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Abstract

The Options Square Root model or Heston model is the stochastic volatility model developed by Heston (1993). The governing equations consider not only the stochastic spot return but also the stochastic volatility, which has a correlation with the spot return. Heston (1993) gave a closed-form solution for the European Call option price based on the Fourier transform method. In this project we apply a moment expansion method to the Options Square Root model and compare the results with the closed form solution. The numerical results show good approximations up to the 4th order of moment. However, it also indicates divergence of the Gram-Charlier expansion. The convergence conditions for the Gram-Charlier expansion are discussed. 
1 Introduction
The Black-Scholes model has been widely and successfully used in explaining stock option prices. It is easy to calculate and explicitly model the relationships between all the variables. The Black-Scholes model assumes that stock returns are normally distributed and follow a constant variance diffusion process. However, empirical studies show that in reality, security prices do not follow a strict stationary log-normal process and the variances are stochastic. These facts make the stock return distribution skewned and kurtotic relative to a normal distribution. As a result, the Black-Scholes model misprices in-the-money and out-of-the-money options. Starting from this point, Hull and White (1987) propose a new stochastic volatility model. However, these types of models could not provide closed form solutions and involve more numerical techniques. Heston(1993) propose a new stochastic volatility model describing the evolution of volatility of the underlying asset with a closed-form solution. The basic Heston model assumes that  St, the price of the asset at time t, is determined by a geometric Brownian motion:
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where  νt, the instantaneous variance, is a CIR (Cox-Ingersoll-Ross)  process:
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and 
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are Wiener Processes with correlation ρ.

· μ is the average rate of return. 

· θ is the long volatility, or long run average volatility; as t goes to infinity, the expected value of νt goes to θ. 

· κ is the mean reversion rate at which νt reverts to θ. 

· 
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is the volatility of the volatility. 

The Wiener Process Wt is characterized by three facts:

1. W0 = 0 

2. Wt is almost surely continuous 

3. Wt has independent increments with distribution 
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 (for 0 ≤ s < t). 

N(μ, σ) denotes a normal distribution with expected value μ and variance 
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. If 0 ≤ s1 ≤ t1 ≤ s 2 ≤ t2, then Wt1 − Ws1 and Wt2 − Ws2 are independent random variables. The similar condition holds for n increments. An alternative characterization of the Wiener Process is an almost surely continuous martingale with W0 = 0 and quadratic variation [Wt, Wt] = t (which means that Wt2-t is also a martingale).

The CIR process is a Markov process with continuous paths defined by the following stochastic differential equation:
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where θ and 
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 are parameters. Value 
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 follows a non-central Chi-Square distribution. The CIR process is widely used to model short term interest rates.
There are some other ways to solve the Heston model, such as the Fast Fourier Transform (Carr and Madan, 1999) which needs the characteristic functions. In this project we use the moment expansion method to model the distribution of stock return driven by Heston model. Jarrow and Rudd (1982) use an Edgeworth expansion of the lognormal probability density function to model the distribution of the underlying asset and derive an option pricing formula.  Corrado and Su (1996) use a Gram-Charlier series expansion of the normal probability density function to model the distribution of the underlying asset.  This method captures the skewness and kurtosis deviations of the underlying asset distribution from a normal distribution. The option pricing formula is the sum of a Black-Scholes option price plus two approximate terms for non-normal skewness and kurtosis. The motivation for this project is to extend the moment expansion method to any order of moment in order to obtain highly accurate approximation of the asset return distributions. Thus, the approximate distributions depend on higher order of moment other than the first four orders. A cutoff can be determined to get a good enough truncated approximation. Moreover, this method can also be used to stochastic volatility models which do not have exact solutions or easily attainable characteristic functions.
2 Approach
Let 
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 be the spot return, according to equation (1), we have 
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For the log return distribution, the moment of order n is M. M is a function of the log return x, the initial variance 
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, the time to maturity 
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 and n, the order of moment. 

We guess 
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where, 
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The moment M satisfies the Kolmogorov Backward equation:
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At the expiration time
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 Considering n=1, then
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Substitute equation (4) into (3), we have
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Then we get two ordinary differential equations, 
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Solving equations (5) and (6) with the initial conditions, we get
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Thus, the 1st moment is 
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Similarly, using the backward equation (3) we generate a set of linear ordinary differential equations, from which moments can be obtained after solving these equations. There are two ways to solve these moments, one way is analytical. When n=1, one needs to solve for three coefficients and when n=4, one needs to solve for fifteen coefficients. The other way is numerical. I used a matrix exponential method which gives an exact solution. The set of ODEs can be written as 
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where matrix A is the coefficient matrix and y(t) is the unknown vector. 
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Then the solution is 
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where b is the vector of initial value. 

