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Abstract 
 

Methicillin resistant Staphylococcus aureus (MRSA) is a significant ongoing problem in 

healthcare, most commonly occurring in large, tertiary-care hospitals.  Its spread among 

patients causes many downstream effects, such as longer lengths of stay for patients, 

higher costs for hospitals and insurance companies, and in a significant number of cases, 

fatalities.  An agent-based simulation model is developed to investigate the dynamics of 

MRSA transmission in a hospital.  The simulation model is used to examine the 

effectiveness of infection control procedures that could be implemented to reduce or 

prevent the spread of infection.  Specifically, simulation experiments are performed to 

examine the efficacy of hand hygiene compliance and efficacy, patient screening, 

decolonization, patient isolation, and healthcare worker-to-patient ratios on the incidence 

of MRSA transmission and other relevant metrics.  The software has produced results 

comparable to those presented in the literature, by demonstrating varying degrees of 

improvement within the range of policy initiatives.  Outside of extremely high hand 

hygiene compliance and single HCW-to-patient ratios, patient isolation appears to be the 

most effective single measure, reducing transmission by the largest amount from a 

baseline case. 
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Introduction 
 

In large hospitals, there are many patients and health care workers (HCWs) that come 

into contact with each other frequently throughout the course of a day.  If one of those 

patients or HCWs becomes colonized with methicillin resistant Staphylococcus aureus 

(MRSA) or another pathogen, the bacteria could spread by way of HCWs to others within 

the hospital population.  As a result, many patients fall victim to hospital-acquired, or 

nosocomial infection.  It is estimated by the Committee to Reduce Infection Deaths (RID) 

that infections acquired in hospitals lead to over 100,000 deaths per year and an 

additional $30.5B in hospital costs [1].  More specifically, close to 300,000 (out of 2 

million) infection cases involved MRSA, with close to 20,000 of those cases resulting in 

fatalities. 

 

Many experts agree that hospital-acquired, or nosocomial, infections (HAIs) are almost 

entirely preventable [2], given a committed and capable healthcare institution.  However, 

studies have shown that such measures have proven difficult to implement and enforce, 

due to both HCW non-compliance and cost considerations.  These infection control 

policies consist of a number of measures aimed at reducing the incidence of MRSA 

transmission.  Typically, the first measure hospitals take is to create education campaigns 

aimed at improving hand hygiene compliance of health care workers.  The next effort 

usually involves screening patients for MRSA, at admission and/or with some frequency 

during their stay.  This policy allows for the detection of colonized patients so that further 

measures can be taken to prevent transmission to other patients in the hospital.   

 

Among these additional measures are patient isolation, decolonization, and reduction of 

HCW-to-patient ratios.  Patient isolation involves moving a detected colonized or 

infected patient to a single room, so that they are not as likely to colonize other patients.  

The decolonization process involves a regimen aimed at reducing or removing the 

presence of bacteria on the skin of patient, which is done typically through the use of 

antibiotics and alcohol-based bathing.  Reducing HCW-to-patient ratios decreases the 

connectivity of the patient network in the hospital, which decreases the likelihood of 

transmission from one patient to another. 

 

This research effort seeks to identify the most effective infection control measure or 

measures that could reduce the incidence of MRSA transmission without becoming cost 

prohibitive.  To accomplish this goal, an agent-based simulation package is designed and 

developed to model MRSA transmission dynamics and investigate the impact of infection 

control measures (ICMs) in a hospital. 
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Methodology 
 

Historically, this problem has been approached using a number of survey and data 

collection techniques that evaluate a combination of one or more preventive measures 

[3].  More recently, an expansion in methodology has led to a number of studies using 

mathematical modeling and simulation [4,5,6,7,8] to investigate the spread of MRSA 

within hospitals.  These computational models allow researchers to evaluate potential 

solutions in a virtual environment so that hospital administrators can make informed 

decisions concerning infection control policy.  However, mathematical models have 

limitations as well, as they are driven by derived equations that represent the macroscopic 

behavior of the system.  Even when properly calibrated, these models lack some degree 

of realism as they fail to depict the low-level interactions that drive the system.  These 

interactions are more naturally represented by agent-based modeling [10], a more recent 

approach, which is used to develop a software package to further investigate this 

problem. 

