
Basic Multiprocessing Basic Multiprocessing
in UNIXin UNIX

With ExamplesWith Examples

Parallel ApplicationsParallel Applications

Modern computers have multiple CPU cores Modern computers have multiple CPU cores
(and/or multiple CPUs) on board(and/or multiple CPUs) on board

We have to be able to utilize the computing We have to be able to utilize the computing
power by parallelizing our tasks power by parallelizing our tasks

CPU InformationCPU Information

Linux computer: /proc/Linux computer: /proc/cpuinfocpuinfo
Cat /proc/Cat /proc/cpuinfocpuinfo example:example:

processor : 0processor : 0
vendor_idvendor_id : : AuthenticAMDAuthenticAMD
cpucpu family : 15family : 15
model : 65model : 65
model name : Dualmodel name : Dual--Core AMD Core AMD Opteron(tmOpteron(tm) Processor 8220) Processor 8220
stepping : 3stepping : 3
cpucpu MHz : 2800.000MHz : 2800.000
cache size : 1024 KBcache size : 1024 KB
physical id : 0physical id : 0
siblings : 2siblings : 2
core id : 0core id : 0

cpucpu cores : 2cores : 2
fpufpu : yes: yes
fpu_exceptionfpu_exception : yes: yes
cpuidcpuid level : 1level : 1
wpwp : yes: yes
flags : flags : fpufpu vmevme de de psepse tsctsc msrmsr paepae mcemce cx8 cx8 apicapic sep sep mtrrmtrr pgepge mcamca cmovcmov pat pse36 pat pse36 clflushclflush mmxmmx fxsrfxsr ssesse sse2 ht sse2 ht syscallsyscall nxnx mmxextmmxext fxsr_optfxsr_opt rdtscprdtscp lm lm

3dnowext 3dnow 3dnowext 3dnow pnipni cx16 cx16 lahflahf
_lm _lm cmp_legacycmp_legacy svmsvm extapicextapic cr8_legacycr8_legacy
bogomipsbogomips : 5625.16: 5625.16
TLB size : 1024 4K pagesTLB size : 1024 4K pages
clflushclflush size : 64size : 64
cache_alignmentcache_alignment : 64: 64
address sizes : 40 bits physical, 48 bits virtualaddress sizes : 40 bits physical, 48 bits virtual
power management: power management: tsts fid fid vidvid ttpttp tm tm stcstc

Processes in UNIXProcesses in UNIX

UNIX is natively parallel operating systemUNIX is natively parallel operating system

A A processprocess is an instance of running a program is an instance of running a program

Each process has a unique Each process has a unique process idprocess id

Shell command Shell command ““psps”” gives the list of all running gives the list of all running
processesprocesses

Using the shell commandsUsing the shell commands

In any UNIX shell, In any UNIX shell, ““&&”” will run the command in will run the command in
background. background.
The command will run in its own shell, which is a child The command will run in its own shell, which is a child
of the current shellof the current shell

[alekseyz@genome10]$ [alekseyz@genome10]$ run_command.shrun_command.sh &&

““waitwait”” command will wait for all child processes in the command will wait for all child processes in the
current shell to finishcurrent shell to finish

Example of & and waitExample of & and wait
In bash:In bash:

#!/bin/bash#!/bin/bash
let NUM_CPUS=`cat /proc/let NUM_CPUS=`cat /proc/cpuinfocpuinfo ||grepgrep processor|tailprocessor|tail --1|awk '{print $NF+1}'`1|awk '{print $NF+1}'`
let counter=1;let counter=1;
let let cpu_countercpu_counter=1;=1;
echo "Total processes to echo "Total processes to run:"$max_counterrun:"$max_counter
echo "Simultaneously echo "Simultaneously running:"$NUM_CPUSrunning:"$NUM_CPUS

while [[$counter while [[$counter --le $1]];dole $1]];do
while [[$while [[$cpu_countercpu_counter --le $NUM_CPUS && $counter le $NUM_CPUS && $counter --le $1]];dole $1]];do

