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Abstract

Information retrieval is extracting certain information from data-
bases. In this paper we explore querying a document database using
latent semantic indexing (LSI). We investigate and analyze the use
of various matrix approximations to accomplish this task; specifically,
we implement a nonnegative matrix factorization using the multiplica-
tive update algorithm of Lee and Seung as found in [1] and the linear
time Monte Carlo CUR decomposition of Drineas, Kannan, and Ma-
honey as found in [2]. We further implement variations on this CUR
algorithm and use an implementation by G.W. Stewart of a deter-
ministic CUR algorithm found in [3]. We test LSI performance on
three common information retrieval data sets: MEDLINE, CISI and
CRANFIELD.

We find that we can achieve LSI results that are almost as good as
those produced by the SVD using much cheaper CUR decompositions.
This is very important when a term-document matrix is too large to
store or for which an SVD is too expensive to compute. In addition,
we make improvements to the CUR decomposition of Drineas, Kan-
nan, and Mahoney that give better matrix approximations without
becoming significantly more expensive.

1 Introduction

The world is full of information, which would not be useful to us if we did not
have a way of organizing and extracting it. In short, information retrieval is
extracting certain information from databases. One example of information
retrieval is the web search engine Google. The main issues associated with
information retrieval are storage space, speed, and how “good” the results
are, where “good” is a task specific measure. The objective of this project is
to investigate querying a document database.
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1.1 Approach

We implement the following approximate matrix decompositions: a nonneg-
ative matrix factorization (NMF) computed by the multiplicative update
algorithm of Lee and Seung as found in [1], and a linear time, Monte Carlo
CUR decomposition by Drineas, Kannan, and Mahoney as found in [2].

We also investigate and implement an improvement to the CUR algo-
rithm found in [2]. The improvement is a Compact Matrix Decomposition
(CMD) by Sun, Xie, Zhang, and Faloutsos presented in [4]. In addition, we
investigate “subspace sampling” for C and R, a method proposed by Drineas,
Mahoney, and Muthukrishnan in [5], sampling without replacement, and a
different method of computing U which we term the “optimal U”. We use an
implementation of a deterministic CUR algorithm by G. W. Stewart found
in [3], which is based on a rank revealing QR decomposition.

We compare storage (number of nonzero elements for sparse matrices and
number of matrix elements for dense matrices), runtime (seconds), and rela-
tive error (Frobenius norm) results for the above matrix approximations. We
test the performance of the above matrix approximations in latent semantic
indexing (LSI), investigate query time, and compare these results to those
achieved using the SVD. All implementations are done in MATLAB.

The remainder of the paper is organized as follows. In section 1.2 we give
information on related work to the topics covered in this paper. We present
document retrieval background information in Section 2. In Section 3 we
discuss the NMF problem and above algorithm, validate our implementation,
and provide results on sparse initialization. Section 4 contains a description
of all CUR algorithms that we implement, validation for all implementations,
and a comparison of all implementations. In particular, Section 4.1.4 details
sampling without replacement and why we feel it is a better strategy for
CUR decompositions. In Section 5 and Appendices A and B we present LSI
results using all of the above matrix approximations. We conclude in Section
6 and present ideas for future work in Section 7.

1.2 Related Work

There is much work on matrix approximations that is related to this paper;
we highlight a limited number of results. When a matrix has very large di-
mensions, computing an SVD can be very expensive. In [6] Drineas, Kannan,
and Mahoney present two algorithms for computing a Monte Carlo approx-
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imate SVD, one of which provides a portion of the theoretical basis for the
linear time CUR algorithm of Drineas, Kannan, and Mahoney in [2]. Also,
in [7] Holmes, Gray, and Isbell present a Monte Carlo approximate SVD al-
gorithm that uses sampling based on what they term “a cosine tree”. These
algorithms aim to give an approximate SVD that is not nearly as expensive
to compute as the exact SVD.

We also mention that there are various other algorithms for computing
the NMF of a matrix. Also presented in [1] are alternating least squares and
gradient descent algorithms. In [8], Kim, Sra, and Dhillon present “Newton-
type” methods for finding a NMF that they report to perform better than
the multiplicative update algorithm of Lee and Seung.

We can approximate a matrix in other ways than using an SVD, NMF,
or CUR. In [9] Boutsidis, Mahoney, and Drineas present an algorithm for
choosing the most important k columns from a matrix which leads to a
matrix approximation consisting of a projection of the original matrix onto
the subspace spanned by the chosen columns. They accomplish this using a
Monte Carlo step and then a deterministic step. In the CUR decomposition,
we also aim to choose the most important columns of the original matrix.

There is also much work on applications of matrix approximations. In
[10], Kolda and O’Leary analyze the use of the semidiscrete matrix decom-
position in LSI. In [4], Sun, Xie, Zhang, and Faloutsos present results of
the CMD (improvement on the CUR algorithm mentioned above) when used
in anomaly detection. Kim, Sra, and Dhillon present an image processing
application of nonnegative matrix factorization in [8] and Berry, Browne,
Langville, Pauca, and Plemmons present a spectral analysis application of
nonnegative matrix factorization in [1].

2 Background

2.1 Querying a Document Database

Given a document database, we want to be able to return documents that are
relevant to given query terms. There are existing solutions to this information
retrieval problem, such as literal term matching and latent semantic indexing
(LSI). Background information and examples presented in Section 2 are taken
from [10].
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2.1.1 Problem Formulation

In real systems, such as Google, this problem is formulated in terms of matri-
ces. An m×n term-document matrix, A, is created where entry aij represents
the importance of term i in document j. Thus, each row in A represents a
term and each column in A represents a document. Also, an m × 1 query
vector, q is created where qi represents the importance of term i in the query.
Different schemes for determining the entries in A and q are discussed in [10].

2.1.2 Literal Term Matching

In literal term matching, a relevance score is computed for each document
as an inner product between qT and the column of A that represents that
document. The highest scoring documents are then returned.

