Abstract:
The goal of this project is to develop a parallel implementation of a serial heuristic to attack large instances of the generalized travelling salesman problem (GTSP). By leveraging more computational resources the parallel version of the heuristic is expected to produce higher-quality solutions in less time. A significant portion of this project will involve the development of a parallel architecture that can be extended to host a selected serial heuristic and the GTSP problem class. The extension of the architecture to host the serial heuristic will involve the identification and implementation of different methods of parallel cooperation and levels of parallelism. The parallel heuristic will be tested on a database of problem instances and the performance will be compared to published results of the serial heuristic. In addition, the parallel heuristic will be tested to determine how performance scales with the number of processors used.

1 - Project Background and Introduction

Problem
The generalized traveling salesman problem (GTSP) is a variant of the well-known traveling salesman problem (TSP). Like the TSP, it is a combinatorial optimization problem and has important applications in the field of routing. In the GTSP, a set of nodes or vertices in the plane is grouped into a number of clusters. The goal is to determine the shortest Hamiltonian tour visiting each cluster exactly once. If the distance matrix is not symmetric, it may be cheaper to visit more than one node in a cluster.

More formally, let $G(V, A)$ be a graph where V is the set of vertices and A is the set of arcs. A distance matrix $C = (c_{ij})$ is defined on A. If C is symmetric, the arcs are undirected and can be replaced with edges. In the GTSP, V is partitioned into a set of clusters, $V = \{V_1, V_2, ..., V_m\}$, each containing a subset of the nodes from G. The goal is to determine the shortest Hamiltonian tour visiting each cluster exactly once. If the distance matrix is not symmetric, it may be cheaper to visit more than one node in a cluster. For this project we propose the symmetric version of the GTSP, where V is partitioned into a set of node-disjoint clusters and the distance matrix is symmetric, hence, exactly one node in each cluster is visited. The following figure is an illustration of the problem (Figure 1).
Context
Below are real-world examples of GTSP applications:

- Post-box collection and stochastic vehicle routing (G. Laporte, 1996) [5].
- Routing of welfare clients through government agencies (J.P. Saksena, 1970) [8].
- Warehouse order picking with multiple stock locations (C.E. Noon, 1988) [6].
- Airport selection and routing for courier planes (C.E. Noon, 1988) [6].

Mathematical Formulation
The symmetric GTSP can be formulated as the 0-1 Integer Linear Program (ILP): Given a graph $G(V, E)$, where the set $\{V_1, V_2, \ldots, V_m\}$ is a partition of V into m clusters, and a distance matrix C, where $c_{e} \in C$ is the Euclidean distance associated with edge $e \in E$ find:

$$
\min \sum_{e \in E} c_{e} x_{e}
$$

Subject to:

$$
\sum_{v \in V_k} y_v = 1, \quad k = 1, 2, \ldots, m, \quad (1)
$$

$$
\sum_{e \in \delta(v)} x_e = 2y_v, \quad \text{for } v \in V, \quad (2)
$$

$$
\sum_{e \in \delta(S)} x_e \geq 2y_v, \quad \text{for } \emptyset \neq S \subset V_v, \quad v \in V_v - S, \quad V_v = \{v \in V | y_v = 1\}, \quad (3)
$$

$$
x_e \in \{0, 1\}, \quad \text{for } e \in E, \quad (4)
$$
Constraint (1) imposes the requirement that each cluster be visited exactly once. The degree equations (2) stipulate that if a vertex \(v \) is part of the solution its degree must be equal to two. The subtour elimination constraints (3) ensure the solution does not contain any sub-tours. Constraints (4-5) are the 0-1 integer constraints on the selection of vertices and edges in the solution. \(\delta(S) \) is a function defining the edge cut set that partitions the vertex sets \(S \) and \(\bar{S} \).