././echo_sleep_echo.shecho_sleep_echo.sh &&
let counter=$counter+1let counter=$counter+1
let let cpu_countercpu_counter=$cpu_counter+1;=$cpu_counter+1;

donedone
let let cpu_countercpu_counter=1;=1;
waitwait

donedone
--
#!/bin/bash#!/bin/bash
echo "Sleeping 10 seconds in shell "$$echo "Sleeping 10 seconds in shell "$$
sleep 10sleep 10
echo "Done"echo "Done"

Using fork() and wait() in CUsing fork() and wait() in C

The fork() system call is the basic way to create a new The fork() system call is the basic way to create a new
process. fork() is used to produce child shell.process. fork() is used to produce child shell.
Returns twice(!!!!)Returns twice(!!!!)
fork() causes the current process to be split into two fork() causes the current process to be split into two
processes processes -- a parent process, and a child process. a parent process, and a child process.
All of the memory pages used by the original process All of the memory pages used by the original process
get duplicated during the fork() call, so both parent and get duplicated during the fork() call, so both parent and
child process see the child process see the exact same memory imageexact same memory image. .

fork() continuedfork() continued

When fork() returns in the parent process, its return When fork() returns in the parent process, its return
value is the process ID (PID) of the child process. value is the process ID (PID) of the child process.
When it returns inside the child process, its return value When it returns inside the child process, its return value
is '0'. is '0'.
If for some reason fork() failed (not enough memory, If for some reason fork() failed (not enough memory,
too many processes, etc.), no new process is created, too many processes, etc.), no new process is created,
and the return value of the call is 'and the return value of the call is '--1'. 1'.
Both child process and parent process continue from Both child process and parent process continue from
the same place in the code where the fork() call was the same place in the code where the fork() call was
used. used.

Child processesChild processes

When a child process exits, it sends a signal to its parent procWhen a child process exits, it sends a signal to its parent process, ess,
which needs to acknowledge it's child's death. During this time which needs to acknowledge it's child's death. During this time
the child process is in a state called the child process is in a state called zombiezombie. .

When a process exits, if it had any children, they become When a process exits, if it had any children, they become orphansorphans. .
An orphan process is automatically inherited by the An orphan process is automatically inherited by the initinit process, process,
and becomes a child of this and becomes a child of this initinit process. process.

When the parent process is not properly coded, the child When the parent process is not properly coded, the child
remains in the zombie state forever. Such processes can be remains in the zombie state forever. Such processes can be
noticed by running the noticed by running the ““psps”” command, and seeing processes command, and seeing processes
having the string "<defunct>" as their command name. having the string "<defunct>" as their command name.

Simple fork() and wait() exampleSimple fork() and wait() example
#include <#include <stdio.hstdio.h>>
#include <#include <unistd.hunistd.h> /* defines fork(), and > /* defines fork(), and pid_tpid_t. */. */
#include <sys/#include <sys/wait.hwait.h> /* defines the wait() system call. */> /* defines the wait() system call. */
intint main(){main(){
pid_tpid_t child_pidchild_pid; ;
intint child_statuschild_status;;

child_pidchild_pid = fork(); = fork();
switch (switch (child_pidchild_pid) {) {
case case --1:1:

perror("forkperror("fork"); ");
exit(1);exit(1);

case 0:case 0:
printf("Iprintf("I am the child, Hello worldam the child, Hello world\\n");n");
sleep(10);sleep(10);
exit(0); exit(0);

default:default:
printf("Iprintf("I am the parent, waiting for the child process %d to exit... am the parent, waiting for the child process %d to exit...

\\n",child_pidn",child_pid););
wait(&child_statuswait(&child_status););
printf("Iprintf("I am the parent, child process %d exited with status am the parent, child process %d exited with status

%%dd\\n",child_pid,child_statusn",child_pid,child_status););
}}

}}

InterProcessInterProcess communicationcommunication

One can prescribe what each child does in the One can prescribe what each child does in the
fork() callfork() call

It is helpful if parent could communicate with It is helpful if parent could communicate with
child (e.g. report progress, get data)child (e.g. report progress, get data)

Easiest way for parent and child to Easiest way for parent and child to
communicate is through communicate is through pipepipe

CommunicationCommunication

One can prescribe what each child does in the One can prescribe what each child does in the
fork() callfork() call

It is helpful if parent could communicate with It is helpful if parent could communicate with
child (e.g. report progress, get data)child (e.g. report progress, get data)

Easiest way for parent and child to Easiest way for parent and child to
communicate is through communicate is through pipepipe

Using pipesUsing pipes

Anonymous pipe:Anonymous pipe: A pipe is a oneA pipe is a one--way mechanism that way mechanism that
allows two related processes (i.e. one is an ancestor of allows two related processes (i.e. one is an ancestor of
the other) to send a byte stream from one of them to the other) to send a byte stream from one of them to
the other one. the other one.