 

Agent-based modeling and simulation (ABMS) is a powerful technique that seeks to 

generate emergent characteristics from simple, rule-based individual actions.  In other 

words, the goal of ABMS is to determine whether or not macroscopic trends can be 

generated from microscopic behavior.  This technique is used to define agents in a 

hospital, specifically patients, nurses, physicians, and visitors, that interact with each 

other throughout the simulation period.  The interactions between agents serve as the 

source of transmission dynamics within the hospital.   

 

Discrete event simulation (DES) is used to propagate the interactions between the agents 

and serves as an interface to collect data for various configurations of hospital operations, 

including the implementation of specific ICMs.  DES typically offers three design 

methodologies: time step, event oriented, and process oriented.  All methods simulate 

system dynamics using time-associated events, at which system state variables are 

updated.  Time stepped DES propagates time using a fixed time step until the simulation 

time of a scheduled event has been reached, at which point the event is processed.  A 

significant disadvantage of time stepped DES is that if the events are distant in time, the 

simulation could propagate a long time without processing any events, which is an 

inefficient use of computational resources.  Event oriented DES advances time to 

simulation times at which an event is scheduled to occur.  This methodology leads to a 

serial processing of events, which is straightforward to implement, but cannot be 

parallelized easily.  Process oriented DES operates in a slightly different way, where each 

simulation component is modeled as a process that executes until the simulation has 

reached a terminating condition.  Process oriented DES also advances to discrete 

simulation event times, but the execution of the simulation occurs as a series of parallel 

processes executing through a series of active and inactive states.  The process oriented 

DES methodology is becoming the most prevalent technique because of its 

correspondence to parallelization, and thus is the method of choice for this software 

project. 
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In order to account for the many possible outcomes, the simulation needs to be stochastic, 

implying that many events must be determined through the use of pseudo-random 

number generation.  The stochastic nature of the simulation requires multiple replications 

of each scenario to be executed, and thus Monte Carlo methods are also incorporated into 

the design of the software.  Agent-based models are typically computationally expensive, 

thus running many Monte Carlo replications requires large quantities of processing time.  

As a result, the software is able to execute serially or in parallel, so that more demanding 

test cases can be simulated within reasonable amounts of time. 

 

Implementation 
 

In order to implement the agent-based model, each agent is defined in terms of its 

characteristics and behavior.  This type of modeling is supported best by object-oriented 

programming (OOP), in which object classes are defined with inherent characteristics and 

methods.  The simulation package is developed in Python, a dynamic object-oriented 

programming language [11].  In addition to basic Python, the NumPy, SciPy, SimPy, and 

Parallel Python modules are also useful resources for building the software package.  

NumPy is a multi-dimensional array-based module that contains a large number of 

operations for arrays.  SciPy is a module used for scientific computation tasks, which 

provides random number generation functions.  SimPy consists of process oriented DES 

classes and methods which are used to develop the simulation architecture for the 

software.  Parallel Python is used to implement a capability for the software so that 

Monte Carlo simulation replications can be executed simultaneously on multi-processor 

machines. 

 

There are two primary object types in SimPy: processes and resources.  The interactions 

between processes and resources are simulated through the use of a scheduler, which 

advances to discrete points in time to handle specific events.  Processes can be used to 

model many real world objects that are progressing through a system. In SimPy, 

processes advance through a series of active and passive states defined by their process 

execution method (PEM) to represent the passing of time.  There are a number of ways to 

start and stop processes during their execution.  The first series of methods are yield 

statements, which cause a process to wait in a passive state until a certain criteria is met, 

such as a fixed passage of time or until a certain resource has been acquired or released.  

The second type of process control uses interruptions to awaken a process that is 

currently waiting.  The process that is interrupted can determine the source of the 

interruption, and is then able to interact with that process in some way.  The third method 

of process control uses event signaling to awaken waiting processes. 

 

The agents in the simulation are all represented as processes, including patients, HCWs, 

visitors, and even hospitals.  The only allowable interactions are between patients and 

HCWs, and patients and their visitors.  Interactions between HCWs are not modeled, 

because there is not sufficient data to support a significant contribution from such 

interactions.  All agents in the simulation are generated by a source agent, which varies in 

its operation depending on the type of agent being generated.  Patients are generated 
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continuously so that the hospital remains fully occupied.  HCWs are generated at the 

beginning of the simulation, as specified by parameters.  A fixed number of visitors are 

generated each day, each visiting a single patient in the hospital at random. 

