/∂u are the Jacobian matrices. Using this

linearization, the implicit algorithm for the inviscid equation is

[I + δt(∂ξA
n + ∂ηB

n)]∆u = −δt(∂ξf + ∂ηg)n (29)

Note that the right hand side of the above equation is equivalent to that for an explicit time

integration and thus, can be evaluated in exactly the same manner as described in the section

for 2D Euler equations. In the computation of the steady state solutions, the accuracy of

the right hand side is important while the factor of ∆u on the left hand side is to provide

stability. Therefore, a simple extension to the viscous equation is

[I + δt(∂ξA
n + ∂ηB

n)]∆u = −δt(∂ξf − ∂ξfv + ∂ηg − ∂ηgv)
n (30)

A more accurate scheme for the viscous equation is

[I + δt(∂ξA
n − ∂2

ξ Rn + ∂ηB
n − ∂2

ηSn)]∆u = −δt(∂ξf − ∂ξfv + ∂ηg − ∂ηgv)
n (31)

where R and S are as defined in [7]. Either of eqns. (30) and (31) can be used for steady

state computations while the latter is expected to yield better time-accurate results. For a

2D structured mesh, the above two equations result in a block pentadiagonal system of size

O(n2×n2) = O(n4) where n is the number of cells along one dimension. To reduce the order

of the system, the Alternating-Direction-Implicit (ADI) factorization is used, which results

in solutions of decoupled block tridiagonal linear systems of O(n2) size along each direction.

The ADI factored scheme is

[I + δt∂ξA
n][I + δt∂ηB

n]∆u = −δt(∂ξf − ∂ξfv + ∂ηg − ∂ηgv)
n (32)

which is solved as

(I + δt∂ξA
n)∆u∗ = −δt(∂ξf − ∂ξfv + ∂ηg − ∂ηgv)

n

(I + δt∂ηBn)∆u = ∆u∗ (33)

This approximate factorization introduces an error of O(δt2) into the scheme which is of

the same order as the error introduced by the linearization in time. Finally, the solution is

updated as un+1 = un + ∆u.

The right hand side of the first step of the ADI scheme consists of convective as well

as dissipative fluxes. The convective fluxes are computed as described in the section for

2D Euler equations, using the finite volume formulation and characteristic based upwinding.
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The dissipative flux terms fv and gv are computed using 2nd order central finite differences

to evaluate the stress and heat conduction terms. These fluxes are computed at the cell

interfaces and their contributions are added to the convective fluxes to get the total fluxes

at the interfaces. The left hand side involves the computation of the ∂ξ(A∆u) and ∂η(B∆u)

which are computed using upwinded first order finite differencing.

∂ξ(A∆u)i,j = A+

i−1/2,j

(∆ui,j − ∆ui−1,j)

∆ξ
+ A−

i+1/2,j

(∆ui+1,j − ∆ui,j)

∆ξ

∂ξ(B∆u)i,j = B+

i,j−1/2

(∆ui,j − ∆ui,j−1)

∆η
+ B−

i,j+1/2

(∆ui,j+1 − ∆ui,j)

∆η
(34)

where

A± = RξΛ
±
ξ R−1

ξ

B± = RηΛ
±
η R−1

η (35)

where Λ+,− denote diagonal matrices with positive and negative eigenvalues respectively.

Finally, the block tridiagonal system is solved using Gauss elimination but there is scope for

making the algorithm faster by using block tridiagonal solvers and/or iterative Gauss Siedel

solvers. This completes the description of the numerical scheme.

6 Boundary Conditions

The numerical treatment of the boundary is very important to ensure the correct conditions

are satisfied while computing the flow at boundary cells. In the present study, the boundary

conditions have been imposed by using “ghost cells” which is a very simple yet elegant way

of applying the required the boundary conditions. Depending on the order of the scheme, a

certain number of neighboring cells are required in the application of the numerical scheme at

a given cell. While these neighboring cells are present for cells in the interior of the domain,

the cells at the boundary need to be treated specially, either by modifying the numerical

scheme itself at boundary cells or by imagining the existence of ghost cells which lie outside

the formal domain.

