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Abstract: 
A discrete time model for single and coupled nonlinear time-delayed Mach-Zehnder 
feedback loops is developed and validated. The model is used to investigate 
synchronization regimes related to feedback strength, time delay and optical biasing for 
mutually coupled loops. A comparison between simulation and experimental results is 
presented for synchronization regimes, and the model is used to identify parameter 
mismatches in the experimental system. Identification of mismatches and appropriate 
adjustment of synchronization regimes is discussed in context of applications to secure 
communications and sensor networks.  
 



Introduction 
The simulation of accurate models for experimental systems is vital to 

determining future research and validating existing research. In particular, modeling a 
system of coupled nonlinear time-delayed feedback loops provides a number of unique 
avenues for numerical investigation. Such systems are under heavy study in efforts to 
develop new methods of secure communication and sensing. Of particular interest to this 
field is the nonlinear system involving Mach-Zehnder interferometers as all of its 
components are readily available commercially. Published models for this system have 
been developed using continuous time, and model reasonably the behavior of the system. 
In our research however, development of the system has progressed in a manner that 
suggests implementing a physically discrete system. This progression motivates a change 
in the models for the system as well. The model for each independent loop will be a 
discrete time, state-space representation of the loop in Kouomuo [1] and will be tested 
against published results for identical systems. Coupling schemes will be initially tested 
on well known and previously explored systems such as the Lorenz model [2]. The final 
implementation will be tested against published experimental data for such a coupled 
system [3,4]. Since research into implementation as either a communication or sensor 
device has shown a significant dependence on the accuracy of synchronization which is 
further dependent on the quality of parameter matching, this will explored in detail. We 
will identify via simulation existing parameter mismatching in an experimental system. 
 
 
Background 
 The nonlinear time-delayed feedback system explored in detail by Kouomuo [1] 
is comprised of a laser, Mach-Zehnder inferometer, filtering, delay and amplification.  

 
Through basic mathematical representations for each of these components one can 

form a model for the evolution of the system in terms of a time-delayed integro-
differential equation as defined in Kouomuo: 
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 Here x(t) is a dimensionless variable with parameters of the normalized feedback 
gain β, the normalized bias offset φ, the high cut-off filter time constant τ and the low cut-
off filter time constant θ. 



The generally established method for solving these equations would be traditional 
numerical methods such as RK4. However, one can examine the initial situation and 
formulate these equations using a completely different approach (presented below). 
Having established a basic nonlinear system, we can now examine more complicated 
behavior.  

It has been observed both in natural systems and mathematical models that two 
nonlinear systems can achieve a synchronous state when coupled in an appropriate 
manner. Understanding such systems may lead to better communication techniques, 
advanced medical procedures and a significant improvement in understanding certain 
biological systems [6, 9, 10].  

With either formulation it is fairly easy to cast this in the form of many published 
pieces of work about coupling systems of nonlinear equations. What becomes interesting 
is examining the behavior of such coupled systems. In published work on the Lorenz 
system it has been demonstrated that two such coupled systems can be made to 
synchronize. This seems counter-intuitive to the concept of nonlinear (chaotic) systems 
and has therefore sparked a variety of research. Of specific relevance to this project is 
published experimental work which has demonstrated that given the correct setup it is 
possible to achieve synchronization between two Mach-Zehnder loops.  
   
Derivation of Alternative Model 
 The approach taken by Kouomuo was to model the filters using single-pole low-
pass and high-pass filters. An alternative approach is to formulate them in state-space. 
Then the filtering would look like: 
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 Here x(t) represents the input to a filter, y(t) is the output from the filter and A, B, 
C and D are constant matrices related to the filter used. Furthermore this can be easily 
converted to a discrete map equation. This is highly appropriate if one is considering a 
discrete-time filter such as might be implemented on a digital signal processing board. 
Since the experimentalists related to this project have chosen to implement the system in 
this manner we will use the discrete versions as follows[5]: 
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 Now we must include the concept of feedback. The simplest approach would be 
just a direct feedback where x[n]=y[n]. This, however, does not allow any dynamics 
besides the filter response to occur. Therefore we also include some function applied to 
the output of the filter, thus you could imagine something like: 
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 Here is included the fact that we are using time-delayed feedback as represented 
by the argument [n-k]. This gives rise to a state-space representation that looks like: 
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By carefully choosing our state-space to be the canonical form derived from the z-
transform of the discrete time filters we are interested in modeling, we can rewrite the top 