There are three classes of resources in SimPy: resources, levels, and stores, two of which 

are used in the software.  Resources can have a finite or infinite capacity and are 

requested one unit at a time by processes.  Hospital beds are modeled as resources that 

are requested by patients as they enter the hospital.  Stores are finite capacity resources 

that can actually contain processes themselves, which can be requested by other 

processes in single or multiple quantities.  Nurse and physician staffs are modeled as 

stores, where patients can request either type of HCW for a visit, before returning them 

so that they become available to other patients. 

 

The transmission of MRSA can occur in one of three ways: 

 

1. A newly admitted patient transmits the bacteria to an HCW, 

2. a transiently colonized HCW transmits the bacteria to the patient, or 

3. a colonized visitor transmits the bacteria to the patient 

 

The transmission of MRSA between agents is determined stochastically, based on the 

risk level of the patient and the behavior of the HCWs that visit.  Once colonized, a 

patient remains colonized until the patient either develops an infection or completes a 

decolonization regimen.  The patient can only begin the decolonization or treatment 

process once the state of the patient has been determined by an HCW.  The colonized 

state of the patient is determined by a screening test whereas the infected state is 

determined by visual inspection.  An HCW can only become colonized through direct 

contact with a patient.  A colonized HCW can become decolonized upon the occurrence 

of its next hand hygiene activity.  The probability of an HCW agent washing its hands is 

based on its own hand hygiene compliance, factoring in the risk level and isolation status 

of the patient.  Agent interactions and state transitions are summarized in Figure 1. 

 

 
 

Figure 1: Agent Interactions and State Transitions 
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The general operation of the software includes three major stages: initialization, 

simulation, and output of results.  During the initialization phase, all of the required 

modules are loaded into the simulation environment, including the agent class definitions, 

NumPy, SimPy, SciPy, and Parallel Python modules.  In addition, simulation parameters 

can be input directly into the model or specified by spreadsheet.  The primary 

transmission related parameters are summarized in Table 1.  The hospital is also defined 

in this phase, including the number of single and double rooms, the number of nurses and 

physicians, and the infection control policy.  Additionally, for the parallel case, a job 

server is defined, to which single replications are submitted. 

 

Parameter Name 

 Hand hygiene compliance 

 Hand hygiene efficacy 

 HCW to patient ratios 

 Transmissibility 

- Patient to HCW 

- HCW to Patient 

- Visitor to Patient 

 Length of stay 

 Number of daily contacts 

 Number of colonized patients admitted 

 

Table 1: Transmission Factors 

 

During the simulation phase, all of the processes are activated and progress through their 

process execution methods.  Patient agents enter the hospital and request a bed.  When a 

bed becomes available, the patient is admitted and possibly screened if specified by the 

hospital infection control policy.  If a bed is not yet available, the patient occupies a space 

in the hospital waiting room.  Patient lengths of stay and the required number of visits are 

specified by the user and are defined once the patient is admitted.  Patients are visited 

each day by nurse and physician agents, and sometimes visitor agents, if they are 

fortunate enough to have friends and family.  If active surveillance is enforced, the 

patient may be screened periodically for colonization.  Once the screening test results 

have returned, the patient may receive treatment based on the results.  If the patient tests 

positive for colonization or shows signs of an infection, the patient may undergo 

decolonization or be moved to isolation.  During each visit, MRSA can be transmitted to 

or from the patient.  Once the visit is complete, the nurse or physician has the opportunity 

to wash their hands, which may or may not be successful depending on the efficacy of the 

hand washing agent.  If a patient develops an infection, their stay is extended for 

treatment; otherwise, that patient is released at the end of their stay and another patient is 

allowed to enter the hospital. 

 

Performance 

Related 

External 

Factors 
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At the end of each replication, statistics are accumulated before moving on to the next 

replication.  Once all of the replications have been simulated, auxiliary functions can be 

called to print, store, and plot the results of the simulation.  The output displays three 

categories of information, including the basic simulation parameters, infection control 

policy, and the simulation results averaged over the number of replications.  The first set 

of statistics summarize the population statistics within the hospital, such as the total 

number of patients, the number of patients discharged, and the average length of stay.  

The next set of statistics display information related to the implemented ICMs, such as 

the number of screening tests or the number of patients that completed the decolonization 

process.  The last series of statistics relate to the infection metrics, which summarize the 

spread of infection within the hospital.  The parallel execution also produces some 

statistics on the execution times of the job server. 

