
Information Retrieval Through Various Approximate

Matrix Decompositions

Kathryn Linehan, klinehan@math.umd.edu
Advisor: Dr. Dianne O’Leary, oleary@cs.umd.edu

Abstract

In short, information retrieval is extracting certain information
from databases. The purpose of this project is to explore querying
a document database. We investigate and analyze the use of various
approximate matrix decompositions to accomplish this task.

1 Background

The world is full of information, which would not be useful to us if we did not
have a way of organizing and extracting it. In short, information retrieval is
extracting certain information from databases. One example of information
retrieval is the web search engine Google. The main issues associated with
information retrieval are storage space, speed, and how “good” the results
are, where “good” is a task specific measure. The objective of this project is
to investigate querying a document database. A secondary, time permitting
objective is to investigate forming a multidocument summary.

1.1 Querying a Document Database

Given a document database, we want to be able to return documents that are
relevant to given query terms. There are existing solutions to this information
retrieval problem, such as literal term matching and latent semantic indexing
(LSI). Background information and examples presented in this section are
taken from [5].

1.1.1 Problem Formulation

In real systems, such as Google, this problem is formulated in terms of ma-
trices. An m × n term-document matrix, A, is created “where entry aij

1



represents the weight of term i in document j”. Thus, each row in A repre-
sents a term and each column in A represents a document. Also, an m × 1
query vector, q is created “where qi represents the weight of term i in the
query”. Different weighting schemes for A and q are discussed in [5].

1.1.2 Literal Term Matching

In literal term matching, a relevance score is computed for each document
as an inner product between qT and the column of A that represents that
document. The highest scoring documents are then returned.

The original term-document matrix is generally sparse; thus, unfortu-
nately, literal term matching may not return relevant documents that con-
tain synonyms of query terms, but not the actual query terms. We present
an example of this below.

Example: Literal Term Matching

Document
Term 1 2 3 4 Query

Mark 15 0 0 0 1
Twain 15 0 20 0 1
Samuel 0 10 5 0 0
Clemens 0 20 10 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 30 0 20 0

As seen in the above example, we have queried for the terms “Mark
Twain”. We notice that document 2 does not contain the terms “Mark
Twain”, but does contain the terms “Samuel Clemens” (who is the same
person as Mark Twain) and is therefore relevant to the query. However, it
has a relevance score of zero and thus is not returned as relevant. We would
like to have a document querying system in which this problem is solved.

2



1.1.3 Latent Semantic Indexing

In latent semantic indexing (LSI), an approximation to the term-document
matrix is used to compute document relevance scores. Using a matrix ap-
proximation can introduce nonzero entries, possibly revealing relationships
between synonyms, and thus relevant documents that may not have the exact
query terms may be returned.

A commonly used approximate matrix decomposition in LSI is a rank-k
singular value decomposition (rank-k SVD). Below, we present an example
of LSI using a rank-2 approximation to the term-document matrix presented
in the literal term matching example.

Example: Latent Semantic Indexing

Document
Term 1 2 3 4 Query

Mark 3.7 3.5 5.5 0 1
Twain 11.0 10.3 16.1 0 1
Samuel 4.1 3.9 6.1 0 0
Clemens 8.3 7.8 12.2 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 14.7 13.8 21.6 0

We see that in this example, by using LSI, document 2 now has a score
of 13.8 and will therefore be returned as the third most relevant document,
even though it did not contain the exact query terms “Mark Twain”. This
is an improvement over the relevance results of the literal term matching
example.

In [5] a rank-k semidiscrete decomposition (SDD) is used in LSI. The
rank-k SDD of an m× n matrix A is Ak = XkDkY

T
k , where Xk is m× k, Dk

is k × k, and Yk is n × k. Each entry of Xk and Yk is one of {−1, 0, 1} and
Dk is diagonal with positive entries. The SDD is discussed in detail in [5].