Existing Solutions/Algorithms

Like the TSP, the GTSP is NP-hard, and it is conjectured that problems in this class are inherently intractable. Thus, one cannot expect to find “good” or polynomial-time algorithms for solving them. Despite this, there exist exact algorithms for solving the GTSP to optimality. One exact algorithm for solving the GTSP is a branch-and-cut (B&C) algorithm proposed by M. Fischetti in 1997 [4]. Branch-and-cut is a method of combinatorial optimization for solving integer linear programs. The method is a hybrid of branch-and-bound and cutting plane methods.

While B&C techniques drastically reduce the size of the solution space and perform well on small problem instances, these techniques are not polynomial time algorithms. As the size of the problem instance grows, the exponential nature of the problem becomes apparent and B&C algorithms do not terminate in a reasonable amount of time. For example, the run times for the Fischetti B&C algorithm start approaching one day for GTSP problem instances with close to 90 clusters [4].

Heuristic algorithms have been developed to solve larger GTSP problem instances. Heuristic algorithms are search techniques that find approximate solutions to hard combinatorial optimization problems. The following are three heuristic algorithms that have been successfully applied to the GTSP:

- A Random-Key Genetic Algorithm (L. Snyder and M. Daskin, 2006) [3].
- Generalized Nearest Neighbor Heuristic (C.E. Noon, 1998) [6].
- mrOX Genetic Algorithm (J. Silberholz and B. L. Golden, 2007) [9].
2 - Approach
We propose a parallel approach to assailing the GTSP. Specifically, we will create a parallel architecture and extend the architecture’s framework to implement a known and tested serial heuristic algorithm for attacking the GTSP. A new genetic algorithm proposed by J. Silberholz and B.L. Golden in [9], referred to as the mrOX Genetic Algorithm (mrOX GA) [1], has shown promising results and is the chosen heuristic for this project.

In this section an overview of genetic algorithms is given so the reader has some background before giving a description of the mrOX GA. Motivation for parallelizing serial heuristics for combinatorial optimization is outlined, followed by an overview of several methods of parallel cooperation. An overview of parallel meta-heuristic classifications is given. Finally, the approach for attacking the GTSP and the objectives of the parallel architecture are described.

Overview of Genetic Algorithms
A genetic algorithm is a stochastic search technique commonly used to find approximate solutions to combinatorial optimization problems. Genetic algorithms are a class of evolutionary algorithms that are inspired by the process of natural selection and the theory of evolutionary biology. These algorithms mimic the process of evolution and natural selection by simulating a population of individuals (also known as chromosomes). An iteration of a genetic algorithm is analogous to evolving the next generation of a population. During the iteration a small subset of the fittest individuals (i.e. least cost) are mated to produce offspring with new traits. Since the resulting population is larger than the original, to maintain constant population size a simulated process of natural selection removes individuals that are found to be unfit. This process is iterated through a number of generations until stopping criteria are met.

Initialization:
Initialization is the first step in any genetic algorithm and involves randomly generating many individual solutions to form an initial population. The initial population covers a range of possible solutions (the search space). The population size is typically kept constant from generation to generation and depends on the nature of the problem.

Selection:
A genetic algorithm simulates the evolution of a population from generation to generation and mating of individuals is an important step in this process. Pairs of individuals known as parent chromosomes are selected for breeding from the population based on fitness and offspring are produced by applying a crossover operator to the pair of chromosomes.

Recombination:
Recombination (crossover) involves the random selection of traits from each parent chromosome for insertion into the child chromosome. A crossover is required to produce viable offspring (feasible solutions for the problem instance). Depending on the structure of the chromosome and the nature of the problem the crossover by itself is not guaranteed to produce feasible offspring. Thus following the
actual crossover, heuristics must be applied to infeasible solutions to ensure that mating always produces feasible offspring.

Local Search:
After recombination there is usually room for additional improvement. It is typical that meta-heuristics perform local search improvement techniques to further improve the offspring. By using local search methods the solutions are guided into the local optimum of the local search neighborhood.

