
Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 1

Finding Rightmost Eigenvalues of Large Sparse

Non-symmetric Parameterized Eigenvalue Problems

Minghao Wu
Applied Mathematics and Scientific Computation Program

Department of Mathematics
University of Maryland, College Park, MD

mwu@math.umd.edu

Advisor: Professor Howard Elman
Department of Computer Sciences

University of Maryland, College Park, MD
elman@cs.umd.edu

Abstract

This report has four main parts. In the first part, I state the eigenvalue problem I
am trying to solve in my project, give a brief introduction to its background and
application, and analyze the computational difficulties. In the second part, I
explain the methods I use to solve the problem, mainly the eigenvalue solvers and
matrix transformations. In the third part, I present the results I have obtained and
the codes I develop to implement the methods in the previous part. In the last part
of my report, I give a outline of what I will do in the future (AMSC 664).

Introduction

Consider the eigenvalue problem

 S SA x B xλ= (1)

where AS and BS are large sparse non-symmetric real N×N matrices and S is a set
of parameters given by the underlying Partial Differential Equation (PDE). For
simplicity, I will drop the subscript S in the following discussion. People are
interested in computing its rightmost eigenvalues (namely, eigenvalues with the
largest real parts). The motivation lies in the determination of the stability of
steady state solutions of non-linear systems of the form

 () NNN RuRRfuf
dt
duB ∈→= ,: (2)

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 2

with large N and where u represents a state variable (velocity, pressure,
temperature, etc). B is often called the mass matrix. Define the Jacabian matrix
for the steady state u* by A=df/dx(u*), then u* is stable if all the eigenvalues of (1)
have negative real parts. Typically, f arises from the spatial discretization of a PDE.
Interesting applications of this kind occur in stability analyses in fluid mechanics,
structural engineering and chemical reactions. The problem of finding rightmost
eigenvalues also frequently occurs in Markov chain models, economic modeling,
simulation of power systems and magnetohydrodynamics. When finite differences
are used to discretize a PDE, then often B=I and (1) is called a standard
eigenproblem. If the equations are discretized by finite elements, then the mass
matrix B≠I and (1) is called a generalized eigenvalue problem. For problems
arising from fluid mechanics, B is often singular.

Major computational difficulties of this kind of problems are: (1) both A and B are
large and sparse, so the algorithm we use must be efficient in dealing with large
systems; (2) in many applications, the rightmost eigenvalues are complex, so we
must consider complex arithmetic; (3) B is often singular, so it will give rise to
spurious eigenvalues.

Beside the numerical algorithm in computing the rightmost eigenvalues of (1),
how the parameter set S gives rise to the bifurcation phenomena, i.e, the steady
state solution exchanges in stability, is also of people's interest. Examples are the
Rayleigh number in nonlinear diffusion equation (Olmstead model) and the
Damköhler number in the tubular reactor model. As the parameters vary, the
rightmost eigenvalues might cross the imaginary axis, thus the steady state
solution becomes unstable.

Methodology

Eigenvalue Solvers

Since both A and B are large and sparse, direct methods such as the QZ-algorithm
for the generalized problem and the QR-algorithm for the standard problem are
not feasible. A more efficient approach is the solution of the standard eigenvalue
problem Tx = θx, which is a transformation of Ax = λBx, by iterative methods like
Arnoldi's method, subspace iteration and Lanczos' method. Another reason why
iterative methods are more suitable for this type of problem is that we are usually
not interested in computing the full spectrum of the eigenvalue problem (1).
Instead, we are only interested in computing a small set of the spectrum, which,
in the project, is the rightmost eigenvalues. The eigensolver I want to explore in
my project is Arnoldi's algorithm and its variants, such as the Implicitly Restarted
Arnoldi algorithm.