equation in terms of only the state-vector u, and generate our output at a later iteration via 
the simplified second equation. This gives us an iterative map in the following form: 
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 The final step in realizing what will be implemented is to actually introduce the 
function f(y[n]) from the system. In our case it is the exact same nonlinearity introduced 
in the Kouomuo paper, since it represented the gain amplification to and the feedback of 
the Mach-Zehnder modulator, just as our function does. So, the final equation we will 
model is: 
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 The main drawback to this approach for modeling the system is it requires 
knowledge of the matrices A, B, C and D related to the filter. There exists code to 
generate these matrices for some standard filter types and orders in Matlab, but any given 
high or low pass filter will not necessarily well conform to these standards. While it’s 
possible to buy high-caliber filters designed to specific functions, these are very 
expensive, an unattractive solution with a goal of diverse application implementations. 
An alternative approach is to implement digital filters. As mentioned before, this is the 
approach taken in our current experiments. This allows the actual implementation of 
filters that precisely match the matrices generated (or to design a filter and then generate 
the matrices that match it exactly). There exists some concern for the numerical stability 
of the matrices, but the code in Matlab asserts that these matrices are the most stable of 
available methods for generating filtering characteristics. Therefore we will largely 
ignore any concern for stability from this issue. A different issue could arise in the 
discretization of the continuous time system to a discrete time system but, since the 
discretization is already inherent in the system we seek to model, it can be ignored 
initially. There is some issue from the combination of both digital and analog system 
components, which will be addressed by introducing linear interpolation as needed. 
 The second concern is developing an effective method for coupling two of these 
systems. A bi-directional coupled Lorenz system as described by Anishchenko [2] is: 
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 This is considered diffusive coupling in the literature. This same technique can be 
applied to our state-space representation. If we take a step back and consider where we 
have both an input and output term (x[n] and y[n]), it would make logical sense to couple 
in the input terms. That is we will introduce coupling in the x[n] term. However, recall 
that we’ve replaced the x[n] term with our f(y[n-k]) term, so, our coupling would then 
look like: 
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Now we perform the same simplifications that we did earlier, as well as multiplying out 
the coupling term and recombining them giving us a simplified pair of equations: 
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This is the final set of equations we will implement to actually model a coupled set of 
Mach-Zehnder loops. 
 
Implementation 
 

Because the majority of published materials for this class of problems contain 
graphical representations and a primary experimental observation method is the display 
of time traces, it will be important to facilitate comparisons between simulation runs and 
this visual data. This suggests using a language or environment that incorporates an easily 
utilized graphical presentation component. Furthermore since the chosen method of 
implementation is dependant on matrix filtering constants, a language which has such 
code readily available or integrated for calculation of these coefficients would be 
preferred. To fulfill these requirements the primary implementation will be performed in 
Matlab with integrated C routines as needed for efficient calculations.  
 The largest predicted concern will be in comparison between published 
experimental results due to the quantization inherent in measurements. This quantization 
is not existent in the mathematical model without being explicitly included. Since there 
does exist characteristics that are dominant on scales significantly above the quantization 
error, for validation of the code this can be ignored.  
 
Validation 
 

The simulation development will 
took part in three stages, each 
independently verifiable. The first will 
involved implementing a single loop 
model as developed above. This was 
verified against published work by 
Kouomuo et al. [1] on such systems. 
Specifically characteristic behavior of 
the system at unique parameter settings 
is identified and compared. Four such 
characteristic curves are displayed to the 
right, with their corresponding system 
parameters.  
       

 
The second stage was a separate implementation of a system of couple Lorenz 

models [2]. Again, characteristic behavior was looked for. Using commonly studied 
parameters of the system (σ=10, r1=28.8, r2=28, b=8/3) identical synchronization is 
demonstrated. 



 The final stage of implementation was a combination of the previously mentioned 
models. To verify this, a comparison is made against two sets of literature. Argyris et. al. 
[3] has published work where a set of oscillators coupled in an open loop configuration 
(γ=0 for system 1 and  γ= 1 for system 2) synchronize and exhibit unique behaviors. 
Further, in a slightly more complicated case Piel et al. have demonstrated synchronization 
under very specific circumstances which involve bi-directional communication [4]. 
Synchronization is demonstrated under these specific conditions of γ=0.5, and conversely 
the lack of synchronization when these conditions are not met.  
 