Mutation:
After crossover a small percentage of offspring are selected to be mutated. Mutation involves randomly perturbing parts of an individual’s chromosome. As in the case of crossover, mutation must also maintain a solution’s feasibility. Mutation ensures diversity in the population and prevents the algorithm from prematurely converging on a poor solution.

Termination:
Due to the combinatorial nature of the problems genetic algorithms are used to solve, there is no convergence analysis that can aid in determining when to terminate the algorithm. There are, however, many types of stopping criteria can be used for terminating genetic algorithms. A typical stopping criterion is to stop after a fixed number of generations (or after an elapsed time). One method stops the algorithm after the best solution found so far does not change within a fixed number of generations. Another method is to stop after some minimum cost is exceeded.

Overview of the mrOX Genetic Algorithm
The modified rotational ordered crossover genetic algorithm (mrOX GA), proposed by J. Silberholtz and B. L. Golden in [9], is a serial genetic algorithm that is specially tailored to the GTSP problem. At its heart is the mrOX crossover operator, which performs a crossover between two parents. In the rest of this section an overview of the mrOX GA is given. For a more detailed treatment of the algorithm and computational results the reader is referred to [9].

It is best to describe the mrOX crossover operator before describing the rest of the mrOX genetic algorithm. First, a description of the ordered crossover (OX) portion of the mrOX is given and then the rotational (r + OX) and modified (m + rOX) portions are discussed so the reader may gain a better understanding of the crossover operator.

Chromosome Representation:
A natural way to represent solutions to the GTSP is with an ordered sequence of nodes (path representation). For example, the sequence {1, 4, 2} represents the cycle visiting node 1, then node 4, then node 2 and finally back to node 1 to complete the cycle. The path representation lends itself nicely to the idea of a chromosome. Path representations for solutions to the GTSP are also referred to as chromosomes.

OX:
The ordered crossover (OX) operator is based on the TSP ordered crossover proposed by Davis in [3]. The TSP’s OX operator randomly selects two cut points on one of two parent chromosomes. The order
of the nodes between the two cut points on the first parent is maintained. The remaining non-duplicate nodes from the second parent are placed, in order, starting to the right of the second cut point with wrap-around if necessary. For the GTSP this method is modified so that clusters being added from the second parent do not coincide with clusters from the first parent (i.e. we want to ensure that each cluster is visited only once). Figure 2 shows an illustration of the OX operator as applied to a solution for a hypothetical GTSP.

In Figure 2 the OX procedure starts with two parent chromosomes, P1 and P2. The square brackets with sequences of numbers represent a chromosome, or solution for a hypothetical GTSP problem. The numbers represent an ordered pair, \((c_i, n_j)\), where the base number represents a cluster and the superscript indicates the node that is being visited. Initially, cut points are randomly generated on the parent chromosomes (A). In the figure, cut points on the chromosomes are represented by vertical bars and the segmented parent chromosomes are represented by P1’ and P2’.

The child chromosome is initialized with the sub-path from the first parent (B). Cluster-node pairs from the second parent, moving left to right, are then added to the empty slots of the child chromosome while avoiding duplicate clusters (C). The curly brackets are a visual aid and show the order in which cluster-node pairs from the second parent are added to the child chromosome. The list of cluster-node pairs from the second parent represents a sub-path to be connected to the first parent’s sub-path.

rOX:
Next, the OX is modified with a rotational component yielding the rOX (r + OX). The rotational component acts on the sub-path (from the second parent) to be added to the child chromosome. This sub-path is used to create two sets of sub-paths. One set of sub-paths is generated by applying a shift operator to the original sub-path. The other set of sub-paths is the mirror image of the first set. As an
example, assume that after the OX the following sub-path is generated: {1, 2, 3}. Applying a shift operator to this sub-path yields the set of sub-paths:

\[\{1, 2, 3\} \rightarrow \{\{1, 2, 3\} \{2, 3, 1\} \{3, 1, 2\}\} \]