In [5], an implementation of the SDD written by Tamara G. Kolda and
Dianne P. O’Leary is used to determine that LSI using the SDD performs as
well as LSI using the SVD, but does so using less storage space and query

3



time.
An objective of this project is to test the performance of other approxi-

mate matrix decompositions when used in LSI.

1.1.4 Performance Measurement

To determine how well a document retrieval system performs, we use two
measurements of performance: precision and recall. We define the following
variables:

Retrieved = number of documents retrieved
Relevant = total number of relevant documents to the query
RetRel = number of documents retrieved that are relevant.

Precision is defined as

P (Retrieved) =
RetRel

Retrieved

and recall is defined as

R(Retrieved) =
RetRel

Relevant
.

We see that precision is the percentage of retrieved documents that are
relevant to the query and recall is the percentage of relevant documents that
have been retrieved.

1.2 Forming a Multidocument Summary

Another information retrieval problem is forming a multidocument summary.
The formulation of this problem is similar to the problem of querying a
document database; however, instead of a term-document matrix, we use a
term-sentence matrix. In this case, each column of the term-sentence matrix
corresponds to a sentence from a document included in the set to summarize.

One solution to this problem is to compute a dot product query score
for each sentence in the term-sentence matrix and return the highest scoring
sentences as those to be included in the multidocument summary. A sec-
ondary, time permitting objective of this project is to test the performance
of approximate matrix decompositions in place of the term-sentence matrix

4



in this process, where performance is measured in terms of how similar the
computed summary is to human summaries.

Another existing solution to this problem is presented in [4]. In this solu-
tion a multidocument summary is built by first performing single document
summaries using a hidden Markov model (HMM). The highest scoring sen-
tences chosen by the HMM (for all documents in the set) are processed into
a term-sentence matrix, which is then scaled and used in a pivoted QR algo-
rithm. The results of this process are the sentences that should be included
in the multidocument summary. (This is a general overview of the process.
Other details that improve results are presented in [4].)

2 Approach

We plan to implement the following approximate matrix decompositions:
an approximate nonnegative matrix factorization (NMF) computed by the
multiplicative update algorithm of Lee and Seung as found in [1], and a linear
time, Monte Carlo CUR decomposition by Drineas, Kannan, and Mahoney
as found in [2].

We also plan to investigate and implement an improvement to the CUR
algorithm found in [2]. The improvement is a compact matrix decomposition
(CMD) by Sun, Xie, Zhang, and Faloutsos presented in [6]. We plan to
investigate different sampling schemes for C and R and different methods of
computing U as well. We hope these investigations will lead to improvements
in storage, runtime, or relative error in the Frobenius norm of the CUR
decomposition computed by the algorithm in [2]. (For the remainder of this
paper, relative error refers to relative error in the Frobenius norm.)

After the above implementations are complete, we will investigate the
storage, runtime, and relative error of the NMF and CUR decomposition.
We will also test the performance of the NMF and CUR decomposition in
LSI and investigate query time.

2.1 Approximate Nonnegative Matrix Factorization

In general, a term-document matrix is nonnegative; thus, it is an interesting
problem to find an approximate nonnegative decomposition. Approximate
nonnegative matrix factorization (NMF) as found in [1] does just this; an
m×n nonnegative matrix A is decomposed as A ≈ WH, where W is m× k,

5



H is k × n and both W and H are nonnegative. For this NMF, k is a rank
parameter. We use the multiplicative update algorithm of Lee and Seung as
found in [1] to compute this factorization. The goal of this algorithm is to
find a W and H such that

1

2
‖A−WH‖2

F

is minimized [1].
In this algorithm, W and H are randomly initialized. At each iteration

H is updated using A and W and then W is updated using A and the new
H. The updates are done by a series of multiplications and divisions [1].

Unfortunately, this algorithm does not have guaranteed convergence, and
when it does converge, convergence can be slow; there are six matrix mul-
tiplications per iteration [1]. Fortunately, in practice, convergence is very
common; also, slight modifications, such as grouping certain matrix multi-
plications, can speed up the runtime [1].

