Application of Moment Expansion Method to Option Square Root Model

Yun Zhou
Advisor: Professor Steve Heston
University of Maryland

May 5, 2009

Motivation

- Black-Scholes Model successfully explain stock option price
- Equity price follows a Geometric Brownian Motion
- Assumption: Log return is normal distribution with constant volatility
- Reality: Log return is NOT normal distribution, volatility is NOT constant

Comparison Between Heston Model and Black-Scholes

	Volatility	Log Return Distribution
Black-Scholes	Constant	Normal
Heston Model	Stochastic	Not Normal

Methods to Solve Heston Model

- Closed Form Exact Solution (Heston, 1993)
- Fast Fourier Transform (Carr and Madan, 1999): Characteristic Function Needed
- Moment Expansion (This Project, 2009)
- can work for Stochastic Volatility Models (no exact solution, Characteristic Function hard to get)
- Other methods

What I did in this project?

- Get Moments of Log Return in Heston Model.
- Apply Gram-Charlier Expansion Approximation
- Compare the Approximation with Exact Solution
- Discuss Convergence of this Method

Heston Model

$$
\begin{aligned}
& d S_{t}=r S_{t} d t+\sqrt{\nu_{t}} S_{t} d W_{t}^{s} \\
& d \nu_{t}=\kappa\left(\theta-\nu_{t}\right) d t+\sigma \sqrt{\nu_{t}} d W_{t}^{\nu}
\end{aligned}
$$

- $d W_{t}^{s}, d W_{t}^{\nu}$ Brownian Motion with Correlation ρ
- S_{t} Stock Price at Time t
- ν_{t} Variance at Time t
- r Rate of Return
- θ Average Variance
- κ Mean Reversion Rate
- σ Volatility of Volatility

Moment Expansion Method

- Use Backward Equation to get any order of moments
- Use Gram-Charlier to seek an approximate distribution
- Normal distribution + series approximation related to moments and Hermite Polynomials
- Replace normal distribution by the approximate distribution in option price formula

Gram-Charlier Expansion

$g(z)=n(z)\left(1+\sum_{i=3} \frac{\mu_{i}-n o r m_{i}^{i!}}{i!} H_{i}(z)\right)$

- $z=\frac{\ln \left(S_{t} / S_{0}\right)-\left(r-\sigma^{2} / 2\right) t}{\sigma \sqrt{t}}$
- $g(z)$ Approximate Distribution of Log Return
- $n(z)$ Probability Density Function of Standard Normal
- μ_{i} Moments of Desired Distribution
- normi Moments of Standard Normal Distribution
- $H_{i}(z)$ Hermite Polynomial

Option Price

$$
\begin{aligned}
& C=e^{-r T} E\left(S_{T}-K\right)^{+} \\
& =\mathrm{e}^{-r T} \int_{-\infty}^{\infty}\left(e^{\ln S_{0}+\left(r-\frac{\sigma^{2}}{2}\right) t+\sigma \sqrt{ }{ }^{z}}-K\right)^{+} n(z) d z
\end{aligned}
$$

- Replace $\mathrm{n}(\mathrm{z})$ by $\mathrm{g}(\mathrm{z})$
- Call $(G C)=$ Call $(B S)+\sum_{i=3} Q_{i}\left(\mu_{i}-\right.$ norm $\left._{i}\right)$
- Q_{i} Coefficient part involving integral of Hermite Polynomial

Moments Computing

- Analytical : Up to 4th order (Mathematica By Heston)
- Numerical : Matrix Exponential Method
- They are the same

Validation

$$
\begin{aligned}
& d S_{t}=r S_{t} d t+\sqrt{\nu_{t}} S_{t} d W_{t}^{s} \\
& d \nu_{t}=\kappa\left(\theta-\nu_{t}\right) d t+\sigma \sqrt{\nu_{t}} d W_{t}^{\nu}
\end{aligned}
$$

- Make Volatility as a constant
- $\sigma=0$ and $\theta=\nu_{t}$
- Moments from Heston Model $=$ Moments of Standard Normal
- Call Option Price by Gram Charlie = Call Option Price by Black-Scholes
- Numerical Results make an agreement with above conditions

Results

RMSE

For Gram-Charlier, 4th order might be good

Convergence of Gram-Charlier Expansion

- Poor Convergence Properties (Cramer 1957)
- Souce of Divergence: $g(x)$ must fall to 0 faster than $e^{-\frac{x^{2}}{4}}$
- Cramer's Condition for Convergence:
$\int_{-\infty}^{\infty} e^{\frac{x^{2}}{4}} g(x) d x<\infty$

Examples

$\sigma=0.5$
Convergence
$\sigma=2$
Divergence

Convergence of $g(x)$

- PDF of Log Return in Heston Model (Dragulescu and Yakovenko, 2002)
- Properties of PDF
- Fall to Zero Slower than $e^{-\frac{x^{2}}{4}}$
- Cramers Condition can not hold

Summary

- Moment Expansion Method is applied to Stochastic Volatility Model (Heston Model)
- Up to certain order of moments, adding higher moments can not increase accuracy of the approximation
- Convergence condition is disscussed

Acknowledgement

Dr. Zimin and Dr. Balan for suggestions and feedback

Dr. Heston advises me on the project

Refenerces

Corrado and Su, 1996, Skewness and Kurtosis in SP 500 Index Returns Implied by Option Prices, The Journal of Financial Research, Vol. XIX, No. 2 175-192

Corrado and Su, 1997, Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by SP 500 Index Option Prices, Journal of Derivatives, 4, 8-19

Heston, S.L., 1993, A Closed Form Solutions with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, 6, 327-44

