Basic Multiprocessing
in UNIX

With Examples

Parallel Applications

m Modern computers have multiple CPU cores

(and/or multiple CPUs) on board

m We have to be able to utilize the computing
power by parallelizing our tasks

CPU Information

m [inux computer: /proc/cpuinfo
m Cat /proc/cpuinfo example:

processor :0
vendor_id : AuthenticAMD
cpu family : 15

model : 65

model name : Dual-Core AMD Opteron(tm) Processor 8220
stepping :3

cpu MHz : 2800.000
cache size : 1024 KB
physicalid : 0

siblings

core id :0

cpu cotes :2

fpu : yes

fpu_exception : yes

cpuid level : 1

wp : yes

flags : fpu vme de pse tsc mstr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt rdtscp Im
3dnowext 3dnow pni cx16 lahf

_Im emp_legacy svm extapic cr8_legacy

bogomips : 5625.16

TLB size : 1024 4K pages

clflush size : 64

cache_alignment : 64

address sizes : 40 bits physical, 48 bits virtual

power management: ts fid vid ttp tm stc

Processes in UNIX

m UNIX i1s natively parallel operating system

B A process is an Instance of running a program

m Fach process has a unique process ud

m Shell command “ps” gives the list of all running
Processes

Using the shell commands

B [n any UNIX shell, “&” will run the command in
background.

B The command will run in 1ts own shell, which is a child
of the current shell

[alekseyz@genomelO]$ run_command.sh &

B “wait” command will wait for all child processes in the
current shell to finish

Example of & and wait

m [n bash:

#1/bin/bash

let NUM_CPUS="cat /proc/cpuinfo |grep processor]|tail -1Jawk “{print $NF+1}""
let counter=1;

let cpu_counter=1;

echo "Total processes to run:"$max_counter

echo "Simultaneously running:"$NUM_CPUS

whille [[$counter -le $1]];do
while [[$cpu_counter -le $NUM_CPUS && $counter -le $1]];do

./echo_sleep _echo.sh &

let counter=%counter+1

let cpu_counter=%$cpu_counter+1;
done
let cpu_counter=1;
wailt

#1/bin/bash
echo ""Sleeping 10 seconds in shell "$$

sleep 10
echo ""Done"

Using fork() and wait() in C

m The fork() system call 1s the basic way to create a new

process. fork() 1s used to produce child shell.
m Returns twice(!!!])

m fork() causes the current process to be split into two
processes - a parent process, and a child process.

m All of the memory pages used by the original process
get duplicated during the fork() call, so both parent and

child process see the exact same memotry image.

fork() continued

®m When fork() returns in the parent process, its return

value is the process ID (PID) of the child process.

When it returns inside the child process, its return value
1s '0".
If for some reason fork() failed (not enough memory,

tOO many processes, etc.), N0 new process is created,
and the return value of the call is '-1".

Both child process and parent process continue from
the same place in the code where the fork() call was
used.

Child processes

m When a child process exits, it sends a signal to its parent process,
which needs to acknowledge it's child's death. During this time
the child process is in a state called zomzbie.

When a process exits, if it had any children, they become orphans.
An orphan process is automatically inherited by the 77z process,
and becomes a child of this zzf process.

m When the parent process is not propetly coded, the child
remains in the zombie state forever. Such processes can be
noticed by running the “ps” command, and seeing processes
having the string "<defunct>" as their command name.

Simple fork() and wait() example

#include <stdio.h>

#include <unistd.h> /* defines fork(), and pid_t. */
#include <sys/wait.h> /* defines the wait() system call. */
int main(){

pid _t child_pid;

int child_status;

child_pid = fork();
switch (child_pid) {
case -1:
perror(**fork™);
exit(l);
case O:
printf(*"1 am the child, Hello world\n™);
sleep(10);
ex1t(0);
default:
printf(*"1 am the parent, waiting for the child process %d to exit...
\n"*,child_pid);
wairt(&chrld_status);
printf(""1 am the parent, child process %d exited with status
%d\n**,child _pid,child_status);
b
+

InterProcess communication

m One can prescribe what each child does in the

fork() call

m [t is helpful if parent could communicate with

child (e.g. report progress, get data)

m Fasiest way for parent and child to

communicate 1s through pzpe

Communication

m One can prescribe what each child does in the

fork() call

m [t is helpful if parent could communicate with

child (e.g. report progress, get data)

m Fasiest way for parent and child to

communicate 1s through pzpe

Using pipes

® _Anonymous pipe: A pipe 1s a one-way mechanism that
allows two related processes (i.e. one is an ancestor of
the other) to send a byte stream from one of them to
the other one.

® The order in which data is written to the pipe, 1s the
same order as that in which data 1s read from the pipe.

m The system assures that data won't get lost in the
middle, unless one of the processes (the sender or the
recetver) exits prematurely.

pipe()

m The pipe() system call is used to create a read-
write pipe.

m pipe() takes as an argument an array of 2 integers
that will be used to save the two file descriptors
used to access the pipe. The first to read from
the pipe, and the second to write to the pipe.

Using pipe()

/* Tirst, define an array to store the two file
descriptors */

iInt pipes|2];

/>* now, create the pipe */

int rc = pipe(pipes);

iIT (rc == -1)

{

/> pipe() failed */
perror("'pipe™);
exit(l);

¥

pipe() example -- main

int main(Q)

{

Iint data pipe[2]; /* an array to store the file descriptors of
the pipe. */

int pid;

Int rc;

rc = pipe(data_pipe);
IT (rc == -1) { perror(“pipe™); exit(l); }

pid = fork();
switch (pid)
{
case -1:
perror(""fork'); exit(l);
case O:
do_child(data pipe);
default:
do_parent(data pipe);
¥
¥

pipe() example -- parent

void do_parent(int data pipe[]) {

int c; /* data received from the user. */
Int rc;

/* Tirst, close the un-needed read-part of the pipe. */
close(data pipe[0]);

while ((c = getchar()) > 0)
{
rc = write(data pipe[l], &c, 1);
It (rc == -1)
{
perror("'Parent:write");close(data pipe[l]);;exit(l);

¥
¥
close(data_pipe[1]);
ex1t(0);
¥

pipe() example -- child

void do_child(int data pipe[]) {
Int c; /* data received from the parent. */
int rc;

/* Tirst, close the un-needed write-part of the pipe. */
close(data pipe[l]);

while ((rc = read(data pipe[0O], &c, 1)) > 0)
{

b
ex1t(0);

¥

putchar(c);

Acknowledgements

m Some examples were taken from:

http://usets.actcom.co.il/ ~choo/lupg/tutorials /multi-process,/ multi-

process.html#process_creation fork syscall