2.2 CUR Decomposition

The CUR decomposition is an approximation to an m × n matrix A as
A ≈ CUR, where C is m × c, U is c × r and R is r × n. The general
idea behind this decomposition is as follows: C holds c sampled and rescaled
columns of A, R holds r sampled and rescaled rows of A, and U is computed
using C and R.

Another property common to term-document matrices is sparsity. The
CUR decomposition preserves this sparsity property, whereas other decom-
positions such as the SVD, do not. This allows for not only less storage, but
also a better physical interpretation of the decomposition; the basis vectors
are (rescaled) document columns from the original matrix. Thus, each col-
umn from the product CUR ≈ A, can be written as a linear combination of
the columns of C.

2.2.1 Sampling

We investigate various sampling methods for the CUR decomposition:

• Column (Row) norm sampling with replacement [2]:

Prob(col j) = ‖A(:, j)‖2
F /‖A‖2

F

Prob(row i) = ‖A(i, :)‖2
F /‖A‖2

F

6



• Column (Row) norm sampling without replacement

• Subspace sampling with replacement [3]: Let the rank-k SVD of A be
Ak = UkΣkV

T
k and the economy size SVD of C be C = UCΣCV T

C .

Prob(col j) = ‖Vk(j, :)‖2
F /k

Prob(row i) = ‖UC(i, :)‖2
F /c.

2.2.2 Computing U

We also investigate two options for computing U for the CUR decomposition:

• Linear U [2]: approximately solves minÛ ‖A− CÛ‖F , where Û = UR,
and rank(U) ≤ k, where k is a rank parameter.

• Optimal U : solves minU ‖A− CUR‖F .

2.2.3 Implementations

We implement a CUR algorithm by Drineas, Kannan, and Mahoney as found
in [2] that uses column (row) norm sampling and the linear U as explained
above. However, this decomposition can be seen as an approximation to an
approximation. Thus, the relative error can be far from optimal depending
on the choices of c, r and k. Fortunately, this implementation is speedy; it
runs in linear time [2].

We implement an improvement to the CUR algorithm as found in [2].
The improvement is a compact matrix decomposition (CMD) by Sun, Xie,
Zhang, and Faloutsos presented in [6]. The CMD uses the same sampling
and computation of U as the CUR algorithm of [2]. The CMD improvement
is the following: remove repeated columns in C and repeated rows in R, then
rescale the columns of C and rows of R appropriately, and then compute U .
This improvement decreases storage space and runtime while achieving the
same relative error [6].

Furthermore, we implement and compare the sampling and computation
of U methods outlined above. We also compare with an implementation
by G. W. Stewart of a deterministic CUR algorithm, which uses a rank
revealing QR decomposition to determine which columns (rows) of A should
be contained in C (R) and the optimal U computation.

7



3 Preliminary Results

In all preliminary results, we use a 50 × 30 random sparse test matrix that
has rank 30. Call this matrix A. We can use A as a preliminary test matrix
because the NMF and CUR decomposition can be used on any matrix. We
chose A to be sparse because this is a property shared by a term-document
matrix. Further, in all results, runtime is given in seconds, storage in number
of nonzero entries, and relative error in the Frobenius norm. All implemen-
tations are done in MATLAB.

3.1 NMF

Our implementation of the multiplicative update algorithm of Lee and Seung
as found in [1] provided the results seen in Figure 1. Due to the random
initialization process, we take the average relative error and runtime over 5
runs for each value of k.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NMF Validation: Relative Error

k

re
la

tiv
e 

er
ro

r

5 10 15 20 25 30
0

2

4

6

8

10

12
NMF Validation: Run Time

k

ru
n 

tim
e

Figure 1: NMF preliminary results

We observe that as the rank parameter k increases to the rank of our test
matrix A, the relative error of the NMF of A decreases towards zero; this is
what we expect. However, when k = 30, we would like to see the relative error
lower than it currently is, which is about 0.05. Also, we observe in Figure 1
that the NMF we implemented is slow. Future work includes determining if
these results can be improved; one possible option is to implement an NMF
using another algorithm, such as an alternating least squares algorithm, and
see if an improvement is made in average relative error and/or speed.