 

Computing 
 

Agent-based models can require large amounts of processing because of their explicit 

representation of interactions.  Consequently, executing many Monte Carlo replications 

can become computationally prohibitive, when done so in a serial manner.  However, 

each replication is independent of the others, so it is advantageous to run as many 

simulations as possible in parallel.  In order to assess the effectiveness of parallel 

computing, two scenarios were tested: a small case with many replications and a large 

case with a small number of replications.  These two scenarios were run on the Genome 

cluster at the University of Maryland.  The machine used contained 32 processors and 

128 GB RAM.  The results of the comparison are shown in Tables 2 and 3. 

 

Small Case 

 100 days, 250 replications 

 10 single/10 double rooms 

 10 nurses/5 physicians 

 10 day length of stay 

 5 daily contacts 

 No infection control measures 

Table 2: Parameters and results of running a 

small case on Genome cluster 

N 
Job Time 

Sum (s) 

Run 

Times (s) 
Speedup 

1 747 747 - 

2 752 377 1.98 

4 746 188 3.97 

8 752 96 7.78 

16 761 50 14.94 

32 941 33 22.64 

 

As shown from the data, multiple processors improve the speedup dramatically, by a 

factor almost equal to the number of processors for smaller numbers of processors.  As 

the number of processors increases, there is some degradation in speedup due to the 

extraction of results from a larger number of processors, ass indicated by the total job 

time sum.  However, even with this degradation, the run times are still lower with more 

processors, so there is still something to be gained from a larger number of processors.  
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Large Case 

 500 days, 25 replications 

 50 single/150 double rooms 

 50 nurses/20 physicians 

 10 day length of stay 

 5 daily contacts 

 All infection control measures 

Table 3: Parameters and results of running a 

large case on the Genome cluster 

 

 

N 
Job Time 

Sum (m) 

Run 

Times (m) 
Speedup 

1 136.9 136.9 - 

2 138.4 71.84 1.91 

4 136.1 37.91 3.61 

8 133.7 21.10 6.49 

16 141.3 11.88 11.52 

32 182.3 8.96 15.28 

For larger cases, it is clear that simulations are more difficult to run quickly, as single 

replications are still computationally intensive.  The degradation in speedup is even more 

apparent, as each processor loses efficiency by running less replications.  However, the 

benefit of parallelization is even greater in this case, as the feasibility of running larger 

numbers of replications in serial comes into question.   

 

Overall, parallelization in the execution of agent-based modeling and simulation is a 

valuable capability, allowing for a faster execution in every case.  Even with the 

degradation in speedup as the number of processors increases, the run times continue to 

decrease.  In addition, there is no penalty for doing so, as the replications are independent 

and therefore no accuracy is lost. 

 

Verification, Validation, and Testing 
 

There are a number of standard metrics from the literature that are used to evaluate the 

prevalence of MRSA and the potential for its spread within a hospital ward.  These 

metrics can be used to determine the effectiveness of various infection control 

procedures.  The first of these is the successful introduction rate, which is the number of 

secondary MRSA cases arising from transmission within the hospital.  This metric gives 

a clear depiction of the susceptibility of the hospital to outbreaks.  Another important 

metric is mean ward prevalence, which is the percentage of hospital days on which at 

least one colonized patient was present.  This metric describes the degree to which 

MRSA is present within the hospital, which correlates with the ability to eliminate the 

bacteria completely.  The percentage of colonized patient days represents the proportion 

of days spent as a colonized or infected patient in the hospital.  This metric is a good 

representation of quality, as low proportions indicate not only a low incidence of cross-

transmission, but a quick response to those patients who have become colonized or 

infected.  The attack rate is calculated as the ratio of MRSA transmissions to uncolonized 

patient days.  The inverse of metric is also useful, representing the number of average 

number of uncolonized patient days between secondary cases of MRSA.  Finally, the 

basic reproduction number, R0, is a key indicator of whether an outbreak will occur.  R0 
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is the mean number of secondary cases that results from a single index patient.  

Typically, if R0 > 1, then an outbreak is likely to occur within the hospital, as the average 

colonized patient will transmit MRSA through an HCW to at least one other patient. 

