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Goal

To implement an alternative, discrete time model for coupled
nonlinear (chaotic) time-delayed feedback loops.
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Introduction to Chaos

Properities of a Chaotic System

sensitive to initial conditions
topologically mixing
periodic orbits are dense

Classic Example: The Lorenz System
ẋ = σ(y − x) σ = 10
ẏ = rx − y − 20xz r = 60
ż = 5xy − bz b = 8

3
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Lorenz Synchronization

Coupled Lorenz Equations:

ẋ1 = σ(y1− x1) + γ(x2− x1) ẋ2 = σ(y2− x2) + γ(x1− x2)
ẏ1 = rx1 − y1 − 20x1z1 ẏ2 = rx2 − y2 − 20x2z2

ż1 = 5x1y1 − bz1 ż2 = 5x2y2 − bz2

σ = 10 r = 60 b = 8
3

4 / 21



Background
State-Space Model
The Project

System Overview

V(t)

Bias

MZM

Laser
Diode Photoreceiver

Amplifier

Low-pass

Delay (τ)

High-pass

x(t) + τ ẋ(t) + 1
θ

∫ t

to
x(s)ds = βcos2[x(t − T ) + φ]

x(t) is normalized RF voltage
τ is the low pass filter time constant
θ is the high pass filter time constant
T is the time delay in the loop
β is the feedback strength
φ is the phase offset in nonlinearity

[Kouomou, Thesis] 5 / 21



Background
State-Space Model
The Project

Modeling the system
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Traditional numeric methods can be applied

Generates a variety of dynamics

Problems

Step-Size Concerns
Speed (3+ Min per run)
Complicated filters difficult to model

[Cohen et. al., PRL]
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Comparing Differentials vs. State-Space

Differential Form
x(t) + τ ẋ(t) + 1

θ

∫ t
to

x(s)ds = y(t)

V(t)

Bias

MZM

Laser
Diode Photoreceiver

Amplifier

Low-pass

Delay (τ)

High-pass

Discrete State-Space Form

u[n + 1] = Au[n] + By [n]
x [n] = Cu[n] + Dy [n]

7 / 21



Background
State-Space Model
The Project

Some Details

Discrete State-Space Form

u[n + 1] = Au[n] + By [n]
x [n] = Cu[n] + Dy [n]

Choose canonical form from z-space transform of discrete
filter

Include nonlinear delayed feedback (y [n]→ f (x [n − k])

This gives us for matrices:

A=1.4939 -0.4972 B=1 C= 0 -0.2514
1 0 0 D=0
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Simplified Model

With all of the previous simplifications we are left with:

u[n + 1] = Au[n] + Bf (x [n − k])
x [n] = Cu[n]

⇓
u[n + 1] = Au[n] + Bf (Cu[n − k])

⇓
u[n + 1] = Au[n] + Bβcos2(Cu[n − k] + φ)

Where we have reintroduced the nonlinearity from the
Mach-Zehnder.
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Coupled State-Space

Finally we build a coupled system similar to the coupled Lorenz
System (with abstraction for easy reading)

u1[n + 1] = Au1[n] + Bf (Cu1[n − k])
+γB(f (Cu2[n − k])− f (Cu1[n − k]))

u2[n + 1] = Au2[n] + Bf (Cu2[n − k])
+γB(f (Cu1[n − k])− f (Cu2[n − k]))

⇓
u1[n + 1] = Au1[n] + B((1− γ)f (Cu1[n − k]) + γf (Cu2[n − k]))
u2[n + 1] = Au2[n] + B((1− γ)f (Cu2[n − k]) + γf (Cu1[n − k]))
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Implementation

Considerations

Quick Graphical Output

Vector Operations

In-built filter functions

Decision: Matlab (w/ C)

Major Concern: Quantization
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Validation

Stage 1: Single Loop

Characteristic Curves from Kouomuo [1]

Stage 2: Coupled Lorenz

Conditions by Anishchenko [4]

Stage 3: Coupled Mach-Zehnders

Open Loop: Argysis [5]
Symmetric 50/50 coupling: Piel [6]
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Use of Code

Previously Explored

50/50 Coupling
Synchronization for Coupling vs. Feedback Strength

To be Explored
Synchronization for:

Coupling vs. Delay
Coupling vs. Optical Bias

Noise and Quantization
Non-Symmetric Coupling
Variations in Other parameters
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Milestones

Implementation and Verification of
individual simulations

Implementation and Verification of final
simulation

Generation of new results

Further Expansion of Code

November 1st week

December 1st

Feburary 1st

To be Determined
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