Results of Validation 
 
Single Mach-Zehnder Non-Linear Time-Delayed Optical Feedback Loop 
 The first step is to verify against the analytical results published by Kouomou. He 
identifies the control parameter )2sin( ϕβγ =k , and through analysis of the continuous 
time equation derives solutions for bifurcation points, and the frequencies that should 
appear at these bifurcations. We can calculate bifurcations according to: 
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calculations for k=0 are slightly different giving the solutions: 
2/10 Rεγ −−=  and R/0 εω =  

It is worth noting that these are only approximate solutions, so exact agreement to 
experimental or simulated results may not occur. 
 We can proceed to calculate the first few bifurcation points, as well as simulate 
the single loop system to compare. Because the bifurcations using a positive control 
parameter do not exhibit extremely unusual behavior it is easier to observe them, so we 
do not present the results for negative β though those results also show some 
correspondence. Below is a graph that includes the first four positive bifurcation points, 
plotted according to both their expected frequency and β value.  
 



 
Marked on the graph are two successes and two failures of the simulations to match the 
analytical results. For higher values of β we see similar results to the 3rd and 4th points 
where the correct frequency is predicted but generally to the right (a higher β value) than 
the analytical results predict.  
 However, examining approximate analytical results do not always provide the 
information we seek. Since this code aims to simulate a physical system it is equally 
important to compare the simulation to experimental results. The simplest, most easily 
understood comparison is between time series that are generated in both the simulation 
and experiment.  
 

 



Here we can see that the simulated time series exhibit nearly identical behavior as 
the experimental data. The differences are a slight amplitude difference (simulation is 
~80% of experimental) and a slight frequency mismatch. The amplitude difference is 
likely caused by an incorrect scaling factor in converting the experimental data to 
displayable data. However, the frequency mismatch is more of a concern, and potentially 
deserves further examination. The likely cause of it though is additional filtering 
occurring in the physical system (from various electronic parts such as the digital signal 
processing board and photo-detector) that is unaccounted for in the model (we are only 
modeling the directly implemented filtering). Ignoring these slight mismatches, the model 
does give very good qualitative agreement (and nearly quantitative) for most simulations. 
We can see this by looking at a very large spectrum of β values and taking the histogram 
of the time series. This provides what might be considered a ‘value’ bifurcation diagram: 
 

 
Here there is a clear discrepancy at β~3, which is still under investigation between 

simulation and experiment. Possibilities are stray behavior in the experiment, histrionic 
behavior, or a significant failure of the model. However, given its ability to accurately 
reproduce a significant portion of the experimental data, the simulation can still be 
qualified as an over-all success. Also indicated on this diagram are the predicted β values 
for bifurcations.  Worth noting is that many of the calculated bifurcation points to not 
align with any visible system alterations on either the experimental or simulated plots. 
 
Synchronization in Coupled Lorenz Equations 
 The second stage of validation consisted of implementing the coupled Lorenz 
equations used as a model-basis for the coupling of the Mach-Zehnder equations (see 



above). The equations can be integrated using basic MATLAB ODE solvers. When we 
integrate these couple equations we find time series similar to the following: 
 

 
The second plot shows the L2 norm of X, Y, and Z for the time trace shown. We can see 
that with the simple coupling outlined in the preceding sections it is possible to achieve 
isochronal synchronization. This of course has been demonstrated many times, but does 
encourage us that a similar implementation of the equations for Mach-Zehnder loops 
could work as well.  
 
Synchronization of Couple Nonlinear Time-Delayed Feedback loops 
 We previously developed equations for coupled Mach-Zehnder loops, and now 
we seek to simulate them, attempting to find regimes under which synchronization can 
occur. Previously published in literature are results for synchronization of a master loop 
to an open loop as well as at the specific γ value of .5 (50%) [3, 4].  To replicate these 
experiments the code has been implemented to allow individual specification of  γ for 
each system, and for each interaction between systems. Specifically for reference we re-
define the equations in the following way: 
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One can see then that the initially defined equations are just a special sub-set of these 
where: 122211 1 γγγ −== . Argysis has demonstrated (and used) synchronization under a 
very specific regime of these were γ11 =γ21=1 and γ12=γ22=0. That is, open-loop, 
unidirectional coupling. He explores this under a variety of coupling delays and 
conditions which have been confirmed, but for the simplest case of the delay between 
systems being zero we do not need to dramatically change the above equations (merely 
impose those conditions) and we generate time series that look very similar in behavior to 
the coupled Lorenz equations. 
 