The original term-document matrix is generally sparse; thus, unfortu-
nately, literal term matching may not return relevant documents that con-
tain synonyms of query terms, but not the actual query terms. We present
an example of this below.

Example: Literal Term Matching

Document
Term 1 2 3 4 Query

Mark 15 0 0 0 1
Twain 15 0 20 0 1
Samuel 0 10 5 0 0
Clemens 0 20 10 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 30 0 20 0

As seen in the above example, we have queried for the terms “Mark
Twain”. We notice that document 2 does not contain the terms “Mark
Twain”, but does contain the terms “Samuel Clemens” (who is the same
person as Mark Twain) and is therefore relevant to the query. However, it
has a relevance score of zero and thus is not returned as relevant. We would
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like to have a document querying system in which this problem is solved.

2.1.3 Latent Semantic Indexing

In latent semantic indexing (LSI), an approximation to the term-document
matrix is used to compute document relevance scores. Using a matrix ap-
proximation can introduce nonzero entries, possibly revealing relationships
between synonyms, and thus relevant documents that may not have the exact
query terms may be returned.

A commonly used matrix approximation in LSI is a rank-k singular value
decomposition (rank-k SVD). Below, we present an example of LSI using a
rank-2 approximation to the term-document matrix given in the literal term
matching example.

Example: Latent Semantic Indexing

Document
Term 1 2 3 4 Query

Mark 3.7 3.5 5.5 0 1
Twain 11.0 10.3 16.1 0 1
Samuel 4.1 3.9 6.1 0 0
Clemens 8.3 7.8 12.2 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 14.7 13.8 21.6 0

We see that in this example, by using LSI, document 2 now has a score
of 13.8 and will therefore be returned as the third most relevant document,
even though it did not contain the exact query terms “Mark Twain”. This
is an improvement over the relevance results of the literal term matching
example.

In [10] a rank-k semidiscrete decomposition (SDD) is used in LSI. The
rank-k SDD of an m× n matrix A is Ak = XkDkY

T
k , where Xk is m× k, Dk

is k × k, and Yk is n × k. Each entry of Xk and Yk is one of {−1, 0, 1} and
Dk is diagonal with positive entries. The SDD is discussed in detail in [10].
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In [10], an implementation of the SDD written by Tamara G. Kolda and
Dianne P. O’Leary is used to determine that LSI using the SDD performs as
well as LSI using the SVD, but does so using less storage space and query
time.

An objective of this project is to test the performance of other matrix
approximations when used in LSI.

2.1.4 Performance Measurement

To determine how well a document retrieval system performs, we use two
measures: precision and recall. We define the following variables:

Retrieved = number of documents retrieved
Relevant = total number of documents relevant to the query
RetRel = number of documents retrieved that are relevant.

Precision is defined as

P (Retrieved) =
RetRel

Retrieved

and recall is defined as

R(Retrieved) =
RetRel

Relevant
.

We see that precision is the percentage of retrieved documents that are
relevant to the query and recall is the percentage of relevant documents that
have been retrieved.

3 Approximate Nonnegative Matrix Factor-

ization

In general, a term-document matrix is nonnegative; thus, it is an interest-
ing problem to find an approximate nonnegative decomposition. In [1] this
problem is formulated as finding a W and H such that

f(W,H) =
1

2
‖A−WH‖2

F (1)

6



is minimized, where A is the m× n matrix that we wish to approximate, W
is m× k, H is k×n and A, W and H are all nonnegative. For this problem,
k is a rank parameter; rank(WH) ≤ k.

3.1 Multiplicative Update Algorithm

We implement the multiplicative update algorithm of Lee and Seung as found
in [1] to compute a W and H (for a given A) that satisfy Eq. (1). This
algorithm is a gradient descent method derived from an alternating iteration.
W and H are randomly initialized as dense matrices to begin. At each
iteration W and H are updated using the following formulas as found in [1]
using MATLAB notation:

H = H. ∗ (W T A)./(W T WH + 10−9)

W = W. ∗ (AHT )./(WHHT + 10−9).

Each iteration includes six matrix multiplications, causing slow perfor-
mance. Slight modifications, such as grouping certain matrix multiplications,
can speed up the runtime [1].

Convergence is not guaranteed for this algorithm; fortunately though, in
practice it is very common. However, when the algorithm does converge we
are not guaranteed that the limit point is even a local minimum. If the limit
point lies in the interior of the feasible region, it could be a local minimum or
a saddle point. If the limit point lies on the boundary of the feasible region
it may or may not be a stationary point [1].

3.2 Validation

Suppose A is our given m×n matrix. To validate our NMF implementation,
we plot ‖A−WH‖F /‖A‖F (the relative error of the NMF approximation in
the Frobenius norm) as a function of k. We expect that as

k → rank(A), ‖A−WH‖F /‖A‖F → 0.

We also present a plot of time to compute the NMF of A (in seconds),
and a plot of the storage needed for the NMF of A (in number of matrix
elements), both as functions of k. In addition, for comparison purposes, we
plot the relative error of the rank-k SVD (in the Frobenius norm), the time
to compute the rank-k SVD of A (in seconds), and the storage needed for

7



the rank-k SVD of A (in number of matrix elements) all as functions of k on
the respective above mentioned plots.

In the presented validation results, we first use a 5 × 3 random dense
test matrix that has numerical rank 3. Call this matrix A. Further, all
entries in A are contained in the interval [0, 1]. We use this as a test matrix
because the NMF can be used on any matrix. We chose a test matrix with
small dimensions due to the time-consuming computations (and number of
iterations) involved in producing a NMF of full rank with very low relative
error; using a small matrix allows us to explicitly show that we can achieve
a very small relative error when the rank of our approximation equals the
rank of A (in a practical amount of time).

