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Motivation

Black-Scholes Model successfully explain stock option price

Equity price follows a Geometric Brownian Motion

Assumption: Log return is normal distribution with constant
volatility

Reality: Log return is NOT normal distribution, volatility is
NOT constant
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Comparison Between Heston Model and Black-Scholes

Volatility Log Return Distribution

Black-Scholes Constant Normal

Heston Model Stochastic Not Normal
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Methods to Solve Heston Model

Closed Form Exact Solution (Heston, 1993)

Fast Fourier Transform (Carr and Madan, 1999):
Characteristic Function Needed

Moment Expansion (This Project, 2009)
can work for Stochastic Volatility Models (no exact solution,
Characteristic Function hard to get)

Other methods
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What I did in this project?

Get Moments of Log Return in Heston Model.

Apply Gram-Charlier Expansion Approximation

Compare the Approximation with Exact Solution

Discuss Convergence of this Method
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Heston Model

dSt = rStdt +
√
νtStdW s

t

dνt = κ(θ − νt)dt + σ
√
νtdW ν

t

dW s
t , dW ν

t Brownian Motion with Correlation ρ

St Stock Price at Time t

νt Variance at Time t

r Rate of Return

θ Average Variance

κ Mean Reversion Rate

σ Volatility of Volatility
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Moment Expansion Method

Use Backward Equation to get any order of moments

Use Gram-Charlier to seek an approximate distribution
Normal distribution + series approximation related to moments and
Hermite Polynomials

Replace normal distribution by the approximate distribution in
option price formula
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Gram-Charlier Expansion

g(z) = n(z)(1 +
∑

i=3
µi−normi

i! Hi (z))

z = ln(St/S0)−(r−σ2/2)t

σ
√

t

g(z) Approximate Distribution of Log Return

n(z) Probability Density Function of Standard Normal

µi Moments of Desired Distribution

normi Moments of Standard Normal Distribution

Hi (z) Hermite Polynomial
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Option Price

C = e−rTE (ST − K )+

=e−rT
∫∞
−∞ (e lnS0+(r−σ2

2
)t+σ

√
Tz − K )+n(z)dz

Replace n(z) by g(z)

Call(GC ) = Call(BS) +
∑

i=3 Qi (µi − normi )

Qi Coefficient part involving integral of Hermite Polynomial
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Moments Computing

Analytical : Up to 4th order (Mathematica By Heston )

Numerical : Matrix Exponential Method

They are the same
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Validation

dSt = rStdt +
√
νtStdW s

t

dνt = κ(θ − νt)dt + σ
√
νtdW ν

t

Make Volatility as a constant

σ = 0 and θ = νt

Moments from Heston Model = Moments of Standard Normal

Call Option Price by Gram Charlie = Call Option Price by
Black-Scholes

Numerical Results make an agreement with above conditions
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Results
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RMSE

For Gram-Charlier, 4th order might be good
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Convergence of Gram-Charlier Expansion

Poor Convergence Properties (Cramer 1957)

Souce of Divergence: g(x) must fall to 0 faster than e−
x2

4

Cramer’s Condition for Convergence:∫∞
−∞ e

x2

4 g(x)dx <∞
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Examples
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Convergence of g(x)

PDF of Log Return in Heston Model (Dragulescu and
Yakovenko, 2002)

Properties of PDF

Fall to Zero Slower than e−
x2

4

Cramers Condition can not hold
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Summary

Moment Expansion Method is applied to Stochastic Volatility
Model (Heston Model)

Up to certain order of moments, adding higher moments can
not increase accuracy of the approximation

Convergence condition is disscussed
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