The second set of sub-paths is the mirror image of the first:

\[\{\{1, 2, 3\} \{2, 3, 1\} \{3, 1, 2\}\} \rightarrow \{\{3, 2, 1\} \{1, 3, 2\} \{2, 1, 3\}\} \]

mrOX:
The rotational component is further modified resulting in the mrOX \((m + rOX)\). For each sub-path generated in the rOX, every combination of nodes in the clusters at the end points of the sub-path is generated, resulting in an augmented set of sub-paths to be tested. As an example, suppose one of the sub-paths from the rOX procedure is: \(1^{[A,B]}, 3, 2^{[C,D]}\). Creating the combinations of different nodes at the end points yields the following set of possible sub-paths:

\[\{1, 3, 2\} \rightarrow \{\{1^A, 3, 2^C\} \{1^A, 3, 2^D\} \{1^B, 3, 2^C\} \{1^B, 3, 2^D\}\} \]

Outline of the mrOX GA:
Having described the mrOX operator, an outline the mrOX GA can now be given.

- **Initialization:** The mrOX GA starts by initializing seven isolated randomly generated populations (islands) containing 50 individuals each. During the evolution of the isolated populations a lightweight version of the mrOX crossover operator (rOX) followed by local improvement heuristics are applied to quickly generate reasonable solutions. The local improvement involves one full cycle of two-opt followed by one-swap and is applied only to the new best solution in each population.

- **Population Merge:** After none of the populations produced a new best solution for 10 generations, the seven isolated populations are merged by selecting the 50 best solutions out of the combined population of 350 solutions.

- **Continued Evolution:** Post-merge, each generation is evolved using the full mrOX crossover operator followed by local improvement heuristics. The local improvement involves carrying out multiple cycles of two-opt followed by one-swap until no improvements are found. Local improvements are only carried out on child solutions that have better fitness than both parents. Local improvements are also made to a randomly selected 5% of new chromosomes to preserve diversity.

- **Reproduction and Death:** In each generation a subset 30 individuals are randomly selected using a spinner procedure (based on individual fitness) for reproduction. Each pair of parent chromosomes produces two offspring, yielding a total of 30 child chromosomes. After reproduction, in order to maintain the population size of 50 individuals, 30 individuals are randomly selected for death using a similar procedure to that used for parent selection.

- **Mutation:** Before and after the merge each chromosome has a 5% probability of being selected for mutation to preserve diversity. The mutation consists of randomly selecting two cut points in the interior of an individual’s chromosome and reversing the order of the nodes in between these two points.
• Termination: The algorithm is terminated after the merged population does not produce a better solution for 150 generations.

Motivation for Parallelization
Below are several motivations for parallelizing serial heuristics for combinatorial optimization:

Speedup:
Traditionally, the goal when designing parallel algorithms is to reduce the time required to solve the problem. For exact solution methods a useful performance measurement is the speedup, computed as the ratio of the wall-clock time required to solve the problem in parallel with p processors and the corresponding solution time taken by the sequential algorithm.

Speedup performance measures are harder to define for heuristic methods that are not guaranteed to reach the optimal solution. Thus, the goal of an effective parallel heuristic is to outperform its sequential counterpart in terms of solution quality and computational efficiency [2].

Increased Problem Size:
Another motivation for parallelization is that by leveraging more computational resources the parallel heuristic can handle larger problem instances.

Robustness with Parameter Exploration:
Many of the meta-heuristics applied to combinatorial optimization problems have multiple parameters that influence the success of the algorithm on a specific problem or class of problem instances. This can make tuning the parameters to specific problems time consuming, especially when run times are long.