For larger matrices, we generally need too many iterations to get a full
rank NMF with a minuscule relative error. Also, in applications, we generally
only need to continue the NMF iteration until a small enough relative error
is achieved; thus, we can use a maximum number of iterations for the NMF
algorithm. For these reasons, we present validation results for a 500 × 200
sparse matrix of numerical rank 200 with entries in [0, 1] (call this matrix
B), in which we iterate a maximum of 100 iterations. In this case, as k →
rank(B) we still expect that the relative error of the NMF will decrease;
however, it may not reach zero when k = rank(B).

3.2.1 Validation Results

Our implementation of the multiplicative update algorithm of Lee and Seung
as found in [1] provided the NMF results for matrix A and matrix B as seen
in Figures 1 and 2 respectively. Due to the random initialization process, for
each matrix we take the average relative error, runtime, and storage for the
NMF over five runs for each value of k.

We first comment on Figure 1. For this test matrix, the dimensions are
too small for a plot of the runtime or storage to be meaningful. Thus, we
only provide a plot of the relative error.

In the relative error plot we get what we expect; as k → rank(A),
‖A−WH‖F /‖A‖F → 0. We also note that for this matrix the NMF achieves
the optimal relative error produced by the SVD for each value of k (this
behavior is generally not guaranteed for the NMF except for the value k =
rank(A)).

We now comment on Figure 2, the results for B, the second test matrix.
In the relative error plot we see the results that we expect: as k → rank(B)
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Figure 1: NMF validation results for matrix A (5× 3)

the relative error of the NMF decreases; however, it does not reach zero when
k = rank(B). Also, we note that in this case, the NMF does not achieve the
optimal relative error produced by the SVD for any value of k.

However, we also present a plot of relative error versus iteration number
for matrix B (Figure 2: upper right). This plot gives information from one
run of the NMF code using a rank parameter of 80. We plot the relative error
for iterations 2 through 100 (iteration 1 has a much larger relative error as
a result of the random initialization process). We see the trend we expect;
relative error decreases at each successive iteration and approaches (but may
never achieve) the rank 80 SVD relative error. This plot also illustrates
another general trend of the NMF algorithm; we see a large improvement in
relative error in the first iterations. After that, relative error improvements
are very small.

The time plot is consistent with our expectations that as k → rank(B)
the time to compute the NMF increases. For test matrix B, the NMF is
more time consuming than the SVD for all values of k.

The storage plot is also consistent with expectations. Both the NMF and
SVD store dense factors. Thus, we can measure the storage of the NMF as
k∗(m+n) matrix entries and the storage of the SVD as k∗(m+n+1) matrix
entries. We see this trend in the storage plot of Figure 2. Also, note that
the NMF and the SVD require much more storage than the original sparse
matrix.
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Figure 2: NMF validation results for matrix B (500× 200)

3.3 Sparse Initialization

In addition to implementing the original multiplicative update algorithm of
Lee and Seung as found in [1], we explored initializing W and H as sparse
(instead of dense) matrices when the matrix to be factored was also sparse.

We again use B, the second validation test matrix. We randomly initialize
W and H as sparse matrices with 25% nonzero elements each, and again
iterate a maximum of 100 iterations per run. In Figure 3 we present plots
of relative error, runtime, and storage (as functions of k) for this variation
of the NMF and the rank-k SVD. We still measure storage as the number of
matrix elements for the SVD, but now for the NMF storage measure we use
the number of nonzero elements in W and H because W and H are stored
as sparse matrices.

In Figure 3, in the relative error plot, we still have that as k → rank(B),
‖B−WH‖F /‖B‖F decreases. However, the sparse initialization penalizes the
relative error of the NMF as compared to the dense initialization. We do not
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Figure 3: NMF validation results for matrix B (500 × 200) using sparse
initialization

achieve near the relative error that we achieve when using dense initialization
for any value of k.

Also in the upper right plot of Figure 3 we present a plot of relative
error versus iteration number for matrix B (again for iterations 2 through
100). This plot gives information from one run of the NMF variation using
a rank parameter of 80. We see the same trend in this plot as we do in the
corresponding plot in 2; however, in this plot the decrease in relative error is
much smaller and we do not see much decrease after iteration 10.

In the time plot of Figure 3, we see the same trend as in the time plot of
Figure 2 except that the NMF variation takes a few more seconds to compute
for each value of k. Again, the NMF variation is more time consuming than
the SVD for all values of k.

In the storage plot of Figure 3 we see that we achieve about one third to
one fourth of the storage of the SVD (and NMF with dense initialization) for
all values of k. Also, the NMF variation uses less storage than the original
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matrix for k up to about 140.
We see the above trends in Figure 3 because once we initialize W and

H (as dense or sparse matrices) we can only update the nonzero entries to
try and achieve a better approximation. Thus, with fewer possible entries to
update, the NMF with sparse initialization does not produce as good of an
approximation as NMF with dense initialization, and produces an approxi-
mation that takes far less storage than NMF with dense initialization.

In using NMF with sparse initialization, we achieve a large reduction in
storage at the cost of relative error; thus, in the remainder of this paper we use
the original NMF multiplicative update algorithm with dense initialization.

4 CUR Decomposition

The CUR decomposition is an approximation to an m× n matrix A:
A ≈ CUR, where C is m × c, U is c × r and R is r × n. The general idea
behind the decomposition is as follows:

• C holds c sampled (and possibly rescaled) columns of A

• R holds r sampled (and possibly rescaled) rows of A

• U is computed using C and R.

Another property common to term-document matrices is sparsity. The
CUR decomposition preserves sparsity in the factors C and R, whereas other
decompositions, such as the SVD, do not preserve sparsity at all. This allows
for not only less storage, but also a better physical interpretation of the
decomposition. Each column from the product CUR ≈ A, can be written
as a linear combination of the columns of C; thus, the basis vectors are
(rescaled) document columns from the original matrix.