 

Verification 

 

The verification process involved ensuring that the implementation correctly represents 

the agent definitions and interactions specified by the conceptual model.  Most 

importantly, verification tests are performed to check that the software receives the 

correct parameter values and executes each process properly during the simulation.  In 

order to facilitate this process, an event logging system was implemented to monitor the 

critical events in the simulation, such as patient admissions and discharges, HCW visits 

to patients, transmissions between agents in the hospital, and execution of various 

infection control procedures. 

 

In addition to programmatic testing, simple test cases were performed to ensure that the 

software was producing reasonable output.  There are two types of techniques that were 

used in this phase: corner case testing and relative value testing.  Corner case testing 

involves setting parameters to their extreme values where their outputs are known.  For 

example, setting the proportion of colonized admitted patients to zero should not produce 

any transmission within the hospital, as there are no colonized patients to transfer MRSA 

to HCWs.  Relative value testing involves changing parameters to see if they affect the 

output in the right direction.  For example, decreasing hand hygiene compliance to zero 

results in a massive outbreak whereas increasing it to one nearly prevents transmission 

completely.  Corner case and relative value testing were performed on each of the 

relevant input parameters. 

 

Validation 

 

The validation process for ABMS at this stage of its use is not consistently agreed upon.  

However, Axtell et al. describe a useful convention for three varying degrees of 

validation for agent-based models [12].  The authors speak of a replication standard, 

used for re-creating agent-based models described in the literature.  It is also a useful 

standard for validating agent-based models with other types of models, such as 

mathematical or conventional simulation models.  The three level of validation, in order 

of decreasing precision, are numerical identity, distributional equivalence, and relational 

alignment.  Numerical identity implies that the results from two models are exactly the 

same, which provides a high degree of confidence for both models.  Distributional 

equivalence typically comes into play when comparing models where at least one model 

contains stochastic elements.  In these cases, it is very unlikely that validation tests will 

produce numerical identity; therefore the goal is typically to demonstrate that each model 

produces a similar distribution of numerical results.  Finally, relational alignment 

provides at least some degree of confidence, implying that the two models produce the 

same trends as a result of varying input parameters.  This type of standard can be the best 

case scenario, especially when comparing models that use different input parameters to 
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model the same system.  Models that fail to display any degree of relational alignment 

may need to undergo additional conceptualizing and/or verification. 

 

The ABMS validation process involved performing simulation experiments from the 

literature and comparing the results.  The first comparison was performed with the 

standard SIR model from epidemiology [3].  This model consists of nonlinear differential 

equations that represent the transition from Susceptible to Infected to Recovered states.  

These equations are shown in Table 4 and operate under the assumption that the 

population is homogenous, closed (i.e. no migration), and well-mixed. 

 

State Model Equation 

Susceptibles SI
dt

dS
 

Infecteds ISI
dt

dI
  

Recovered I
dt

dR
 

 

Table 4: SIR Model Equations 

Agent-based modeling can reproduce similar transmission dynamics, even though the 

conceptual models differ considerably.  This comparison was performed for a hospital 

population of 100 patients, only considering the susceptible and colonized (infected) 

states, as there is no recovered state for MRSA patients since they are always susceptible 

to colonization.  A comparison of the two models is shown in Figures 2 and 3. 

 

 
Figure 2: SIR Model 

 
Figure 3: ABMS 

 

In addition to comparing ABMS to mathematical epidemiology models, it is also 

necessary to look at more recent computational models.  Beggs, Shepherd, and Kerr [9] 

developed a deterministic model to explore the effects of hand hygiene compliance in 

depth.  The primary model equations allow for an analytical expression to compute R0, 
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which is shown in Table 5 with a related and necessary expression involving hand 

hygiene compliance.  Three coupled simulation experiments were performed, which 

examined the effect of hand hygiene compliance and efficacy, transmissibility, and daily 

contacts on R0.  A comparison of the results is shown in Figures 4, 5, and 6. 
 

n

n
R

)(

)1(
0

 (1)  
)1( h

h

fn

cnf
 (2) 

 

Parameter Meaning Default Value 

n Number of patients 20 

n' Number of HCWs 3 

μ Patient removal rate 0.10 per day 

μ’ Hand washing rate 14.0 per day 

λ’ Average efficacy of each hand washing event 0.5 

γ Detection rate of colonized patients 0.10 per day 

c Patient-HCW contact rate 5 per patient per day 

p,p’ Transmissibility 0.1 

β,β’ Transmission rate (cp, cp‟) 0.5 
 

Table 5: Beggs, Shepherd, and Kerr model equations and parameter definitions and values 