 
Here we can see that the two systems synchronize identically soon after the coupling has 
been turned on. It is also worth noting that rather than finding a mutual synchronization 
state, the second system actually synchronizes to the first one since the first system is 
actually a master/driver system and the second a slave.  
 We can also replicate Piel’s experiments of mutually coupled systems 
synchronizing with a coupling of 50%, however, rather than show a number of plots 
related to this we can actually go ahead and take the simulations a step further and 
explore whether synchronization occurs for a variety of coupling strengths: 
 

 



 
Here we see plotted on the y-axis the normalized RMS difference (averaged over 20 runs) 
between the last 104 entries of a time series for two mutually coupled systems. The x-axis 
indicates for what coupling strength this RMS difference occurred. We can see on this 
plot that in-fact identical synchronization occurs not only at 50% coupling, but at a wider 
variety of coupling strengths. To be certain that this is a real phenomena and not just 
artifacts of simulation we finally compare our synchronization results to experimental 
traces of the same thing which were included in the previous graph. 
 

 
 

There we see that for two experimental systems at 50% coupling identical 
synchronization does occur while only nearly identical synchronization occurs at other 
locations. However the locations of drastic change from semi-synchronized behavior and 
completely unsynchronized behavior do match up. This suggests that expanding the code 
for parameter mismatching should (and does) bring the simulation into greater agreement 
with the experiments.  
 
Alternative Synchronization Regimes 
 
 So far we have presented results for the synchronization regime of the model 
based solely on variations in β. However, β is not the only parameter that affects the 
dynamics of the system. Both k and ϕ are integral in determining the final behavior of the 
model. Therefore it is worth spending time to investigate the synchronization regimes of 
these variables as well. This investigation provides fairly straight forward results. We can 
see a similar trend to β, that is decreasing γ range, for an increase in k. However, the 
system is significantly less sensitive to changes of k suggesting that perhaps the discrete 



time system can be considered close enough to the continuous time to be 'infinite' 
dimensional. When we examine the synchronization regime for variations in ϕ we find a 
very different behavior. Here we see the periodic nature of cos2 reflected. The smallest 

regime corresponds to a biasing about the most sensitive points of cos2, π
4

+ m π
2

, while 

the largest are related to the least sensitive sections of cos2, m π
2

, where m is an integer. 

This periodic shifting of the regimes is shown below. 
 

 
 
Final Improvements of Code 
  

In light of the experimental data it became important to expand the code in a 
number of ways. The first was to allow individual specification of parameters for both 
systems. In terms of the equations, we’ve essentially introduced subscripts onto many of 
the important system parameters and included independent variables in the code to 
accommodate these. Specifically in addition to the expansion introduced in the validation 
section we now define our system in the following way: 
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A second improvement that was required in the code was the ability to do 

interpolation between points in the history. This is important in investigating the error 
between simulation and experiment because it turns out that while the digital signal 
processing board implements discrete time filters there is still an analog component of 



propagation both through the board and through the system which can introduce a non-
integer delay. To account for this we introduce an intermediate step on each iteration of 
calculating the ‘real’ values of u[n-k]. For our purposes it is sufficient to simply introduce 
a linear interpolation scheme. More complicated schemes were tested but did not provide 
significant improvement.  
 
Investigation of Simulation vs. Experiment 
 
 Investigating the difference between the experimental and simulation results is 
important for understanding whether there is an error in the model, mistakes in the 
experiment, or just something truly interesting going on. To this extent beyond analysis 
of basic synchronization regimes is has become important to investigate potential 
mismatches in the system parameters. Most of the analysis that finds synchronization is 
based on the concept that two non-linear systems can be matched exactly. This however 
is not the case for real systems. Once the code was expanded as above it became possible 
to investigate what a small mismatch in parameters might introduce in terms of 
synchronization error. Just as we introduced subscripts on (β, ϕ, k) we can investigate 
mismatches in each of these parameters.  

In our numerical experiments with variation we introduced both negative and 
positive mismatches. The means that we chose a base value for the parameter and 
decreased (negative) or increased (positive) the parameter from that point. In the shown 

cases β1=β2=6,   k11=k22=k12=k21=22,   and ϕ1=ϕ2=
π
4

.  