8



3.2 CUR

We implemented the CUR algorithm as found in [2], and the CMD improve-
ment to it as found in [6]. First, we present results in Table 1 that compare
these two algorithms. Again, we use the test matrix A; we compute with
k = 15, c = r = 30. We use the average runtime, storage, and relative error
over 10 runs due to the Monte Carlo approach of the CUR algorithm in [2]
and the CMD algorithm in [6].

Algorithm [2] [2] with CMD
Runtime 0.008060 0.007153
Storage 880.5 550.5
Relative Error 0.820035 0.820035

Table 1: CMD results

We see that the CMD achieves improvements in runtime and storage,
while achieving the same relative error as the CUR algorithm as found in [2];
these results were expected [6]. The CMD decreases runtime because com-
putations involving C with fewer columns are faster. In all CUR algorithms
that use sampling with replacement, we have also implemented the CMD
algorithm of [6].

Next, in Figure 2 we show a comparison of the CUR implementations
using different sampling methods and different computations of U . We also
include Stewart’s deterministic CUR in the comparison. We use our test
matrix A, and for the Monte Carlo CUR algorithms, we plot the average
relative error and runtime for each value of k over 5 runs.

We use c = r = 2k for all algorithms. However, for the algorithms which
use the optimal U (including Stewart’s deterministic CUR), we do not pass
a rank parameter k; we do not control the rank of the optimal U . So, these
algorithms are actually controlled by c and r, which depend on k.

The legend for the plots in Figure 2 corresponds to the following for each
Monte Carlo CUR algorithm:

1. Sampling choice. CN : column (row) norm sampling with replacement
[2], S: subspace sampling with replacement [3], w/o R: column (row)
norm sampling without replacement

9



2. U choice. L: linear U [2], O: optimal U

3. Scaling (only for use with sampling without replacement). Sc: rescaling
of columns and rows used, w/o Sc: rescaling of columns and rows not
used.

Stewart’s deterministic CUR is given in the legend by D.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CUR Validation: Relative Error

k

re
la

tiv
e 

er
ro

r

 

 

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
CUR Validation: Run Time

k

ru
n 

tim
e

 

 

CN,L
CN,O
S,L
S,O
w/o R,L,w/o Sc
w/o R,L,Sc
D

Figure 2: CUR preliminary results

We expect that as k increases, the relative error of the CUR decompo-
sition of A should decrease. We see in Figure 2 that this general trend is
followed by all CUR algorithms; however, we also expect that the relative
error should be close to zero when k = 30. This is only accomplished by
Stewart’s deterministic CUR algorithm and the CUR algorithm that sam-
ples without replacement with respect to column (row) norm probabilities,
uses the linear U , and does not rescale columns (rows) in C (R).

In fact, Stewart’s CUR algorithm has a relative error of approximately
zero when k = 15; this is expected. The rank of A is 30 and when k = 15,
c = r = 30, giving us the dimensions 30 × 30 for U , which is computed
optimally.

Other general trends we see from Figure 2 for our test matrix A are:

• The optimal U is more expensive than the linear U , but gives better
relative error results.

• Subspace sampling and column (row) norm sampling (both with re-
placement) give similar relative error results, although subspace sam-
pling is more expensive.

10



• Sampling without replacement with respect to column (norm) prob-
abilities using the linear U gives improvements in relative error over
sampling with replacement with respect to column (norm) probabili-
ties using the linear U while remaining inexpensive.

In practice it appears we may have found a Monte Carlo CUR algo-
rithm that improves results produced by the CUR algorithm from [2] while
remaining inexpensive; namely the CUR algorithm that samples without re-
placement with respect to column (row) norm probabilities, uses the linear
U , and does not rescale columns (rows) in C (R).

Future work includes trying to determine why rescaling or not rescaling
columns (rows) in C (R) has the effect seen in Figure 2 when using sampling
without replacement with respect to column (row) norm probabilities and
the linear U .