4.1 CUR Algorithms

We implement six different Monte Carlo CUR algorithms and use a seventh
deterministic CUR implementation by G. W. Stewart as found in [3]. There
are two main decisions to make in a CUR algorithm: 1) how to choose the
columns (rows) of A that form C (R); and 2) how to compute U .

The six Monte Carlo CUR algorithms that we implement can be described
by their sampling techniques and computations of U , and for those algorithms
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that use sampling without replacement, we also give a scaling descriptor.
The Monte Carlo algorithms sample the columns and rows of A; the chosen
columns and rows are rescaled and put into C and R respectively.

A list of the CUR implementations follow; we identify the implemen-
tations in the validation results by the abbreviations included in this list.
Relevant references for the sampling scheme, computation of U , or both are
given after each list item.

1. CN,L: Column (row) norm sampling with replacement, linear U (orig-
inal CUR algorithm of [2])

2. CN,O: Column (row) norm sampling with replacement, optimal U [2]

3. S,L: “Subspace sampling ”with replacement, linear U [5, 2]

4. S,O: “Subspace sampling” with replacement, optimal U [5]

5. w/o R, L, w/o Sc: Column (row) norm sampling without replacement,
linear U , no scaling [2]

6. w/o R, L, Sc: Column (row) norm sampling without replacement, linear
U , scaling [2]

7. D: Stewart’s deterministic CUR [3]

In Section 4.1.1 we describe the original CUR algorithm of [2] that we
began our research with. In Sections 4.1.2 through 4.1.5 we describe the
remaining sampling techniques, computations of U , and scaling techniques
(for those algorithms that use sampling without replacement) that are listed
above. In Section 4.2 we validate each CUR implementation, and in Section
4.3 we compare all implementations.

In the remainder of this paper we make use of the pseudoinverse of a
matrix. We denote the pseudoinverse of matrix M as M+.

4.1.1 Original CUR Algorithm

The original CUR algorithm that we implement is a linear time CUR algo-
rithm by Drineas, Kannan, and Mahoney as found in [2]. This algorithm uses
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sampling with replacement according to column (row) norm probabilities, as
seen below:

Prob(col j) = ‖A(:, j)‖2
F /‖A‖2

F

Prob(row i) = ‖A(i, :)‖2
F /‖A‖2

F .

Also, in this algorithm U is computed to approximately solve

min
Û
‖A− CÛ‖F , (2)

where Û = UR, and rank(U) ≤ k, where k is a rank parameter. We refer
to U when computed as in [2] as a “linear U”. Using the linear U , we are
guaranteed that the rank of the CUR approximation is at most k.

We use the notation of [2] to describe the linear U . The linear U is
computed using the SVD of CT C and Ψ, an r× c matrix that holds sampled
and rescaled rows of C. Specifically, let the SVD of CT C be

∑c
t=1 σ2

t (C)ytytT .
Then,

U =

(
k∑

t=1

1

σ2
t (C)

ytytT

)
∗ΨT .

The solution to Eq. (2) is generally of the form Û = (CT C)−1CT A. We see
that the formula for the linear U is an approximation to this: 1)

∑k
t=1

1
σ2

t (C)
ytytT

is a rank-k approximation to (CT C)+; 2) ΨT is an approximation to CT ; and
3) R is an approximation to A and although it is not built into the formula
for U , it appears as the last factor in Û . Thus, we see that for our approx-
imation we get CÛ = CUR. These approximations allow this algorithm to
run in linear time (assuming c ¿ n and r ¿ m) [2].

We implement an improvement to the original CUR algorithm of [2] as
found in [4]. The improvement is a Compact Matrix Decomposition (CMD)
by Sun, Xie, Zhang, and Faloutsos. The CMD uses the same sampling scheme
and computation of U as the CUR algorithm of [2]. The CMD improvement
is the following: remove repeated columns in C and repeated rows in R, then
rescale the columns of C and rows of R appropriately, and then compute
U using the new C and R. This improvement decreases storage space and
runtime while achieving the same relative error as the original CUR algorithm
[4].

We implement the CMD improvement for all CUR implementations that
use sampling with replacement.
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4.1.2 “Subspace Sampling”

We implement CUR algorithms that use sampling with replacement accord-
ing to “subspace sampling” probabilities as found in [5]. Let the rank-k SVD
of A be Ak = UkΣkV

T
k and the economy size SVD of C be C = UCΣCV T

C .
The “subspace sampling” probabilities are given below:

Prob(col j) = ‖Vk(j, :)‖2
F /k

Prob(row i) = ‖UC(i, :)‖2
F /c.

The following discussion of “subspace sampling” is adapted from [5] (we
also use the notation of [5]). The “subspace sampling” probabilities give us
subspace information about A without giving us “size-of-A” information as
found in the singular values of A [5]. They are inspired by the problem of
finding a matrix X such that ‖A−CX‖F is minimized, where C consists of
sampled and rescaled columns of A. We can write a solution of this problem
as X = C+A. We can also write the rank-k SVD of A as UkU

T
k A.

Thus, we want to find a C such that the span of the columns of C is
approximately the same subspace as the span of the columns of Uk. Let M (i)

denote the i-th column of the matrix M , and let rank(A) = ρ. We have

A(i) = UkΣk (V T
k )(i) + Uρ−kΣρ−k (V T

ρ−k)
(i).

Therefore, “‖(V T
k )(i)‖2

F measures “how much” of the i-th column of A lies in
the span of Uk, independent of the magnitude of the singular values associated
with those directions” [5].

We can apply similar reasoning in a discussion of the row probabilities
involved in “subspace sampling”.

4.1.3 Optimal U

We also implement CUR algorithms that compute U as the “optimal U”.
We define the optimal U as the U that solves

min
U

1

2
‖A− CUR‖2

F (3)

given C and R. The least squares solution of the minimization problem in
Eq. (3) is given by

U = (CT C)+CT ART (RRT )+.