The ghost cells approach requires the definition of the flow variables at these imaginary

points outside the domain. This is done such that the physical boundary conditions are

satisfied. The following are the different boundary conditions encountered in the present

study and their implementation using ghost cells:

• Freestream boundary: Freestream (i.e. specified) conditions are imposed on the bound-

ary. The flow variables in the ghost cells take the specified value and the numerical

scheme ensures that the correct information travel in to or out of the domain.

• Outgoing boundary: This is used for supersonic outflow. Since such a flow involves no

information moving in to the domain, it suffices to set the ghost cell flow variables with

the same values as the last cell in the interior. This ensures a non-reflective boundary

condition with information flowing out. However, for the present numerical scheme,

this is not really necessary as a special case. If freestream conditions are set in the

ghost cell such that it represents a supersonic outflow, the characteristic decomposition

and flux computation will model the one-way flow of information.
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• Periodic boundary: This is often required to simulate periodic flows over an infinite

domain. The ghost cells at one boundary are given the same values as the interior cells

of the opposite boundary, this simulating a continuity in the domain.

• Wall boundary: At a solid wall, for inviscid flow, the flow satisfies the tangency con-

dition, i.e. the direction of the velocity vector has to be parallel to the surface. This

is imposed by decomposing the velocity into its normal and tangential components at

the first interior cell next to the solid wall. The conditions in the ghost cell on the

other side of the wall are set by reflecting the normal velocity while keeping every other

variable the same. This ensures zero normal velocity at the wall itself. For viscous

flow, the no-slip condition requires that the flow adjacent to the wall be at the same

velocity as the wall itself. Typically, the wall is static and thus, the flow velocity in

the ghost cells are set as the negative of that inside the domain to ensure zero velocity

at the interface.

These boundary conditions have been used in conjunction with the numerical technique to

solve the problems in subsequent sections.

7 Validation

The numerical scheme described above is validated as described in this section. Initially, the

1D Euler equations are solved to test the performance of the various orders of the algorithm.

Two standard Riemann problems [3, 4] are solved which consist of an initial discontinuity

which evolves into a shock wave, a rarefaction wave and a contact discontinuity. Both

these problems are benchmark problems used in the validation of 1D Euler algorithms in

literature. The computed results are compared with the exact solution. The algorithm is

then used to solve 2D Cartesian problems. An example of a 2D Riemann problem [9, 10]

is chosen which consists of the evolution of a discontinuous initial solution over a square

domain. The algorithm is also used to solve the Mach 2.9 oblique shock reflection problem

[11], which is another benchmark case. To test the performance of the Navier Stokes solver

on a Cartesian mesh, the Couette flow problem is solved. It involved incompressible flow

between two infinite flat plates moving at a given velocity relative to each other [7]. Following

these, the algorithm is tested for flow through a compression ramp [11], which involves a

non-Cartesian grid. Finally, the inviscid flow around the NACA0012 airfoil is considered.

Two cases, subsonic and transonic flow, are considered and the flow solved for. As a part of

post-processing, the coefficient of pressure on the airfoil surface is computed and compared

to results in literature [12, 13]. The performance of the code is compared with the TURNS

code [14] which is a validated and published code developed at the Alfred Gessow Rotorcraft

Center, University of Maryland. The TURNS code uses an implicit time stepping scheme

along with a MUSCL-type [3] approach for spatial reconstruction. The Navier Stokes solver

is used to compute the viscous flow around an RAE2822 airfoil in the transonic regime and

the computed pressure coefficients compared with results in literature [15, 16].