 
Figure 4: Comparison of ABMS with Beggs, Shepherd, and Kerr hand hygiene compliance and 

transmissibility experiment 
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Figure 5: Comparison of ABMS with Beggs, Shepherd, and Kerr hand hygiene compliance and 

efficacy experiment 

 
Figure 6: Comparison of ABMS with Beggs, Shepherd, and Kerr hand hygiene compliance and daily 

contacts experiment 

 

As shown by the figures above, hand hygiene compliance displays a couple of key 

behaviors.  The first of these behaviors is similar to the law of diminishing returns.  An 

increase in compliance from 0 to 40% results in a significant improvement in 

transmission from a massive outbreak to containment.  On the other hand, an incremental 

increase in compliance above 40% results in very little improvement, requiring a 

significant increase to reduce R0 by any significant amount.  This behavior clearly 

indicates that additional control measures are needed to further reduce transmission, as 

extremely high compliance rates are typically not feasible. 
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In order to validate the additional control measures, a baseline case was defined, as 

specified in Table 6.  From the baseline case, infection control measures were 

implemented to assess their effectiveness.   

 

Baseline Case 

 100 days, 250 replications 

 30 patients, 5 HCWs 

 10 single, 10 double rooms 

 5% of patients admitted are colonized with MRSA 

 5 daily contacts per patient, U(0,10) day LOS 

 50% hand hygiene compliance, 80% efficacy 

 No interventions 

 

Table 6: Baseline case parameters 

 

The first set of experiments involved coupling patient screening on admission with 

patient isolation and decolonization, as these measures require the detection of colonized 

patients to take effect.  For both patient isolation and decolonization, a pair of figures 

shows the effects of the proportion of patients screened on the number of isolations and 

decolonizations as well as the system effect on transmission, in terms of mean R0.  It is 

clear that as the proportion of patients screened on admission increases, the number of 

isolations and decolonizations both increase linearly, indicating that screening more 

patients continues to produce improvement.  It is also clear from the figures that with 

more isolations and decolonizations, which result from more patient screenings, the mean 

R0 value decreases linearly as well.  It is also quite clear that patient isolation is a better 

control measure than decolonization, although the difference in mean R0 values only 

becomes significant at higher screening probabilities. 

 

 
Figure 7: Mean number of isolations and mean R0 plots as a function of patient screening probability 
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Figure 8: Mean number of decolonizations and mean R0 plots as a function of patient screening 

probability 

 

The last measure to consider is HCW-to-patient ratios.  The effect on mean R0 is shown 

in Figure 9.  As expected, a HCW-to-patient ratio of unity nearly eliminates transmission, 

as colonized patients that are admitted are unable to transmit to other patients.  However, 

it is interesting to see that extremely low ratios are required to have a significant effect on 

R0.  It appears that ratios higher than 3 do not have much benefit at all. 

 

 
Figure 9: Mean R0 plot as a function of healthcare worker to patient ratios 

 

The best case results for each infection control measure are summarized in Table 7.  It is 

clear that 1:1 HCW-to-patient ratios result in the best performance, but such ratios are 

typically infeasible, especially outside of intensive care units.  The next best control 

measure is clearly patient isolation, which outperforms even the 2:1 HCW-to-patient ratio 

with respect to the attack rate and R0 measures, which provide the best assessment of 

transmission in the hospital.  Decolonization appears to be the least effective measure, 
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although it is slightly more effective at reducing ward prevalence, essentially because it is 

the only method for eliminating colonization. 

 

Mean Statistic Baseline Isolation Decolonization 
Cohorting  

1:1 2:1 

Patients Colonized 51.46 39.56 45.42 34.79 40.65 

Colonized Patients 

Admitted 
36.50 34.48 34.76 33.85 33.89 

No. of Secondary 

Cases 
14.97 5.08 10.66 0.94 6.75 

Ward Prevalence 82.51% 81.44% 78.82% 78.99% 80.57% 

Colonized Patient 

Days 
6.49% 5.66% 5.72% 5.14% 5.64% 

Attack Rate 0.004989 0.001693 0.003553 0.000313 0.002251 

R0 0.4098 0.1474 0.3056 0.0272 0.1991 

 

Table 7: Summary of infection control measure performance 

 

Additional Testing 

 

Now that ABMS has demonstrated results consistent with the literature, simulation 

experiments can be performed to provide insight to questions relevant to hospitals.  One 

such question relates to determining which type of HCW, namely nurses or physicians, is 

responsible for the majority of transmission.  Another relevant question is concerned with 

determining the circumstances under which a high-performance hospital could become 

susceptible to an outbreak.  These questions are now considered in turn. 