15



The derivation of this solution follows.

Let F (U) = 1
2
‖A− CUR‖2

F . Then,

∇F = CT ART − CT CURRT .

Setting ∇F = 0 we can solve for U from the equation CT CURRT = CT ART .

Let VCΣCV T
C be the SVD of CT C. We now have

CT ART = CT CURRT

= VCΣCV T
C URRT

= VCΣCY,

where Y = V T
C URRT . The least squares solution of CT ART = VCΣCY is

Y = Σ+
CV T

C CT ART .
Let URΣRUT

R be the SVD of RRT . Now we have the following:

VCY = URRT

= UURΣRUT
R

= XΣRUT
R ,

where X = UUR. The least squares solution of VCY = XΣRUT
R is X =

VCY URΣ+
R. This leads us to our final solution for U ,

U = XUT
R

= VCY URΣ+
RUT

R

= VCΣ+
CV T

C CT ART URΣ+
RUT

R

= (CT C)+CT ART (RRT )+.

The interested reader can find a minimal (Frobenius) norm solution to
the minimization problem in Eq. (3) with an additional rank constraint on
U in [11]. In addition, in [11] a proof is given that includes our proof as a
special case.

4.1.4 Sampling Without Replacement

We implement two CUR algorithms that use sampling without replacement
according to column (row) norm probabilities and the linear U from [2] (with
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slight modifications). In this section we use the notation of [2]. The distinc-
tion between the two algorithms is the scaling involved in C, R, and Ψ (one
of the matrices that is used in the computation of U).

First, we describe the modification of the linear U from [2] for our first
CUR implementation that uses sampling without replacement. In [2], U is
computed as

U =

(
k∑

t=1

1

σ2
t (C)

ytytT

)
∗ΨT ,

where Ψ holds sampled and rescaled rows of C. We can write C = ASCDC ,
where SC is an n × c matrix such that “(SC)ij = 1 if the ith column of A
is chosen in the jth independent random trial and (SC)ij = 0 otherwise” [2]
and DC is a diagonal c × c matrix that holds the rescaling factors for the
columns of C. Similarly, we can write R = DRSRA. Ψ is formally defined as
Ψ = DRSRC [2].

We propose to invert the scaling factor DR for the matrix Ψ; in our first
CUR implementation that uses sampling without replacement, we define
Ψ = D−1

R SRC and then use the same linear U formula from [2] with the new
Ψ. We motivate this modification with the following demonstration:

Let A be a full rank m × n (m ≥ n) matrix. Let C = ADC (ie. we have
sampled without replacement n columns from A) and R = DRA (ie. we have
sampled without replacement m rows from A). Note that both C and R are
full rank as well. Now, take Ψ = MC where M is a diagonal scaling matrix
on Ψ. We calculate CUR as follows:

CUR = (ADC)((CT C)−1ΨT )(DRA)

= (ADC)((DCAT ADC)−1DCAT M)(DRA)

= A(AT A)−1AT MDRA.

We hope that after sampling all rows and columns of A, we get a CUR
approximation with relative error zero. At this point it is clear that if we
take M = D−1

R instead of M = DR we will get CUR = A, which is the
desired result. This ends the demonstration.

For our second CUR implementation that uses sampling without replace-
ment, we do not rescale C, R, or Ψ. Thus, we have C = ASC, R = SRA,
and Ψ = SRC.

Next, we explain why sampling without replacement is a better strategy
than sampling with replacement. In general, sampling without replacement
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brings in more information from the original matrix than sampling with
replacement. For example, if we sample 20 columns from a matrix without
replacement then we are guaranteed to have 20 unique columns; however, if
we sample with replacement, we may only end up with 15 unique columns. It
is reasonable to conjecture that if we use more information from the original
matrix, we should get a better approximation (in terms of relative error).

We present the following argument to support the above conjecture. Let
A be an m×n (m ≥ n) matrix of rank n. Let C = ADC and let R = DRA1,
where A1 is the k × n matrix that consists of the first k rows of A. Also, let
A2 be the (m−k)×n matrix that consists of the last m−k rows of A. Again,
we use our updated formula for Ψ, which in this context is Ψ = D−1

R A1DC .
We get the following CUR computation:

CUR = ADC((DCAT ADC)−1DCAT
1 D−1

R )DRA1

= A(AT A)−1AT
1 A1

= A(AT A)−1(AT A− AT
2 A2)

= A(In − (AT A)−1(AT
2 A2))

= A− A(AT A)−1(AT
2 A2).

Thus, we see that the term A(AT A)−1(AT
2 A2) will contribute to the error

in the CUR approximation. As we let k (the number of rows in A1) go to
m we notice that the relative error of the CUR approximation will go to 0
because the matrix A2 goes to the zero matrix. We can conclude that once
we have sampled m rows and n columns of the matrix, we indeed achieve a
CUR approximation with relative error zero.

However, if we use the original CUR algorithm of [2] (in particular sample
with replacement) and sample m rows and n columns of A we do not neces-
sarily achieve this result. In fact, as long as we sample at least one column
twice (which is very likely), C will have rank less than n causing the CUR
approximation to have rank less than n. In this case, we have a lower rank
approximation to our matrix A which will not have relative error zero.

By using sampling without replacement we avoid using redundant infor-
mation from A and are thus able to produce a better CUR approximation.
This trend is evident in practice; we provide results in the CUR comparison
section, Section 4.3.
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4.1.5 Stewart’s Deterministic CUR Algorithm

We also use an implementation by G. W. Stewart of a deterministic CUR
algorithm as found in [3]. A rank revealing QR decomposition of A (AT ) is
used to determine which columns (rows) of A should be contained in C (R).
U is computed by finding the minimizer of ‖A− CUR‖2

F [3].