1D Euler validation

The 1D Riemann problems [3] consist of a domain [0, 1] with a discontinuity located at the

center x = 0.5. The solution involves the evolution of this initial discontinuity into a left-
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Figure 1: Solution of Sod’s shock tube
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Figure 2: Solution of Lax’s shock tube

running rarefaction wave and a right-running contact discontinuity and a shock wave. Two

such cases are considered. For the first case, referred to as Sod’s shock tube problem, the

initial conditions are given as follows:

ρL = 1 ; ρR = 0.125

uL = 0 ; uR = 0

PL = 1 ; PR = 0.1 (36)

where the subscripts L and R denote the left and right side of the initial discontinuity. The

second case, referred to as Lax’s shock tube problem, has the following initial conditions:

ρL = 0.445 ; ρR = 0.5

uL = 0.698 ; uR = 0

PL = 3.528 ; PR = 0.571 (37)

In both cases, the ratio of specific heats γ is taken as 1.4

Figure (1) shows the results for the first test case, solved on a 100-point grid. The density

is plotted and the main features of the solution (a left-running rarefaction, a right running

shock wave and a right running contact discontinuity) can be easily distinguished. The

computed solutions for various orders are compared with the exact solution. The solutions

are computed using 1st order in space with explicit Euler in time, 2nd order ENO in space

with 2nd order TVD RK in time and 3rd order ENO in space with 3rd order TVD RK in

time. It can be seen that the 2nd and 3rd order schemes show much better resolution across

discontinuities than the 1st order scheme as expected. However, across the discontinuities,

the higher order ENO schemes do not suffer from the problem of spurious oscillations like

naive higher order schemes. Figure (2) shows the density variation for the second test case,

solved on a 200-point grid. Similar conclusions can be drawn.

2D Cartesian validation

A class of 2D Riemann problems have been presented in [9]. They consist of a square domain

and initial conditions as constant states in the four quadrants of the domain. The solution

involves evolving them till a given time. In the present study, the 6th case is chosen, whose
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Figure 3: Density - 1st order Figure 4: Density - 3rd order

Figure 5: Density - from [9] Figure 6: Density - from [10]

initial conditions are given as follows:

ρNW = 2.0 ; ρNE = 1.0

uNW = 0.75 ; uNE = 0.75

vNW = 0.5 ; vNE = −0.5

PNW = 1.0 ; PNE = 1.0

ρSW = 1.0 ; ρSE = 3.0

uSW = −0.75 ; uSE = −0.75

vSW = 0.5 ; vSE = −0.5

PSW = 1.0 ; PSE = 1.0 (38)

where the subscripts NW, NE, SW and SE refer to the north-west, north-east, southwest

and southeast quadrants respectively. The ratio of specific heats γ is taken as 1.4, as usual.

The four boundaries are outgoing and the solution is evolved to time t = 0.3.

Figures (3) and (4) show the density contours for the 1st and 3rd order computed results.

It can be seen using the same contour levels that the first order scheme is quite diffuse and

14



the shocks are smeared over a large area. On the other hand, the 3rd order computations

capture the shocks much better as well as the flow features around the center of the domain.

As a comparison, figures (5) and (6) show the results presented in [9] and [10]. To make the

comparison meaningful, the contours plotted in all these figures (3) and (4) use the same

minimum, maximum and delta as used in the references. All the computations were carried

out on a 400 × 400 grid and the domain was a unit square.

Oblique Shock Reflection

Figure 7: Oblique Shock Reflection

(Pressure) - 2nd order

Figure 8: Oblique Shock Reflection

(Pressure) - 3rd order

This problem involves the reflection of an oblique shock at 30o on a solid surface. The do-

main is rectangular with the length three times the height. The boundary conditions involve

a supersonic inflow at Mach 2.9 on the left boundary. Exact post-shock conditions (com-

puted using oblique shock relations [2]) are imposed on the top boundary, thus simulating an

oblique shock entering the domain from the north-west corner. The right boundary is set to

supersonic outflow and the bottom boundary is set as a solid wall. The domain is initialized

to a physically relevant state (in the present study, it was initialized to ρ, u, v, P = 1, 0, 0, 1)

and the solution is marched in time till it reaches steady state. For first order computations,

the steady state is attained when the residual norms for time marching fall to machine zero.