For example, when n=1, the unknown vector 
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According to equation (7), the unknown vector y(t) can be obtained. 

The results will be compared with the analytical ones in the validation section. 
After the moments are obtained, we need to normalize these raw moments into central moments with a zero mean and unit variance as follows:
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where
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Then we need to consider the way to implement moments into the Black-Scholes option pricing formula. European Call Option payoff at the expiration time T is the maximum of 0 and the stock price at the expiration time minus the strike price, i.e.,
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where n(z) is standard normal distribution, 
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 is the volatility.

We use the Gram-Charlier series expansion to seek an approximate distribution of the log return driven by the Heston model, g(z), then replace the normal distribution n(z) in equation (8) to get the approximate call option price. 
So we have:
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where 
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, the standard normal probability density function,
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Then the call option price based on the Gram-Charlier expansion can be expressed as
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 is the call option price by the Black-Scholes model, and 
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 are the coefficient parts which involve the integral of Hermite polynomials. Under a normal condition, we have 
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, which makes these series approximation parts in equation (9) disappear. As a result, the approximate call option price is equal to the Black-Scholes option price in equation (10). 
 The similar method has been used by Corrado and Su (1996). They use a truncated Gram-Charlier series expansion of the density function up to the 4th moment. The resulting truncated density gives an estimation of the non-normal skewness and kurtosis as follows:
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where
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 are the 3rd and 4th moments respectively.  

Based on this truncated Gram-Charlier density expansion, they obtain the option pricing formula:
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where 
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Using the computed central moments and the constant coefficient parts
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, the approximate call option price can be calculated. 

To determine the cutoff order of the moments, the Fourier transform solution is used as the truth in order to examine the relative error. Therefore, the moment expansion solutions can be used as an approximation of the Fourier transform solutions. 

Heston (1993) guess a solution to the Heston model, which involves two parts, one is the present value of the spot asset before optimal exercise, and the other is the present value of the strike-price payment. The solution has the following form:
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 is the price at time t of a unit discount bond that matures at time T.

Both of these two terms satisfy equation (3).
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 can be obtained from the solutions of these characteristic functions, then the call option prices can be obtained. 

To check the accuracy, we compare the Fourier transform based solutions 
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 with 1st to nth order moment expansion based solutions
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 and n could help us to determine a cutoff and find a satisfactory estimation. 

3 Validation
1) Moments 
The following table compares the numerical results from the matrix exponential method with the analytical results up to the 4th order. Only up to the 4th order of moment are obtained from the analytical method.  The relative error indicates that results from the matrix exponential method give the exact solution as the analytical method. Parameters are in Table 2 Value(1).
	Order of Moment
	Analytical
	Numerical
	Relative Error

	1
	1.09E-01
	1.09E-01
	0

	2
	0.01682053227
	0.01682053227
	0

	3
	0.0030871986791
	0.0030871986791
	0

	4
	6.61E-04
	6.61E-04
	0


Table 1. Compared Results on Moments
2) Reducing the Heston model to the Black-Scholes model
The major difference between the Heston model and the Black-Scholes involve the nature of volatility. In the Heston model, it follows a stochastic dynamic motion while in the Black-Scholes it is a constant. For validation of the moment expansion method, we can set volatility in the Heston model as a constant and then compare the results with the Black-Scholes. In order to make volatility a constant, these two conditions should be satisfied:  
1) 
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The computed option prices should be close to the Black-Scholes option prices. Fig. 1 shows the Root Means Square Error (RMSE) between the computed option price and the Black-Scholes up to the 20th order of moment used in a Gram-Charlier expansion. The RMSE is around 10-15. This implies that the moment expansion method is successfully implemented. 
	Parameters
	Value (1)
	Value (2)
	Value (3)

