Introduction	Approach	Validation	Results	Discussion	Summary

Application of Moment Expansion Method to Option Square Root Model

Yun Zhou Advisor: Professor Steve Heston

University of Maryland

May 5, 2009

1/19

Introduction	Approach	Validation	Results	Discussion	Summary
●000	0000	00	00	000	000
Motivation					

- Black-Scholes Model successfully explain stock option price
- Equity price follows a Geometric Brownian Motion
- Assumption: Log return is normal distribution with constant volatility
- Reality: Log return is NOT normal distribution, volatility is NOT constant

Comparison	Between	Heston	Model and	Black-Scho	oles
	Approach	Validation	Results	Discussion	Summary
	0000	00	00	000	000

	Volatility	Log Return Distribution
Black-Scholes	Constant	Normal
Heston Model	Stochastic	Not Normal

Introduction	Approach	Validation	Results	Discussion	Summary
00●0	0000	00	00	000	000
Methods t	o Solve H	eston Mod	el		

- Closed Form Exact Solution (Heston, 1993)
- Fast Fourier Transform (Carr and Madan, 1999): Characteristic Function Needed
- Moment Expansion (This Project, 2009)
 - can work for Stochastic Volatility Models (no exact solution, Characteristic Function hard to get)

イロト 不得下 イヨト イヨト 二日

4/19

Other methods

Introduction	Approach	Validation	Results	Discussion	Summary
000●	0000	00	00	000	000
What I d	id in this p	roject?			

- Get Moments of Log Return in Heston Model.
- Apply Gram-Charlier Expansion Approximation
- Compare the Approximation with Exact Solution
- Discuss Convergence of this Method

Introduction	Approach	Validation	Results	Discussion	Summary
0000	●000	00	00	000	000
Heston Model					

$$dS_t = rS_t dt + \sqrt{\nu_t}S_t dW_t^s$$

$$d\nu_t = \kappa(\theta - \nu_t)dt + \sigma\sqrt{\nu_t}dW_t^{\nu}$$

- dW^s_t, dW^{ν}_t Brownian Motion with Correlation ρ
- Stock Price at Time t
- ν_t Variance at Time t
- r Rate of Return
- θ Average Variance
- κ Mean Reversion Rate
- σ Volatility of Volatility

Introduction	Approach	Validation	Results	Discussion	Summary	
0000	0●00	00	00	000	000	
Moment Expansion Method						

- Use Backward Equation to get any order of moments
- Use Gram-Charlier to seek an approximate distribution
 - Normal distribution + series approximation related to moments and Hermite Polynomials
- Replace normal distribution by the approximate distribution in option price formula

Introduction	Approach	Validation	Results	Discussion	Summary
0000	00●0	00	00	000	000
Gram-Ch	arlier Expa	nsion			

$$g(z) = n(z)(1 + \sum_{i=3} \frac{\mu_i - norm_i}{i!}H_i(z))$$

•
$$z = \frac{\ln(S_t/S_0) - (r - \sigma^2/2)t}{\sigma\sqrt{t}}$$

- g(z) Approximate Distribution of Log Return
- n(z) Probability Density Function of Standard Normal
- μ_i Moments of Desired Distribution
- norm_i Moments of Standard Normal Distribution
- $H_i(z)$ Hermite Polynomial

Introduction	Approach	Validation	Results	Discussion	Summary
0000	000●	00	00	000	000
Option P	rice				

$$C = e^{-rT} E(S_T - K)^+$$

= $e^{-rT} \int_{-\infty}^{\infty} (e^{\ln S_0 + (r - \frac{\sigma^2}{2})t + \sigma\sqrt{T}z} - K)^+ n(z) dz$

- Replace n(z) by g(z)
- $Call(GC) = Call(BS) + \sum_{i=3} Q_i(\mu_i norm_i)$
- Q_i Coefficient part involving integral of Hermite Polynomial

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	●○	00	000	000
Moments	Computin	g			

- Analytical : Up to 4th order (Mathematica By Heston)
- Numerical : Matrix Exponential Method
- They are the same

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	○●	00	000	000
Validation					

$$dS_t = rS_t dt + \sqrt{\nu_t}S_t dW_t^s$$

$$d\nu_t = \kappa(\theta - \nu_t)dt + \sigma\sqrt{\nu_t}dW_t^{\nu}$$

Make Volatility as a constant

•
$$\sigma = 0$$
 and $\theta = \nu_t$

- Moments from Heston Model = Moments of Standard Normal
- Call Option Price by Gram Charlie = Call Option Price by Black-Scholes
- Numerical Results make an agreement with above conditions

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	●0	000	000
Results					

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	0●	000	000
RMSE					

For Gram-Charlier, 4th order might be good

イロト イロト イヨト イヨト 三日

	ence of Gra				000
Introduction	Approach	Validation	Results	Discussion	Summary

- Poor Convergence Properties (Cramer 1957)
- Souce of Divergence: g(x) must fall to 0 faster than $e^{-\frac{x^2}{4}}$

イロン イボン イヨン イヨン 三日

14/19

• Cramer's Condition for Convergence: $\int_{-\infty}^{\infty} e^{\frac{x^2}{4}} g(x) dx < \infty$

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	00	o●o	000
Examples					

$$\sigma = 0.5$$
 $\sigma = 2$
Convergence Divergence $15/19$

• PDF of Log Return in Heston Model (Dragulescu and Yakovenko, 2002)

16/19

- Properties of PDF
 - Fall to Zero Slower than $e^{-\frac{x^2}{4}}$
 - Cramers Condition can not hold

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	00	000	●00
Summary					

- Moment Expansion Method is applied to Stochastic Volatility Model (Heston Model)
- Up to certain order of moments, adding higher moments can not increase accuracy of the approximation
- Convergence condition is disscussed

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	00	000	○●○
Acknowl	edgement				

Dr. Zimin and Dr. Balan for suggestions and feedback

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ = 臣 = のへで

18/19

Dr. Heston advises me on the project

Introduction	Approach	Validation	Results	Discussion	Summary
0000	0000	00	00	000	00●
Refenerces					

Corrado and Su, 1996, Skewness and Kurtosis in SP 500 Index Returns Implied by Option Prices, The Journal of Financial Research, Vol. XIX, No.2 175-192

Corrado and Su, 1997, Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by SP 500 Index Option Prices, Journal of Derivatives, 4, 8-19

Heston, S.L., 1993, A Closed Form Solutions with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, 6, 327-44