4.2 Validation

The validation of our CUR implementations is similar to the validation of
the NMF implementation. Suppose A is our given m×n matrix. To validate
our CUR implementations, we plot ‖A − CUR‖F /‖A‖F (the relative error
of the CUR approximation in the Frobenius norm) as a function of k . We
expect that as

k → rank(A), ‖A− CUR‖F /‖A‖F → 0.

For comparison purposes, we also plot the relative error of the rank-k SVD
in the Frobenius norm as a function of k.

Again we use test matrices A (5 × 3) and B (500 × 200) (the same test
matrices from the NMF validation). We use test matrix A for validation of
the CUR implementations that use sampling with replacement. We use A
for these validations due to its small size. These CUR algorithms require us
to sample many times over the columns and rows of A to show the desired
validation results. Using a small matrix allows us to explicitly show this in
a practical amount of time.

We also use a third test matrix for the CUR implementations. Call this
matrix C. C is a 50×30 random sparse test matrix with entries in [0, 1] that
has numerical rank 30. We use this matrix to validate the CMD improvement
of [4] that we implement for all CUR algorithms that use sampling with
replacement.

We use test matrix B to validate the CUR implementations that use
sampling without replacement. In this case, we can use a larger matrix
because we only have to sample the matrix B according to its dimensions
(ie. we sample no more than 500 rows and 200 columns from B).

In all validation plots we use a legend corresponding to the following:

1. Sampling choice. CN : column (row) norm sampling with replacement
[2], S: “subspace sampling” with replacement [5], w/o R: column (row)
norm sampling without replacement
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2. U choice. L: linear U [2], O: optimal U

3. Scaling (only for use with sampling without replacement). Sc: rescaling
of columns and rows used, w/o Sc: rescaling of columns and rows not
used.

Stewart’s deterministic CUR of [3] is given in the legend by D.

4.2.1 CMD Validation Results

We first present the validation results for the CMD improvement of [4]. The
CMD improvement was intended for the original CUR algorithm of [2]. Thus,
we present results for the CMD improvement on the CUR algorithm from [2].
Our implementation of the original CUR algorithm from [2] with and without
the CMD improvement of [4] produced the results for test matrix C in Table
1 below. We use k = 15, c = r = 30 (ie. we sample 30 columns and 30 rows of
A and use a CUR approximation that has rank at most 15). We compute the
average runtime (seconds), storage (number of nonzero elements for sparse
factors and number of matrix elements for dense factors), and relative error
(Frobenius norm) over 10 runs due to the Monte Carlo approach of the CUR
algorithm in [2] and the CMD algorithm in [4].

Algorithm [2] [2] with CMD
Runtime 0.008060 0.007153
Storage 880.5 550.5
Relative Error 0.820035 0.820035

Table 1: CMD results

We see that the CMD achieves improvements in runtime and storage,
while achieving the same relative error as the original CUR algorithm found
in [2]; these results were expected [4]. The CMD decreases runtime because
computations involving C with fewer columns are faster. In all CUR algo-
rithms that use sampling with replacement, we have implemented this CMD
algorithm of [4].
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4.2.2 Sampling with Replacement Validation Results

We now turn to validating all of our CUR implementations that use sampling
with replacement. Figure 4 gives validation results for these implementations
when using test matrix A (5× 3). Due to the Monte Carlo approach of the
CUR algorithms we compute the average relative error over five runs for each
value of k.

In Figure 4 we present three plots; however, note that on the x-axis we do
not have the variable k, instead we have the variables c and r where c = r.
In each plot, we still use k = 1, 2, 3 (as we did when using test matrix A in
the NMF validation). In the upper left plot of Figure 4 we set c = r = 5k;
in the upper right plot of Figure 4 we set c = r = 500k; and in the lower left
plot of Figure 4 we set c = r = 100000k.
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Figure 4: CUR: sampling with replacement validation results for matrix A
(5× 3)

First, we note that the CUR implementations that use the optimal U are
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validated in the upper left plot of Figure 4. Once c = r = 10 it is evident that
we have at least one (rescaled) copy of each column of A in C and each row of
A in R at which time the relative error of the approximation is equal to zero;
this is the expected behavior. We also note that these CUR implementations
achieve a better relative error than the rank-k SVD for k = 1, 2. The optimal
U computation does not involve a rank parameter; thus, the rank of a CUR
implementation involving the optimal U can be larger than k (if c and r are
both larger than k).

Now, we look at the CUR implementations that use the linear U of [2].
We see that even though the size of A is 5×3 we need to sample on the order
of 105 columns and rows of A to get our desired validation results. We see
this behavior because as we continue to sample, the scaling factors applied to
C, R, and Ψ are updated, causing our approximations to have lower relative
error. Once we reach a point when we most likely have a (rescaled) copy
of each column of A in C and each row of A in R, we are still using the
linear U (with the original scaling factor on Ψ as found in [2]) which is an
approximation as described in section 4.1.1. Thus, we may not see a relative
error of zero until we have sampled enough columns and rows of A.

4.2.3 Sampling without Replacement Validation Results

We now validate our CUR implementations that use sampling without re-
placement. Figure 5 gives validation results for these implementations when
using test matrix B. Due to the Monte Carlo approach of the CUR algo-
rithms we compute the average relative error over five runs for each value of
k.

For each of these CUR implementations we use r = 3k and c = k. This
guarantees that when k = 200 (ie. k = rank(B)) that r = 500 (in the
sampling without replacement case, we limit r to be less than or equal to the
number of rows in the original matrix and similarly we limit c as well) and
c = 200 (ie. we have sampled all of the rows and columns of B). In Figure
5 we see the desired validation result that also corresponds with the theory
provided in section 4.1.4.