By running different parameterizations on different processes the parameter space can be explored, avoiding the need for manual tuning. In addition, this approach avoids the need for re-tuning when the algorithm is applied to a different problem instance. It is expected that the parallel version of the algorithm using parameter exploration will exhibit robustness and perform consistently on a range of problem instances.

Cooperation:
Parallelization allows cooperation among processes. It is believed that cooperation can improve the solution quality by guiding the search to more promising regions of the search space.

Methods of Cooperation
As mentioned above, hosting a serial heuristic in the proposed parallel architecture allows cooperation to further improve the convergence and quality of a solution. Although there are many ways for cooperation to be implemented, we will investigate the following three methods of cooperation:

No Cooperation:
The case where processes do not use cooperation is a useful benchmark for testing whether or not other methods of cooperation are yielding improvements. In this case there is no exchange of information between the processes. When the stopping criterion is reached the best solution is picked
from among the all the processes. Conceptually, this is equivalent to running multiple instances of the serial implementation.

![Diagram of Parallel Architecture](image)

Solution Warehouse:
The solution warehouse method is a basic architecture for cooperation among worker processes running in parallel. In this method a worker process (solution warehouse) is selected to be the mediator of information between the other worker processes. The solution warehouse collects problem solutions periodically from the worker processes and manages them in a list according to cost (i.e. it keeps track of the best solutions found so far). Due to performance limitations the list is kept to a manageable size. In accordance with a predefined schedule or scheme the solution warehouse sends a subset of the solutions back to the worker processes for further processing. The following is one implementation scheme for the solution warehouse method:

1. Each process sends the best solution to the warehouse after a number of k iterations (or period of time).
2. The warehouse collects the solutions and adds them to a list sorted by the cost, maintaining the top t solutions in memory.
3. The warehouse then assigns the best solution (or subset of solutions) to a subset of the worker processes and then randomly assigns solutions from the list to each remaining processes (with no repeats) for continued processing.

The scheme described above maintains diversity by allowing some of the workers to continue processing solutions that are not necessarily the best found so far. Maintaining diversity prevents premature convergence to poor local optima.
Inter-Worker Cooperation:
Inter-worker cooperation is a general method of cooperation where workers exchange information depending on a pre-defined communication topology. Workers are only allowed to communicate with their neighbors. An example of a possible communication topology is a ring topology. In a ring topology each worker sends information to one neighbor. Figure 5 illustrates the ring topology method of communication.

Classification of Parallel Meta-Heuristics
An important step in creating a parallel implementation of a heuristic is in determining what aspects of the heuristic under consideration are amenable to parallelization. In 1998 Crainic and Toulouse proposed three types of classifications for parallel meta-heuristics [1].

- **Type 1: Low-Level Parallelism**: Attempts to speed up processing within an iteration of a heuristic method. For example, if there is a task within a heuristic that has a high computational burden and can be parallelized then low-level parallelism can be implemented to speed up that portion of the heuristic.

- **Type 2: Partitioning of the Solution Space**: Partitions the solution space into subsets to explore in parallel. At the end of processing the results are combined in some way to produce the final solution.
• **Type 3: Concurrent Exploration:** Multiple concurrent explorations of the solution space. Genetic algorithms are particularly amenable to this type of parallelism since these heuristics operate on populations of solutions.

Method of Approach
The following list outlines the method of approach we will take for creating a parallel heuristic for the GTSP:

1. Develop a general parallel architecture for hosting sequential heuristic algorithms.
2. Extend the framework provided by the architecture to host the mrOX GA heuristic and the GTSP problem class.
3. Since genetic algorithms are well suited for the type 3 parallelization (concurrent exploration) the parallel implementation will consist of concurrent processes running the mrOX GA.
4. Type 1 or low-level parallelism will be considered in addition to the type 3 parallelism mentioned above.
5. Implement several different methods of parallel cooperation.