For higher order computations using ENO schemes, the residuals do not fall to machine zero

due to shock oscillations over a cell but this has negligible effect on the solution. Figure (7)

shows the pressure variation and streamlines over the domain for 2nd order computations

while figure (8) show the pressure contours for 3rd order computations. It should be noted

that since the solid wall is flat, the shocks become normal to it near the surface to maintain

zero pressure gradient in the normal (to the wall) direction, as is physically required.

Couette Flow

The Couette flow is one of the simplest illustrations of viscous flow with the no-slip condition

at the solid wall. The problem consists of two infinite flat plates moving at a constant velocity

relative to each other with an incompressible viscous fluid in between. The steady state

solution is a linear velocity profile between the two walls with the velocity of the fluid equal
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to the velocity of the walls at the boundaries. In the present study, the domain consisted

of a 6 × 13 grid with six cells in x-direction and thirteen cells in the y-direction (excluding

the ghost cells). Periodic boundary conditions were set along the x-direction to simulate an

infinite domain in this dimension. No-slip boundary conditions were set along the top and

bottom boundaries which are the solid plates. The relative velocity of the upper plate with

respect to the lower one was taken as 100 m/s. The initial conditions were set as atmospheric

density and pressure with velocity as zero all through the domain. The solution was marched

through till steady state till the linear profile was obtained.

Figure (9) shows the initial, intermediate and final velocity profiles for the solution. The

algorithm was seen to converge pretty rapidly for moderate CFL numbers. Convergence

degenerated at larger time steps due to errors caused by linearization and ADI factorization.

However, it was verified that the implicit algorithm allowed much larger time steps than was

possible by using explicit time stepping.

Flow through a Compression Ramp

The flow through a channel with a 15o compression ramp is studied. The domain involves

a rectangular channel with the length three times the height. The bottom surface of the

channel as a 15o ramp starting at one-sixth the length of the channel and continuing till

one-third the length of the channel and then flattening out into a flat surface. The flow

comes in at supersonic speeds from the left boundary and forms an oblique shock when it

encounters the ramp, thus going through a compression. At the end of the ramp, the flow at

the surface turns outwards, this causing an expansion fan. The flow then exits the channel

at the right boundary at a supersonic speed. The angle of the initial oblique shock depends

on the speed of the incoming flow and therefore, it reflects from some location on the upper
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Figure 10: Compression Ramp

(Pressure) - 2nd order

Figure 11: Compression Ramp

(Pressure) - 3rd order

wall of the channel depending on the speed of the incoming flow. Once again, the reflected

shock may or may not reflect from the bottom surface, depending on the incoming flow

forming a reflecting shock system. In the present study, a Mach 3.3 inflow and the computed

results can be validated with the exact solutions obtained through oblique shock relations

and Prandtl-Meyer expansion fan relations for compressible flow [2]. In the present case, a

Mach 3.3 inflow causes a 30.2o oblique shock to form at the beginning of the ramp, which

reflects from the upper wall before exiting the domain. An expansion wave forms at the top

of the ramp. The exact solution across these shock and expansion waves are calculated and

compared with the computed results.

Figure (10) show the pressure variation and the streamlines of the flow while figure

(11) show the pressure contours. The oblique shock and the expansion fan can be clearly

distinguished in these two figures.

Figure 12: The computational domain

for airfoil computations

Figure 13: Magnified view of the grid

near the airfoil
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Flow around Airfoils

Following the validation of the algorithm over simple problems in 2D, it is used to solve the

flow over airfoils. The domain is discretized using a body-fitted curvilinear mesh. The mesh

topology is C-type and figure (12) shows the whole domain. The airfoil is assumed to have

a unit chord length and the far field boundary of the domain is taken at twenty chords away

from the airfoil, which is sufficiently far away. Figure (13) shows a magnified view of the

grid around the airfoil.