The order in which data is written to the pipe, is the The order in which data is written to the pipe, is the
same order as that in which data is read from the pipe. same order as that in which data is read from the pipe.

The system assures that data won't get lost in the The system assures that data won't get lost in the
middle, unless one of the processes (the sender or the middle, unless one of the processes (the sender or the
receiver) exits prematurely. receiver) exits prematurely.

pipe()pipe()

The pipe() system call is used to create a readThe pipe() system call is used to create a read--
write pipe. write pipe.

pipe() takes as an argument an array of 2 integers pipe() takes as an argument an array of 2 integers
that will be used to save the two file descriptors that will be used to save the two file descriptors
used to access the pipe. The first to read from used to access the pipe. The first to read from
the pipe, and the second to write to the pipe. the pipe, and the second to write to the pipe.

Using pipe()Using pipe()

/* first, define an array to store the two file /* first, define an array to store the two file
descriptors */ descriptors */

intint pipes[2]; pipes[2];

/* now, create the pipe */ /* now, create the pipe */
intint rcrc = = pipe(pipespipe(pipes););

if (if (rcrc == == --1) 1)
{ {
/* pipe() failed */ /* pipe() failed */
perror("pipeperror("pipe"); ");
exit(1); exit(1);
}}

pipe() example pipe() example ---- mainmain
intint main() main()
{ {
intint data_pipe[2]; /* an array to store the file descriptors of data_pipe[2]; /* an array to store the file descriptors of

the pipe. */ the pipe. */
intint pidpid; ;
intint rcrc; ;

rcrc = = pipe(data_pipepipe(data_pipe););
if (if (rcrc == == --1) { 1) { perror("pipeperror("pipe"); exit(1); }"); exit(1); }

pidpid = fork(); = fork();
switch (switch (pidpid))

{ {
case case --1: 1:

perror("forkperror("fork"); exit(1); "); exit(1);
case 0: case 0:

do_child(data_pipedo_child(data_pipe););
default: default:

do_parent(data_pipedo_parent(data_pipe););
}}

}}

pipe() example pipe() example ---- parentparent

void void do_parent(intdo_parent(int data_pipedata_pipe[]) {[]) {

intint c; /* data received from the user. */ c; /* data received from the user. */
intint rcrc; ;

/* first, close the un/* first, close the un--needed readneeded read--part of the pipe. */ part of the pipe. */
close(data_pipe[0]); close(data_pipe[0]);

while ((c = while ((c = getchargetchar()) > 0) ()) > 0)
{ {

rcrc = write(data_pipe[1], &c, 1); = write(data_pipe[1], &c, 1);
if (if (rcrc == == --1) 1)
{{
perror("Parent:write");close(data_pipe[1]);exit(1);perror("Parent:write");close(data_pipe[1]);exit(1);
} }

} }
close(data_pipe[1]); close(data_pipe[1]);
exit(0); exit(0);
} }

pipe() example pipe() example ---- childchild

void void do_child(intdo_child(int data_pipedata_pipe[]) { []) {
intint c; /* data received from the parent. */ c; /* data received from the parent. */
intint rcrc; ;

/* first, close the un/* first, close the un--needed writeneeded write--part of the pipe. */ part of the pipe. */
close(data_pipe[1]); close(data_pipe[1]);

while ((while ((rcrc = read(data_pipe[0], &c, 1)) > 0) = read(data_pipe[0], &c, 1)) > 0)
{ {

putchar(cputchar(c););
} }

exit(0); exit(0);
} }

AcknowledgementsAcknowledgements

Some examples were taken from:Some examples were taken from:
http://users.actcom.co.il/~choo/lupg/tutorials/multihttp://users.actcom.co.il/~choo/lupg/tutorials/multi--process/multiprocess/multi--

process.html#process_creation_fork_syscallprocess.html#process_creation_fork_syscall