We also note that for this validation test, the CUR implementation that
uses scaling and the CUR implementation that does not use scaling achieve
about the same relative error for each value of k. While the two algorithms
generally give very similar error results, it is not always the case that they
are as similar as in Figure 5.
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Figure 5: CUR: sampling without replacement validation results for matrix
B (500× 200)

4.3 CUR Comparison

Now, we compare all of the CUR implementations mentioned above in terms
of relative error, runtime, and storage. Relative error is given in the Frobenius
norm, and runtime is given in seconds. Storage is computed by summing
the following: the number of matrix elements in the dense factors of the
decomposition and the number of nonzero elements in the sparse factors of
the decomposition. We use the test matrix B (500× 200) and compute the
average relative error, runtime, and storage for each value of k over five runs.

We present all comparisons in Figure 6. The left column of Figure 6 gives
results for test matrix B when using r = c = k and the right column gives
results when using r = c = 2k.

We first comment on the left column of plots in Figure 6. We give the
main trends for k ≤ 120 as we generally use these decompositions to give a
lower rank approximation to a matrix.

• CUR implementations that use sampling without replacement give bet-
ter relative error results while using about the same amount of compu-
tation time and slightly more storage than the original CUR algorithm
of [2].

• CUR implementations that use the optimal U achieve better relative
error results than the original CUR algorithm of [2] while remaining in-
expensive (when compared to the corresponding implementations that
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Figure 6: CUR comparison using test matrix B (500×200). Left: r = c = k.
Right: r = c = 2k.

use the linear U of [2]).

• “Subspace sampling” ([5]) is expensive and appears to not give much
error improvement over column norm sampling ([2]).
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• Stewart’s deterministic CUR implementation of [3] gives the best error
results of the CUR implementations while not using much more storage
or computation time than the original CUR algorithm of [2].

Now we comment on the right column of plots in Figure 6 and specifically
compare with the plots in the left column. We note that even though r =
c = 2k in these plots, for each value of k such that c = 2k > 200, we set
c = 200 (the number of columns in B is 200).

• As we sample more rows and columns than k we achieve better relative
error results (this is consistent with results presented in [5]) at the price
of more computation time and storage.

• CUR implementations that use sampling without replacement still have
very fast computation times; however, they also use up to almost twice
as much storage as the original CUR algorithm presented in [2].

• Stewart’s deterministic CUR algorithm of [3] is very efficient. (Stew-
art’s algorithm does not use rank constraint on U ; thus, the rank of
a CUR approximation using this algorithm depends on c and r. This
explains why it achieves better relative error than the rank-k SVD.) It
takes the same amount of computation time and storage once it obtains
a full rank decomposition, which for test matrix B (of numerical rank
200) occurs for k ≥ 120 (r ≥ 240 and c = 200) [3].

In Section 5 and Appendices A and B we provide further comparisons of
relative error, runtime and storage for CUR implementations.

5 LSI Results

In this section we test performance of the NMF and all of the above CUR
decompositions in LSI. Similar to the example presented in Section 2.1.3,
we explain how document scores are computed using the NMF and CUR
decompositions.

Let A be an m×n term-document matrix, q an m×1 query vector, and s
an 1×n score vector such that si is the relevance score for document i for the
given query. For a given query, we compute s using a series of vector-matrix
products as follows:

25



• (rank-k) SVD: A ≈ UkΣkV
T
k , s = ((qT Uk)Σk)V

T
k

• NMF: A ≈ WH, s = (qT W )H

• CUR: A ≈ CUR, s = ((qT C)U)R.

We test the performance of the NMF and CUR decompositions in LSI
using average precision and recall, where the average is taken over all queries
in the data set, and compare to the performance of the SVD. We also compute
average query time for each matrix approximation in the LSI process, where
again the average is taken over all queries in the data set. We define query
time to be the time it takes to score the documents and then sort them based
on their scores.

We use three common information retrieval data sets: MEDLINE, CISI,
and CRANFIELD. Each data set contains a term-document matrix, a term
list, queries, and a list of relevant documents for each query. These LSI data
sets can be found at www.cs.utk.edu/~lsi/ and are listed under MED, CISI,
and CRAN. Each term-document matrix is large and sparse.

In all LSI results the legend abbreviates each matrix approximation. To
be clear, each CUR algorithm that uses sampling with replacement is listed
according to its sampling probabilities and U computation. The CUR imple-
mentations that use sampling without replacement are listed using ‘w/o R’
first and then yes or no according to whether the implementation uses scaling
or not. Stewart’s deterministic algorithm of [3] is listed under ‘CUR: GWS’
and using the original matrix (no approximation) is listed under ‘LTM’ (for
literal term matching).

We also present results on the relative error (Frobenius norm), storage
(computed as in Section 4.3) and runtime (seconds) of each matrix approxi-
mation (to the term-document matrix) that is used. We compute each ma-
trix approximation only once and then use it to score each document for each
query as described above. Results produced by using averages over five runs
would produce similar results.

We present LSI results in Figure 7 for the MEDLINE data using rank
100 matrix approximations. The term-document matrix for this data set is
5831× 1033. Also, for all CUR decompositions we use r = c = 100.
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Rel. Error (F-norm) Storage (nz) Runtime (sec)
SVD 0.8203 686500 22.5664
NMF 0.8409 686400 23.0210
CUR: cn,lin 1.4151 17242 0.1741
CUR: cn,opt 0.9724 16358 0.2808
CUR: sub,lin 1.2093 16175 48.7651
CUR: sub,opt 0.9615 16108 49.0830
CUR: w/oR,no 0.9931 17932 0.3466
CUR: w/oR,yes 0.9957 17220 0.2734
CUR: GWS 0.9437 25020 2.2857
LTM: – 52003 –

Table 2: Matrix approximation results for MEDLINE term-document matrix
(5831× 1033)
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Figure 7: LSI Results for the MEDLINE data
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We first note that results presented in Table 2 are consistent with results
presented in Section 4.3. Also, average query time is less than 10−3 seconds
for all matrix approximations (including the original matrix).