Parallel Architecture Objectives
The following is a list of objectives of the proposed parallel architecture:

- Provide a layer of abstraction from Message Passing Interface (MPI) so application developers do not need to be aware of the MPI implementation details.
- Provide a framework of interfaces, classes and event handlers for extensibility.
- Provide parallel cooperation using the selected cooperation scheme.
- Utilize multi-threading for handling I/O and framework related tasks on idle CPUs to prevent processing interruptions.
- Provide a capability for reporting process resource usage, status, debug and timing information.

3 – Implementation

Initial Development and Testing: Multi-processor PC running Linux O/S.

Final Testing: UMD’s Deepthought Cluster, Linux O/S, with up to 64 nodes where each node has at least 2 processors.

Language and Libraries: C/C++, POSIX Threads and MPI Libraries.
4 - Databases
The database for testing the parallel algorithm will be based on a subset of TSP instances from the well-known TSPLib\(^1\), a library of TSP instances that can be found online. We shall use an existing code that implements the method described in Section 6 of [4] to cluster nodes of a TSP instance. This method clusters nodes based on proximity to each other, iteratively selecting \(m = \lceil n/5 \rceil \) centers of clusters such that each center maximizes its distance from the closest already-selected center. Then, all \(n \) nodes are added to the cluster whose center is closest.

Fischetti et al.'s branch-and-cut algorithm provides exact values for TSPLib datasets where the number of nodes ranged between 48 and 400 nodes and the number of clusters is between 10 and 80 respectively [4]. The serial heuristic run times for these problem instances are fairly short (all less than 10 seconds) and we don’t expect the parallel implementation to perform better than the serial one due to lack of search depth and parallelization overhead. In [9] the mrOX GA was tested against another genetic algorithm, Snyder and Daskin's Random-Key Genetic Algorithm [10], on problem instances where the number of nodes is between 400 and 1084 and the number of clusters is between 80 and 200 respectively. In this set of instances the run time for the serial algorithm ranged from 10 to 131 seconds. It is for this set of instances that we will test performance and where we expect to see improvement using the parallel implementation.

5 – Validation and Testing
Validation and testing will consist of several phases.

Validation
Validation is important step in verifying that the behavior of the software code matches what it is intended to do. The following procedure will be used to validate the code.

1. Validate the parallel architecture using a simple test algorithm and generate several test-cases to test the functionality of the parallel architecture.
2. Test the parallel implementation using one processor over a number of runs for a subset of problem instances and compare those results to published ones. It is expected that run times and results should match closely to the published ones.
3. Test the parallel implementation with more than one processor over a number of runs for the same subset of problem instances used in part 2.

Testing
After validation we will test the performance of the parallel implementation to the serial one. As mentioned earlier, comparing a parallel heuristic to its serial counterpart is not so straight forward. We propose the following set of tests to measure performance improvements due to parallelization. For the parallel implementation and the selected cooperation scheme run the following tests:

\(^1\) [http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/]
1. Use the published results of solution costs for runs of the serial algorithm in [9] as a stopping criterion for the parallel implementation.

2. Run the parallel implementation with different numbers of processors and measure the processing times using the above stopping criteria.

3. Compare the processing times to the ideal processing time as a function of the number of processors. The ideal processing time is computed as the ratio of the serial processing time and the number of processors.

4. For testing the efficacy of cooperation run the above tests using a parallel implementation and the non-cooperative scheme. Compare the results to the cooperative scheme. Conceptually, this is equivalent to the serial implementation.

6 - Project Schedule/Milestones

October 16-30: Start design of the parallel architecture.

November: Finish design and start coding and testing of the parallel architecture.

December and January: Continue coding parallel architecture and extend the framework for the mrOX GA algorithm and the GTSP problem class.

February: Begin test and validation on Deepthought cluster.

March: Perform final testing on full data sets and collect results.

April-May: Generate parallel architecture API documentation, write final report.

7 – Deliverables

- Parallel architecture code, scripts and API documentation.
- Tables of results.
- Final report.

8 – References