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 3

1. Basic Arnoldi Algorithm

Arnoldi algorithm is an iterative eigensolver based on Krylov subspaces. Given a
matrix A and a vector u1, a k-dimensional Krylov subspace is spanned by the
columns of the following matrix:

() []1
1

1
2

111, uAuAAuuuAK k
k

−= L

provided that they are linear independent. k+1 steps of Arnoldi algorithm give us
the following decomposition:

 T
kkkkkk euHUAU 1++= β (3)

where Uk is an orthonormal basis of the k-dimensional Krylov subspace and [Uk
uk+1] is an orthonormal basis of the k+1-dimensional Krylov subspace, Hk is a

k×k upper Hessenberg matrix, βk is a scalar and ek is a k×1 vector]1000[L .

One thing worth mentioning is that we usually select k such that k«N.
Premultiply (3) by UkT:

 k
T
kk

T
kkkk

T
kk

T
k HeuUHUUAUU =+= +1β . (4)

Therefore, Hk is the projection of A onto the k-dimensional Krylov subspace. We
hope the eigenvalues of Hk can be good approximation of those of A because if that
is true, we can solve a much smaller eigenvalue problem instead. Suppose (λ,z) is
an eigenpair of Hk. Mutiply (4) by z:

 () () ().zUUzUUzzHzUAU k
T

kk
T

kkk
T

k λλλ ==== (5)

Then (λ,Ukz) is an approximation of an eigenpair of A and we define the residual to
be A(Ukz) – λ(Ukz).We can also obtain from (5) the following:

() ()() 0=− zUzUAU kk
T

k λ .

This tells us the residual is always orthogonal to the k-dimensional Krylov
subspace. Fig. 1 illustrate A(Ukz), λ(Ukz) and their residual:

Fig. 1

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 4

As k increases, the residual will decrease and eventually, when k=N, A(Ukz) =
λ(Ukz), which means (λ,Ukz) is an exact eigenpair of A.
Though Arnoldi algorithm is powerful, it is not a good idea to apply it naïvely to
our eigenvalue problem. There are basically two reasons: (1) since we are dealing
with large systems, increasing k to improve the performance of Arnoldi is not
practical. For example, when A is of size 10,000×10,000 and k = 100, then we
need 10 megabytes to store the Krylov basis U100 to double precision; (2) in many
real world applications, matrix B is singular. This will give rise to spurious
eigenvalues if we don't do anything clever. A lot of variants of Arnoldi algorithm
follow the line of restarting the Arnoldi process by using a more carefully chosen
starting vector u1 (in the basic Arnoldi algorithm, u1 is randomly chosen). In my
project I will explore one of them, the Implicitly Restarted Arnoldi algorithm (IRA).

2. Implicitly Restarted Arnoldi (IRA) Algorithm

The basic idea of IRA is to filter out unwanted eigendirections from the original
starting vector u1 by using the most recent spectrum information and also a clever
filtering technique.

Suppose we first use Arnoldi algorithm and find m (m>k) approximated
eigenpairs:

(μ1,x1), (μ2, x2), … , (μm, xm)
(Re(μi) ≥ Re(μj), i<j) and the following Arnoldi decomposition:

 T
mmmmmm euHUAU 1++= β . (6)

We want to filter out the eigendirection xk+1 ,… , xm from the starting vector u1 so
that it can be richer in the k eigendirections we are interested in. Suppose now we
want to filter out eigendirection xk+1 from the starting vector.
We first subtract μk+1Um from both sides of (6):

() () T
mmmkmmmk euIHUUIA 111 +++ +−=− βμμ

then compute the QR decomposition of Hm- μk+1I (suppose Hm- μk+1I = Q1R1, Q1 is
orthonormal and R1 is upper triangular):

 () T
mmmmmk euRQUUIA 1111 ++ +=− βμ , (7)

next, multiply both sides of (7) by Q1:

 () () () () 1111111 QeuQRQUQUIA T
mmmmmk ++ +=− βμ , (8)

and add μk+1UmQ1 to both sides of (8):

() () () 1111111 QeuIQRQUQUA T
mmmkmm ++ ++= βμ .