 



Figure 10a & 10b show various mismatches in β. Here we notice that RMS difference 
between systems grows steadily with increasing mismatch. There is a slightly greater 
difference for positive vs. negative β. This trait certainly fits with our finding above. 
Recall that as β increased the synchronization regime decreased therefore when we 
introduce a positive mismatch one system has a larger β and therefore an inherently 
smaller regime. 

For variations in k, as shown in Figure 10c, we see that for a small (<10%) 
mismatch the region of synchronization disappears except for the 50% coupling location. 
The desynchronization is also symmetric as regards either a positive or negative variance 
(note the dashed, brown line). This likely stems from the fact that the general 
synchronization regime changes very little (if noticeable at all) over a delay change of 1. 
Further examining the smaller mismatches we note that while a very large change in k did 
not significantly affect the general synchronization regime here we see that even a .1 
difference between systems causes a large shift towards desynchronization. With a base 
delay of 22, this .1 difference represents a mismatch of only 0.45%. This raises a fairly 
large concern since in the discrete digital system only integer time steps can effectively 
implemented. Fractional delay differences would require either significantly more 
complex filtering or unrealistic lengths of physical cabling. 

Lastly, shown in Fig 10d, for variations in ϕ we find that RMS difference is 
significantly less sensitive to mismatches. Here even a 10% difference only raises the 
floor slightly. Just as with k it shows symmetric increases with respect to positive and 
negative mismatches. 

These investigations allow us to present a very promising improvement on 
comparison between simulation and experiment presented earlier. We can now generate a 
synchronization regime that includes a range of experimental error in the simulation. The 
end result is a synchronization regime that is nearly identical to the experimental data. 
 

 



Comprehensive Coupling 
 
 There remains one variable we introduced subscripts for which we have not 
investigated (beyond a few simple values), γ. While we introduced fully independent 
labeling of γ above we will restrict our results to something that is a bit more 
experimentally reasonable, power-conserving coupling, that is, γ12+γ11=γ22+γ21=1. 
Alternatively we can think of it as specifying γ1 and γ2 then γ12=1−γ2 and γ21=1−γ1 .This 
still provides us with ample room for producing coupling demonstrated in both literature 
and our previous results. The entire realm of synchronization is presented in Fig 12. 
 

 
The dotted lines represent the two “regions” we have swept in the above results. The 
vertical is for uni-directional coupling while the diagonal is for fully symmetric coupling. 
Lastly the dot represents the location of uni-directional, open loop synchronization. This 
is referenced fairly frequently in the literature and is often used for communication 
schemes.  
 



Project Considerations 
 
Below are presented the original timeline, mile-stones proposed at the beginning of the 
year and a brief description of the implementation results. With the exception of 
introducing quantization and noise, all of the project time-line elements have been 
achieved. This milestone was bypassed in deference to a fellow lab-mate who has begun 
investigations into that matter. We have however done significantly more investigations 
into novel results.  
 
Milestones: 
Implementation & Verification of individual simulations (complete) 
Implementation & Verification of final, combined simulation (complete) 
Generation of new results (in progress) 
Expansion & further development of code (in progress) 
 
Project Schedule 
Goal/Stage        Completion Date 
Implement and Validate Single Loop code  (complete) Nov. 1st 
Implement and Validate Coupled Lorenz code (complete) 1st week Nov. 
Implement and validate coupled MZ code  (complete) Dec 1st  
Mid-Year Progress Report    (complete) 1st Week Dec. 
Generate Conditions for Time delay   (complete) Jan. 1st 
Generate Conditions for Optical Biasing  (complete) Jan. 1st 

Introduce Quantization and Noise in model    (Skipped) 
Draft Final Report and Presentation     2nd week April 
Further Expansion of Code    (complete) ?? 
 
Implementation Comments 
 
 As stated earlier our choice was to implement the code in MATLab with 
extensions to C as needed for speed. With the current implementation a single loop can 
be simulated in <0.5 secs, and multiple loops synchronizing in <1.5 secs. This compares 
to approximately 2-3min for a single loop using the old code, and close to 4 or 5 minutes 
for synchronizing loops. Additionally, with the integration scheme memory storage was 
occasionally a bottle-neck depending on the length of time we wished to simulate (and 
the type of speed of the system we were simulating). With the discrete map equations 
however we are able to simulate 100’s of micro-seconds of data without running into any 
memory cap. This is very useful for gathering large statistical data for averaging and 
comparing to experimental data.  
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