We now discuss the top two plots in Figure 7 in which we give results from
returning 1 through 1033 documents. The SVD and NMF perform the best
of the matrix approximations in terms of giving the best precision and recall
(they also eventually outperform the original matrix (LTM)). We see that
the Monte Carlo CUR implementations all give similar precision and recall
results; although they do not perform as well as the SVD or NMF. Stew-
art’s deterministic CUR algorithm of [3] performs well; it gives much better
precision and recall than the Monte Carlo CUR algorithms. Also using the
original matrix (LTM) gives better results than any CUR implementation.

In the bottom two plots of Figure 7 we give the same results but only
from returning 1 through 50 documents; a user may only go through 20 to
30 documents in a search. Also, a user is most likely concerned with the
precision measure: the percentage of documents returned that are relevant.
For example, after returning 20 documents, we see that we have returned
approximately:

• 10 relevant documents using SVD/NMF/original matrix

• 7 relevant documents using Stewart’s deterministic CUR

• 4 relevant documents using Monte Carlo CUR decompositions.

Although the SVD and NMF give the best LSI results, they are also ex-
pensive matrix approximations in terms of storage and runtime. Stewart’s
deterministic CUR decomposition gives good results while remaining inex-
pensive. While the Monte Carlo CUR decompositions give results that are
almost as good as those produced by Stewart’s CUR; they are even more
inexpensive (except those that use “subspace sampling”).

Similar results from the CISI and CRANFIELD data sets are given in
Appendices A and B. The analysis for each set of results is similar to that
for the MEDLINE data set and is thus omitted.

6 Conclusions

We have made improvements on the original CUR algorithm of [2]: 1) using
sampling without replacement (and changing the scaling factors used) and 2)
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using the optimal U . The CUR implementations that used either improve-
ment 1) or 2) showed substantial improvements in relative error over the
original CUR algorithm of [2]. Furthermore, this can be achieved without
substantial increases in storage or runtime.

We also have the following LSI conclusions. In real applications, we may
not be able to store an entire term-document matrix or it may be too expen-
sive to compute an SVD or NMF of a term-document matrix. However, we
can achieve LSI results that are almost as good (as those produced by the
SVD or NMF) using matrix approximations that are very cheap in terms of
storage and computation time; namely, the Monte Carlo CUR decomposi-
tions that do not use “subspace sampling” and Stewart’s deterministic CUR
decomposition of [3].

In fact, Stewart’s deterministic CUR gives LSI results that are very close
to those of the SVD or NMF while only being slightly more expensive in
terms of storage and runtime than the Monte Carlo CUR decompositions
mentioned above. It is a happy medium between the two desired properties:
giving good results and being cheap to compute.

7 Future Work

Future work may include continuing to explore the sparse initialization of the
NMF in the multiplicative update algorithm of Lee and Seung. In particular,
we would like to initialize W and H according to the sparsity pattern of the
original matrix. We may also continue with the theoretical basis for why sam-
pling without replacement is a better idea than sampling with replacement
in CUR algorithms.

We may also look into implementing other matrix approximations such
as the approximate SVD of Holmes, Gray, and Isbell found in [7] or the
NMF algorithms of Kim, Sra, and Dhillon found in [8]. In addition, we
may investigate these matrix approximations in LSI. Other applications for
matrix approximations are also future possibilities.

8 Completed Project Goals

• Coded and validated NMF [1], CUR [2], and CUR variants [4, 5]
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• Analyzed relative error, runtime, and storage of above matrix decom-
positions and Stewart’s deterministic CUR of [3]

• Improved CUR algorithm of [2] (in a relative error sense) specifically
using 1) sampling without replacement and changing scaling factors of
[2] and 2) using the optimal U

• Analyzed use of above matrix decompositions in LSI

Deliverables: Code, final report

Appendices

A LSI Results: CISI Data

We have slightly modified the CISI data set; we have removed queries from
this data set that have no relevant documents.

We present LSI results in Figure 8 for the CISI data using rank 100 matrix
approximations. The term-document matrix for this data set is 5609× 1460.
Also, for all CUR decompositions we use r = c = 100. Average query time is
less than 10−3 seconds for all matrix approximations (including the original
matrix).
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Rel. Error (F-norm) Storage (nz) Runtime (sec)
SVD 0.8562 707000 26.2973
NMF 0.8809 706000 23.9639
CUR: cn,lin 1.3508 17552 0.2219
CUR: cn,opt 0.9835 17557 0.3317
CUR: sub,lin 1.2393 17309 52.5456
CUR: sub,opt 0.9732 17008 52.0564
CUR: w/oR,no 0.9951 19039 0.2247
CUR: w/oR,yes 0.9949 18687 0.2874
CUR: GWS 0.9607 30347 2.2091
LTM: – 68240 –

Table 3: Matrix approximation results for CISI term-document matrix
(5609× 1460)
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Figure 8: LSI Results for the CISI data
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B LSI Results: CRAN Data

We present LSI results in Figure 9 for the CRAN data using rank 100 matrix
approximations. The term-document matrix for this data set is 4612× 1398.
Also, for all CUR decompositions we use r = c = 100. Average query time is
less than 10−3 seconds for all matrix approximations (including the original
matrix).

Rel. Error (F-norm) Storage (nz) Runtime (sec)
SVD 0.8130 601100 20.6018
NMF 0.8462 601000 20.7465
CUR: cn,lin 1.3233 21321 0.2440
CUR: cn,opt 0.9683 20438 0.3429
CUR: sub,lin 1.2014 20115 39.7348
CUR: sub,opt 0.9610 19817 39.9883
CUR: w/oR,no 0.9912 22250 0.2260
CUR: w/oR,yes 0.9888 22313 0.2347
CUR: GWS 0.9417 31743 2.0644
LTM: – 83302 –

Table 4: Matrix approximation results for CRANFIELD term-document ma-
trix (4612× 1398)
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Figure 9: LSI Results for the CRANFIELD data
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