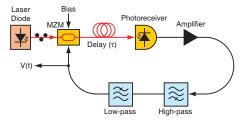
A State-Space Model for a Nonlinear Time-Delayed Feedback Loop Winter Progress Report

Karl Schmitt Advisors: Jim Yorke, Rajarshi Roy, Tom Murphy

AMSC 663

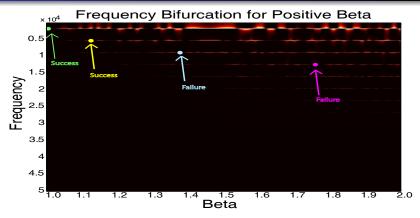

December 9th, 2008

イロト 不同下 イヨト イヨト

Goal

To implement an alternative, discrete time model for coupled nonlinear (chaotic) time-delayed feedback loops.

System Overview


$\mathbf{u}[n+1] = \mathbf{A}\mathbf{u}[n] + \mathbf{B}\beta \cos^2(\mathbf{C}\mathbf{u}[n-k] + \phi)$

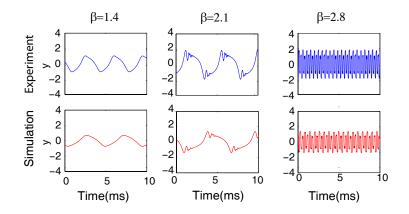
- *u*[*n*] is normalized (discrete) RF voltage
- A,B,C are matrix coefficients for the band-pass filter
- k is the discrete time delay in the loop
- β is the feedback strength
- ϕ is the phase offset in nonlinearity

Validation Plan

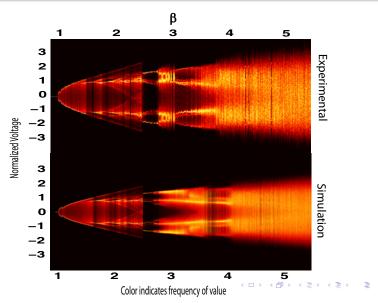
- Single Mach-Zehnder Loop
 - Comparision to Published Analytic Results (Bifurcation points) from Kouomou [1]
 - Comparision to Published Experimental Results of Cohen et. al.[2]
- Coupled Mach-Zehnder Loops
 - Comparision to Open Loop: Argysis [5] (not shown)
 - Comparision to Symmetric 50/50 coupling: Piel [6]

Comparision of Analytic to Simulated Results

Kouomou predicts the following bifurcations:

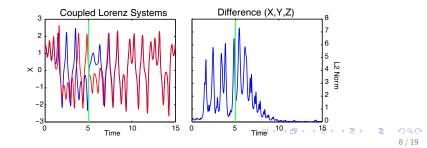

Hopf Bifurcation Points

$$\beta_k = (-1)^{k+1} \left[1 + \frac{(\epsilon R^2 - k^2 \pi^2)^2}{2k^2 \pi^2 R^2} \right]$$


$$\omega_k = k \frac{\pi}{R}$$

うへで 5/19

Comparision of Experimental to Simulated Time Series

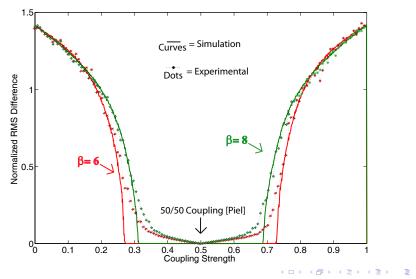

Comparision of Experimental to Simulated Bifurcation

Example of Synchronization in Coupled Lorenz Systems

Coupled Lorenz Equations:

$$\begin{aligned} \dot{x}_1 &= \sigma(y_1 - x_1) + \gamma(x_2 - x_1) & \dot{x}_2 &= \sigma(y_2 - x_2) + \gamma(x_1 - x_2) \\ \dot{y}_1 &= rx_1 - y_1 - 20x_1z_1 & \dot{y}_2 &= rx_2 - y_2 - 20x_2z_2 \\ \dot{z}_1 &= 5x_1y_1 - bz_1 & \dot{z}_2 &= 5x_2y_2 - bz_2 \\ \sigma &= 10 & r &= 60 & b &= \frac{8}{3} \end{aligned}$$

Equations for Coupled Mach-Zehnder Loops


We build equations for coupled Mach-Zehnder loops similar to the previous coupled Lorenz System:

(one Mach-Zehnder loop) $\mathbf{u}_1[n+1] = \mathbf{A}\mathbf{u}_1[n] + \mathbf{B}\cos^2(\mathbf{C}\mathbf{u}_1[n-k] + \phi)$

(coupled Mach-Zehnder loops)

$$\mathbf{u}_{1}[n+1] = \mathbf{A}\mathbf{u}_{1}[n] + (1-\gamma) * \mathbf{B}cos^{2}(\mathbf{C}\mathbf{u}_{1}[n-k] + \phi) \\ +\gamma & * \mathbf{B}cos^{2}(\mathbf{C}\mathbf{u}_{2}[n-k] + \phi) \\ \mathbf{u}_{2}[n+1] = \mathbf{A}\mathbf{u}_{2}[n] + (1-\gamma) * \mathbf{B}cos^{2}(\mathbf{C}\mathbf{u}_{2}[n-k] + \phi) \\ +\gamma & * \mathbf{B}cos^{2}(\mathbf{C}\mathbf{u}_{1}[n-k] + \phi) \end{cases}$$

Synchronization of Coupled Systems

• Implementation and Verification of individual simulations

- Implementation and Verification of final simulation
- Generation of new results
- Further Expansion of Code

November 1st (complete)

December 1st (complete)

Feburary 1st (in progress) To be Determined

- Implementation and Verification of individual simulations
- Implementation and Verification of final simulation
- Generation of new results
- Further Expansion of Code

November 1st (complete)

December 1st (complete)

Feburary 1st (in progress) To be Determined

- Implementation and Verification of individual simulations
- Implementation and Verification of final simulation
- Generation of new results
- Further Expansion of Code

- November 1st (complete)
- December 1st (complete)
- Feburary 1st (in progress)
 - To be Determined

- Implementation and Verification of individual simulations
- Implementation and Verification of final simulation
- Generation of new results
- Further Expansion of Code

November 1st (complete)

December 1st (complete)

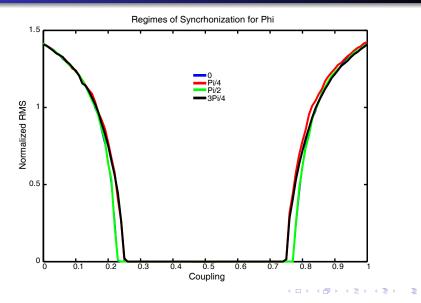
Feburary 1st (in progress)

To be Determined

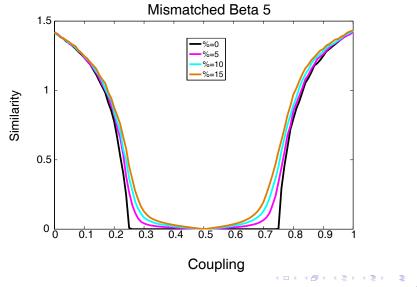
Dr. Zimin and Dr. Yorke for feedback and improvements Dr. Roy and Dr. Murphy for initial problem Adam Cohen and Bhargava Ravoori for experimental results

References

- Kouomou, Yanne. "Nonlinear Dynamics of Semiconductor Laser systems with feedback" *Doctoral Thesis*
- Cohen, Adam, et. al. "Using synchronization for prediction of high-dimensional chaotic dynamics" *Phys. Rev. Let.*, Publication Pending
- Murphy, Thomas. "Personal Communications"
- Anischchenko, V. S. et. al, "Mutual synchronization and desynchronization of Lorenz systems" *Tech. Phys. Lett.*, Vol. 24, Nmb 4, Apr 1998, Amer. Inst. Phys.
- Argysis, Apostolos, et. al.


"Chaos Based Communications at high bit-rates using commercial fibre-optics" *Nature*, 2005 Nature Publishing

 Piel, Michael, et. al, "Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling" *Phys. Rev. E* Vol 76, 2007 Amer. Phys. Soc.


Use of Code

- Previously Explored
 - 50/50 Coupling (replicated)
 - Synchronization for Coupling vs. Feedback Strength
- To be Explored
 - Synchronization for:
 - Coupling vs. Delay (in progress)
 - Coupling vs. Optical Bias (mostly complete)
 - Noise/Imprecise Parameters (in progress)
 - Quantization
 - Non-Symmetric Coupling
 - Variations in Other parameters

Preliminary Results

Preliminary Results