 

The question of who colonizes more, nurses or physicians, is important for hospitals who 

do not know who to target primarily with education programs.  Both populations have 

different cultures and varying degrees of interaction with patients, and therefore would 

require a different approach to reduce transmission.  Nurses typically see patients much 

more often, but they wash their hands more often.  Physicians typically see many more 

patients, but less frequently.  These contrasting service patterns make it difficult to 

predict the primary source of transmission.   

 

Two experiments were conducted in a 50 patient hospital with 10 nurses.  Both 

experiments varied the proportion of patient visits from nurses and measured the 

proportion of patients colonized by nurses.  In the first experiment, the number of 

physicians was varied from 1 to 5, with equal hand hygiene compliance, to determine the 

effects of nurse-to-physician ratios on transmissions.  The second experiments examined 

the effects of physician hand hygiene compliance, which was at best equal to that of 

nurses.  The results of these experiments are summarized in Figure 10. 
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Figure 10: Proportion of colonization plots, varying the number of physicians and difference in 

physician hand hygiene compliance 

 

In the first experiment, it is clear that the nurse-to-physician ratio does not have a 

significant impact on the transition point where nurses colonize more patients than 

physicians.  For this scenario, it is clear that whoever receives the majority of patient 

visits is likely to be the more significant source of transmission.  In the second 

experiment, the difference in hand hygiene compliance significantly impacts the 

transition point, shifting it further to the right as the difference grows.  For the case where 

physicians are 30% less likely to wash their hands, nurses must visit patients 

approximately two-thirds of the time to colonize more patients.  In practice, however, 

nurses typically visit patients 80-90% of the time, clearly indicating from these results 

that nurses account for the significant majority of colonizations. 

 

With the respect to the question of the susceptibility of high performance hospitals to 

MRSA outbreaks, we consider a 100 patient hospital with 20 nurses and 10 physicians.  

The HCWs comply with hand washing 70% of the time, and the hospital employs patient 

screening on admission with one-day test result return times, patient isolation, and 

decolonization.  On first look, this hospital would seem impermeable to MRSA outbreaks 

due to the significant effort to prevent and control infection.  For the most part, this 

assessment is true, as moderate changes in a number of transmission factors, such as hand 

hygiene efficacy, daily contacts, proportion of colonized admitted patients, screening test 

return times, and patient lengths of stay, do not have a significant impact on transmission 

with such a high hand hygiene compliance rate.  Only two cases appear to lead the 

system to an outbreak, a highly transmissible pathogen (greater than 0.28 for this case) 

and a high visitor rate (greater than 200 per day at 2% transmission rate).  To the first 

case, a highly transmissible pathogen transfers between patients and HCWs much more 

frequently, spreading more frequently throughout the hospital.  The second case can lead 
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to an outbreak due to the „small-world effect‟, as visitor introductions create new pockets 

of colonization, allowing for transmission to occur along different vectors in the hospital. 

Conclusions 
 

Agent-based modeling and simulation provides a powerful capability to analyze complex 

systems.  When applied to epidemiological problems, it is straightforward to represent 

individuals and the interactions between them to model both the transmission dynamics 

of some disease and the effectiveness of various infection control measures.  Parallel 

processing is also an extremely valuable capability, as agent-based models are typically 

computationally intensive, requiring a large number of computer cycles to simulate.  

Being able to execute Monte Carlo simulations in parallel allows for results to come 

faster and more reliably, as more replications can be simulated in reasonable amounts of 

time. 

 

As to the specific problem of reducing MRSA transmission in hospitals, the best defense 

involves two main approaches: decrease the connectivity of the patient network and 

decrease the likelihood of transmission between patients and HCWs.  High incidences of 

transmission occur when the patient population is well-mixed, meaning that many 

patients share the same HCWs, allowing for transmission to occur easily.  Isolating 

patients and maintaining low HCW-to-patient ratios can serve to segment the patient 

population, so that colonized patients are less likely to transfer the bacteria to others.  

HCWs can reduce the probability of transmission by practicing proper hand hygiene and 

hospitals can do so by minimizing patient lengths of stay and the number of daily 

contacts. 
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