4 Further Work

Further work for this project includes finalizing the NMF and CUR algo-
rithms as explained above. Also, testing and validation of the NMF and
CUR algorithms will be continued using other matrices, specifically three
term-document matrices that are common information retrieval databases.
These three matrices can be found at www.cs.utk.edu/~lsi/ and are listed
under CISI, CRAN, and MED.

Once validation of the NMF and CUR decomposition is complete, we will
investigate storage, runtime, and relative error for both the NMF and CUR
decomposition. Then, we will test the performance of the NMF and CUR
decomposition in LSI.

Let A be an m× n term-document matrix, q an m× 1 query vector, and
s an 1× n score vector such that si is the relevance score for document i for
the given query. In LSI, for a given query, we will compute s using a series
of vector-matrix products as follows:

• (rank-k) SVD: A ≈ UkΣkV
T
k , s = ((qT Uk)Σk)V

T
k

• NMF: A ≈ WH, s = (qT W )H

• CUR: A ≈ CUR, s = ((qT C)U)R.

11



We will test the performance of the NMF and CUR decomposition in LSI
using average precision and recall, where the average is taken over all queries
in the data set, and compare to the performance of the SVD in LSI. We
will also compare query time for the NMF, CUR decomposition, and SVD.
We will complete this process for each of the three term-document matrices
referenced above.

5 Time Permitting Investigations

Time permitting, we will test the performance of the NMF and CUR decom-
position as the approximation to the term-sentence matrix in multidocument
summarizing. We would use dot product query scores to score sentences for
relevance. Furthermore, we would use a data package from John Conroy
of the Center for Computing Sciences, Institute for Defense Analysis. The
package would include term-sentence matrices and query vectors.

To validate our generated multidocument summaries we would use ROUGE,
the Recall-Oriented Understudy for Gisting Evaluation, to score them against
human summaries. A ROUGE score is a number between 0 and 1 that gives
a comparison of two summaries: the more similar the summaries, the higher
the ROUGE score [4].

Due to the fact that computations with large matrix data can be costly,
another time permitting investigation is to code parallel implementations of
the NMF and CUR decomposition.

6 Project Schedule

January: Compile databases in an organized and easily accessible manner,
continue and finish NMF and CUR investigations, check NMF and CUR
decomposition for efficiency (if time, investigate parallelization)

February: Test and validate NMF and CUR decomposition using term-
document matrices, analyze NMF and CUR decomposition for speed, storage
and relative error

March: Test and validate use of NMF and CUR decomposition in LSI,
analyze query time in LSI using NMF and CUR decomposition, (if time, test

12



and validate use of NMF and CUR decomposition in forming multidocument
summaries)

April: Write final report

May: Present final report

Deliverables: Code, final report

References

[1] Michael W. Berry, Murray Browne, Amy N. Langville, V. Paul Pauca, and
Robert J. Plemmons. Algorithms and applications for approximate non-
negative matrix factorization. Computational Statistics and Data Analy-
sis, 52(1):155–173, September 2007.

[2] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte
Carlo algorithms for matrices iii: Computing a compressed approximate
matrix decomposition. SIAM Journal on Computing, 36(1):184–206,
2006.

[3] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-
error CUR matrix decompositions. SIAM Journal on Matrix Analysis
and Applications, 30(2):844–881, 2008.

[4] Daniel M. Dunlavy, Dianne P. O’Leary, John M. Conroy, and Judith D.
Schlesinger. QCS: A system for querying, clustering and summarizing
documents. Information Processing and Management, 43(6):1588–1605,
November 2007.

[5] Tamara G. Kolda and Dianne P. O’Leary. A semidiscrete matrix de-
composition for latent semantic indexing in information retrieval. ACM
Transactions on Information Systems, 16(4):322–346, October 1998.

[6] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is
more: Sparse graph mining with compact matrix decomposition. Statis-
tical Analysis and Data Mining, 1(1):6–22, February 2008.

13