Since this is a C-type mesh, the domain can be mapped into a quadrilateral domain with

four boundaries. The “top” boundary of this quadrilateral consists of the whole far field

boundary except the outflow behind the airfoil (far right edge of the domain) (see figure

(11)). The “left” boundary consists of the bottom half of the outflow behind the airfoil while

the “right” boundary consists of the top half of the outflow. The “bottom” boundary consists

of the airfoil surface itself and a cut through the domain from the airfoil trailing edge to the

far right end of the domain. In accordance with this, freestream boundary conditions are

imposed on the “top”, “left” and “right” boundaries of the domain, since it is assumed that

the far field boundary is far enough for the airfoil to have any effect on the flow there. For

the “bottom” boundary, the part of it covering the airfoil surface is treated by curved wall

boundary conditions while re-entrant conditions are imposed in the wake region to ensure

continuity of the flow across the wake.

The flow around the airfoil is computed and one of main quantities used in comparing

the flow is the coefficient of pressure. It is a non-dimensional pressure given by

Cp(x, y) =
P (x, y) − P∞

1

2
ρ∞u2

∞

(39)

where the subscript ∞ denotes freestream flow conditions. The term in the denominator is

termed as the freestream “dynamic pressure”.

Inviscid Flow

Figure 14: Pressure variation for

the subsonic airfoil case

Figure 15: Pressure variation for

the transonic airfoil case

Two cases are considered for the flow around the airfoil. The first case involves a fully

subsonic flow around it. The freestream Mach number is 0.63 and the airfoil has a 2o angle of
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Figure 16: Surface coefficient of pressure variation for the subsonic airfoil case - Computed

attack. Figure (14) shows the pressure variation around the airfoil and the flow streamlines.

The high pressure region at the leading edge of the airfoil is the stagnation point while the

low pressure region on top of the airfoil, towards the leading edge is the suction peak which

is the main lift generator. Figure (16) shows the coefficient of pressure computed using the

algorithm and computed using the TURNS code for the upper and lower surfaces. It can be

seen that the higher order schemes capture the suction peak much better than the 1st order

scheme and thus, are likely to yield much more accurate values of the lifting force. At other

parts of the flow, the various schemes agree very well with the results of the TURNS code.

It can be seen that the computed results agree very well with the results in [12].

The second case involves the transonic flow around an airfoil. When the freestream Mach

number is high enough (but subsonic), the flow can accelerate and reach supersonic speeds

around the airfoil. Shocks on the upper and lower surfaces form to bring the flow back to its

subsonic condition before leaving the airfoil. Such a situation is not desirable in flight since

it increases the aerodynamic loading of the wings drastically and also increases the pressure

drag by a large amount. In the present computations, the freestream Mach number is 0.85

while the angle of attack is 1o. Figure (15) shows the pressure variation around the airfoil.

As in the subsonic case, a stagnation region is formed at the leading edge of the airfoil and

the flow accelerates to supersonic speeds don both the upper and lower surface. However,

the speeds attained on the upper surface are higher. A normal shock is formed at around 0.9

times the chord on the upper surface while the lower surface shock is positioned at around 0.6

times the chord. Downstream of the shock, the flow is subsonic. The blue regions in figure

(15) show the pockets of supersonic flow. Figure (17) show the pressure coefficient variation

for the computed results and those obtained by the TURNS code, for both the upper and

lower surfaces. It is seen that the 1st order scheme is not only dissipative around the shock,

it does not capture the upper surface shock position correctly either. In comparison, the 2nd
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Figure 17: Surface coefficient of pressure variation for the transonic airfoil case - Computed

and 3rd order schemes show much sharper resolution of the shocks and captures the correct

positions. At other parts of the flow, the solutions from all the schemes agree well with the

TURNS results. Excellent agreement can be observed with results in [12]. Similar results

are also presented in [13]

Viscous Flow around Airfoil

The Navier Stokes solver is used to solve for transonic flow around the RAE2822 airfoil.

