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Introduction

» Aim
= To study the dynamic stalling of rotorcraft blade
sections
» Dynamic Stall
= Major factor in helicopter performance

= Involves unsteady aerodynamics (time varying
angle of attack and incoming flow velocity)

« Numerical Solution

= Navier Stokes equations w/ turbulence model



Flow around Airfoil

- Airfoil: 2D cross-section of wing/rotor

= Exhibits basic characteristics of flow around wings
and other lifting surfaces

= Provides an estimate of the lift and drag for actual
flows
- Numerical Solution of flow around airfoils
= 2D Euler or Navier Stokes equations
s To study nature of flow over wings, away from
edges
= Step towards building a 3D flow solver



Inviscid Flows

» Governed by the Euler Equations

= Based on the conservation of mass, momentum and

energy

= Neglects viscosity and heat conduction

« Relevance

= High speed flows, away from solid surfaces

= Negligible cross-derivatives of f]

ow velocity

= Provides a good estimate of lift |

out not drag



Viscous Flows

- Governed by the Navier Stokes equations

o Etfect of viscous forces and heat conduction on the
momentum and energy equations

- Required to compute drag and flow separation
= Drag = pressure drag + shear forces

= Flow separation at high angles of attack (pockets
of reverse flows)

- Computationally more expensive

= Requires very fine mesh spacing near body surface
to capture boundary layer



Governing Equations
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Constitutive Relations

. p 1
« Equation of State E= ﬁ T Ep(u2 +v7)
 Ideal Gas Law p = pRT
o Fluid Properties:
5 U Fluid Viscosity Coetficient

Bulk Viscosity Coefficient
Thermal Conductivity

Universal Gas Constant

< =N = >

Ratio of Heat Capacities



Finite Volume Formulation

- Based on the Integral Form of the governing
equations
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iEdVJr;VF.ndS: 0

F(u) = [f(u) - fu(u)]i +[g(u) — gv(u)]]
» Semi-discrete equation
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Inviscid Flow Computations

- Upwinded flux reconstruction at the interfaces

= Characteristics based upwinding (solution
composed of acoustic and entropy waves)

= 15t Order Roe Scheme

= ond grd Qrder Essentially Non-Oscillatory schemes
- Explicit Time Marching

= Runge Kutta family of ODE solvers

= ond and 3rd order Total Variation Diminishing RK
schemes



Viscous Flow Computations

- Explicit time marching unsuitable
= Extremely small mesh spacing near the surface results
in a very restrictive stability limit for time step size
 Implicit Time Stepping: Backward Euler
= Unconditionally stable

= Computationally more intensive per iteration (solution
of a system of equations)

= Non-linear system of equations requires linearization
in time for each time step

= Time step size limited by accuracy considerations



Curvilinear Coordinates

- Transformation of the governing equations from
Cartesian coordinates (x, y) to -curvilinear
coordinates (&, n)
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« Metrics of transformations numerically computed
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Numerical Scheme

» Governing Equation in curvilinear coordinates
a0 | o) , @) _ af@) , a3(0)
o o&  op 8 on
 Linearization of flux with respect to time

f(u(t + At)) = f(u(t)) + AAu + O(At*); A = of

 Implicit formulation (h — Time step)

P of 0
[1+h0A +ho,BJAu = hOf +0,8;A = —,B = %g

= [ + hd,A][l + hd BlAu = h[d,f + 0, 8] (ADI)



Numerical Scheme

- Right-hand side computed using finite difference/finite
volume formulations

= Convective flux computed as before

= Dissipative terms computed using second order central
differencing

 Left-hand side
= Banded penta-diagonal system
= ADI approximation: two banded tri-diagonal systems
> 0¢(AAu), 9,(BAu) computed using 1% order upwind finite
differences



Validation

 Cartesian Meshes
= 2D Riemann Problems (Inviscid)
= Oblique Shock Reflection (Inviscid)
= Couette Flow (Viscous)

- Airfoil computations
= NACA0012 Subsonic (Inviscid)
= NACA0012 Transonic (Inviscid)
= RAE2822 Transonic (Viscous)

» NACA0012 High Angle of Attack (Viscous)



2D Riemann Problems

N
\ 4

15t Order My results grd Order

“Configuration 6” (Density)

PR T
| Results

I 7 SN o o i F
110111 ANUl'g4allOv=1dUlllol |




Oblique Shock Reflection
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Couette Flow
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Coefficient of Pressure (Cp)

- Coefficient of Pressure

- Results validated with TURNS code
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NACAO0012 Transonic (Inviscid)

Results validated with TURNS code
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RAE2822 Transonic (Viscous)

RAE 2822 Airfoil at Mach 0.75 and
2.8 degrees angle of attack

1st Order Roe’s scheme with Euler
Backward time stepping
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NACAO0012 High Angle of Attack (Viscous)

NACA 0012 - Mach 0.3, Angle of Attack 13.5 degrees
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Conclusions

« Flow solver (2D) for inviscid and viscous flow
around airfoils
= Presently validated for steady state computations

= Post-processing required to compute lift, drag and
moment coefficients

= Efficient solver for banded tri-diagonal system needed
= Need to incorporate a turbulence model

 Future work — for computation of dynamic stall
= Increase time accuracy by sub-iterations

= Validation for unsteady cases (plunging airfoils,
rotating airfoils)
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