	Mean reversion
	0.1
	1.1
	1.1

	Long-run variance
	0.01
	0.01
	0.011

	Initial variance
	0.01
	0.01
	0.013

	Correlation
	0.5
	-0.5
	-0.5

	Volatility of volatility 
	0.1
	0
	0.1

	Option maturity
	0.5
	0.5 
	0.5

	Interest rate
	0.023
	0.023
	0.023

	Initial Stock Price
	70
	70
	70-140

	Strike Price
	100
	100
	100


Table 2. Parameters
[image: image71.emf]2 4 6 8 10 12 14 16 18 20

10

-15.93

10

-15.91

10

-15.89

10

-15.87

10

-15.85

Order of Moment

RMSE 

RMSE Using Different Order of Moment for Option Price on Logscale


Fig 1. Reduce the Heston model to the Black-Scholes 
4 Numerical Results

Fig. 2 gives the results on option pricing differences using the moment expansion method and the exact solution for the Heston model up to the 10th order of moment used in the Gram-Charlier expansion. Generally, we want the approximate results close to the exact solution which means, all the lines in the figure should be close to zero. When the order of moment increases in the Gram-Charlier expansion, the differences deviate from zero. When the order of moment is 10, the difference reaches the maximum. This figure indicates the divergence of the Gram-Charlier method in the Heston model.
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Fig 2. Option pricing differences between Gram-Charlier and the exact solution of the Heston model
Figure 3 shows the option price using the moment expansion method compared to the exact solution of the Heston model. The results imply the divergence of the Gram-Charlier method obviously. When the order of moment used in the Gram-Charlier expansion increases from 10th (red line) to 20th (black line), the approximate prices deviate from the truth. 
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Fig 3. Option pricing  by the Gram-Charlier expansion and exact solution of the Heston model
The RMSE on the log scale is represented in Fig.4. The figure gives the RMSE of the option pricing by the moment expansion method up to the 20th order of moment compared with the exact solution of the Heston model. RMSE is minimized when the order is 4, and then increases rapidly. For certain sets of parameters, up to the 4th order of moment used in the Gram-Charlier expansion might be a good approximation for the Heston model. However, the increasing RMSE also indicates that the method exhibits divergence for the Heston model. We need to consider the convergence conditions for the Gram-Charlier expansion method. 
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 Fig 4. RMSE of Gram-Charlier on log  scale
5 Discussion

The poor convergence property of the Gram-Charlier expansion is mentioned by Cramer (1957). The source of divergence is the behavior of the probability density function at infinity. The probability density function must fall to zero faster than
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Figure 5 and Figure 6 show examples of convergence and divergence when using the Gram-Charlier expansion to approximate distributions. In Fig. 5, the standard normal distribution 
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satisfies the convergence conditions. As the order of moment increases, the approximate distribution approaches the desired distribution 
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Fig 5. Gram-Charlier Approximation for N(0,0.5)
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Fig 6. Gram-Charlier Approximation for N(0,2)
In Figure 6, the standard normal distribution is used to approximate the normal distribution 
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. Cramer’s Condition for Convergence does not hold in this case, as indicated by the divergence of the graph. These approximate distributions deviate from the desired distribution as the order of moment increases in the Gram-Charlier expansion.

To determine the convergence condition for the Heston model, we need to analyze the probability density function of the asset return. The probability density function of Heston model has a complex structure. However, results (Dragulescu and Yakovenko, 2002) show that for large 
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This property makes 
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, then Cramer’s Condition for Convergence fails to hold. This implies that using the Gram-Charlier method to approximate the Heston model gives divergence. 
6 Conclusions and Future Work

Moment expansion method is successfully applied to the Heston model. Numerical results show large divergence when using the Gram-Charlier expansion to approximate the distribution of asset returns in the Heston model. These approximate distributions deviate from the exact solution as the order of moment increases. Cramer’s Condition for Convergence for the Gram-Charlier expansion is discussed and two examples show the convergence and divergence cases when using the Gram-Charlier expansion to approximate the desired distributions. The probability density function of Heston model does not satisfy the Cramer’s Condition for Convergence. By comparing approximate results with the exact solution, we know that certain orders of moment may give a better approximation than the one given by the Black-Scholes. 
Another method, an Edgeworth expansion might also be a good choice for the Heston model since its convergence condition is not as strict as that of Gram-Charlier. Using the Edgeworth expansion instead of the Gram-Charlier expansion in the moment expansion method may be a worthy future endeavor. 
Other than the Heston model, the Gram-Charlier expansion can be applied to models which satisfy the Cramer’s Condition, such as the Binomial model. 
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8 Appendix

1) Derivation of Moments

Starting from the Backward Equation:
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we can generate a group of linear ordinary differential equations as following,
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with initial conditions 
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One method is to solve these ODEs recursively, the other one is to use matrix exponential.
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 is the unknown vector and A is coefficient matrix. Then the solution can be written into
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 is the matrix containing initial values of these coefficients 
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2) Derivation of Coefficient Part 
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         Corrado’s Paper (16)* 

In general, we can write it into
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Integration by parts, consider the following 
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Q3’ Part

n=3

(17)=
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Q3 part=
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compared with Corrado’s Paper 
[image: image105.wmf]2

0111

1

[(2)()()]

3!

SttdndtNd

sss

--

                    (18)*

compared with Brown and Robinson (2002) corrected Q3
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Q3 in Corrado’s paper is wrong. In Brown and Robinson (2002) paper, they changed the sign of Q3 part to negative in equation (16)*, thus, I got the same result with them but keep the sign of Q3 part positive. 
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Q4 part is 
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which is the same as Corrado’s paper.
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