Viscous flow around this airfoil has been well documented in literature [15, 16] and provides

a good validation case. The same mesh topology is used as shown in figures (12) and (13)

but for viscous computations, the mesh spacing is much smaller near the body surface to

accurately resolve the boundary layer. In the present study the cells adjacent to the surface

were taken as a tenth of what they were in the inviscid computations. Other details of the

domain were the same while the appropriate no-slip boundary conditions were applied to

the airfoil surface.

The freestream Mach number is 0.75 while the angle of attack is 2.8o. The flow is similar

in nature to the transonic inviscid case described in the preceding section. However, the

shape of the airfoil is such that a bottom surface shock does not form and the flow is smooth.

On the top surface, a shock forms which decelerates the locally supersonic flow to subsonic

speeds. Figure (18) shows the pressure variation around the airfoil and flow features such

as the stagnation point and the shock wave can be easily seen. While there is no apparent

difference with inviscid flow, a magnified view near the airfoil surface in figure (19) shows

the velocity profile in the boundary layer. It is only in this thin region near the surface

that viscous forces have significant influence on the flow. Figure (20) shows the coefficient

of pressure on the upper and lower surface. The results shown here are obtained using a
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Figure 18: Pressure variation for

the RAE2822 airfoil case

Figure 19: Magnified view of the boundary

layer velocity profile

first order Roe scheme and thus, substantial diffusion can be seen across the shock. The

coefficient of pressure on the airfoil surfaces is compared to those in [15] and good agreement

is observed. Similar results are also shown in [16].

8 Conclusions and Future Work

An algorithm is developed to solve for laminar, viscous flows around airfoils and validated

on several test problems. Initially, inviscid flow is considered which required the solution

of the Euler equations of gasdynamics. A characteristic based reconstruction is used for

the convective flux computations which exploits the wave nature of the solution. The Es-

sentially Non-Oscillatory scheme is used for higher order spatial accuracy while the Local

Lax-Friedrich’s flux splitting is used for upwinding. Time integration is carried out using

explicit Runge Kutta family of schemes. The solver is validated on several 1D and 2D prob-

lems exhibiting various flow features. Inviscid flow around airfoils is also computed to test

the solver’s performance on curvilinear meshes.

The inviscid flow solver is subsequently extended to solve for viscous flows. The Navier

Stokes equations in their curvilinear coordinates form are solved using implicit time stepping

based on the Backward Euler scheme. While the convective fluxes are reconstructed using

the same techniques as in the inviscid solver, the dissipative terms are approximated using

second order central differences. Linearization in time is carried out for the evaluation of non-

linear fluxes in the implicit formulation. The Alternating-Direction-Implicit factorization is

used to reduce the computational complexity of the system. The viscous flow solver is tested

on relevant problems, using Cartesian as well as curvilinear meshes and representative results

are shown.

Several improvements are required before the algorithm described in this report can be

said to be comparable to existing flow solvers. The solution of the linear system for each

time step in the implicit formulation is presently carried out using a naive LU decomposition.

Since the matrices involved are block tri-diagonal, an efficient solver for such systems will

reduce the computational cost. While the present algorithm is designed for steady state
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Figure 20: Surface coefficient of pressure variation for the RAE2822 airfoil case - Computed

computations, it’s application to unsteady problems may not yield very accurate solutions

due to several simplifications. Time accuracy can be improved by performing several sub-

iterations for each time step and this needs to be investigated before the application of this

solver to problems of unsteady aerodynamics.

The present algorithm solves for laminar flow since it lacks a turbulence model. To get

physically relevant solutions for viscous flows, a turbulence model is required to account for

the changes in the viscosity coefficient and thermal conductivity. Several turbulence models

have been proposed in literature and are usually algebraic models or involve solution of an

additional partial differential equation. Further studies are needed for the selection and

incorporation of a turbulence model.

While most of the initial goals stated have been met, further work needs to be done before

the problem of dynamic stalling can be studied. However, the algorithm, in its present state,

provides a firm foundation on which the necessary additions can be built.
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