This way we have a new Arnoldi decomposition:

() () ()
11

111 QeuHUAU T
mmmmmm ++= β

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 5

where Um(1) = UmQ1 and Hm(1) = R1Q1+ μk+1I results from one QR step with shift
μk+1 applied to Hm. The first column of Um(1) is proportional to (A- μk+1I)u1, so the
unwanted eigendirection xk+1 has been filtered out from the starting vector. We
repeat the process with μk+2,…,μm and end up with the new Krylov basis Um(m-k)
whose first column is proportional to (A – μk+1I)…(A – μmI)u1. All the unwanted
eigendirections have been filtered out from the original starting vector u1. So we
don't need to restart Arnoldi process explicitly, instead, we apply the shifted QR
algorithm to the upper Hessenberg matrix Hm to obtain a new Arnoldi
decomposition which is equivalent to the decomposition we will obtain if we start
the Arnoldi process with the filtered vector. That's why this method is called
Implicitly Restarted Arnoldi. A typical IRA circle consists of the following three
steps:

1. Compute m eigenpairs of Hm (k<m«N)
2. Apply Shifted QR algorithm m-k times (with shifts μk+1,…,μm) to Hm to

compute a new Arnoldi decomposition with filtered starting vector
3. Go back to 1 if the k wanted eigenpairs do not converge

Matrix Transformation

Matrix transformation is crucial in solving problems like (1). There are two
important reasons for this approach. First, a practical reason is that iterative
methods like Arnoldi's method and subspace iteration cannot solve generalized
eigenvalue problems, which makes a transformation necessary. A second reason
is of a numerical nature. It is well known that iterative eigenvalue solvers applied
to A quickly converge to the well-separated extreme eigenvalues of A. When A
arises from the spatial discretization of a PDE, then the rightmost eigenvalues of A
are in general not well separated. This implies slow convergence. The iterative
method may converge to a wrong eigenvalue. Instead, one applies eigenvalue
solvers to a transformation T with the aim of transforming the rightmost
eigenvalues of A to well-separated extremal eigenvalues of T, which are easily
found by the eigenvalue solvers we consider. I will explore two kinds of matix
transformation: Shift-invert transformation and Cayley transformation.

1. Shift – Invert Transformation

The definition of shift – invert transformation is as following:

() () BBABATSI
1;, −−= σσ

where σ is called the shift. After the transformation, we solve the standard
eigenvalue problem

xxTSI θ=

instead of the generalized eigenvalue problem Ax = λBx. After that, we use the
relationship between λ and θ:

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 6

σλ
θλ

−
=→

1

to recover the eigenvalue of the original problem.

Shift – invert transformation maps λ that are close to σ away from origin and maps
λ far from σ close to origin. Fig. 2 and Fig. 3 illustrate this property.

 Fig. 2 Fig. 3

So an obvious choice of σ is an approximation of the eigenvalue we want to
compute.

2. Cayley Transformation

The Cayley transformation is defined by

() () () ()BABATIBAT SIC τστστσ −−=−+= −1,;,

where σ is called the shift and τ is called the anti-shift. After the transformation,
we solve the standard eigenvalue problem

xxTC θ=

instead of the generalized eigenvalue problem Ax = λBx. After that, we use the
relationship between λ and θ:

σλ
τλθλ

−
−

=→

to recover the eigenvalue of the original problem.

Cayley transformation maps λ close to σ to θ away from the unit circle and maps
λ close to τ to θ with small modulus. That's why τ is called the anti-shift. The most
interesting property is that the line Re(λ) = (σ+τ)/2 is mapped to the unit circle,
and λ to the left of the line are mapped inside the unit circle, λ to the right of the
line are mapped outside the unit circle. Fig.4 and Fig. 5 demonstrate this
property.

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 7

 Fig. 4 Fig. 5

So if we are interested in computing r rightmost eigenvalues, we should choose σ
and τ such that λr+1 lies on the line Re(λ) = (σ+τ)/2.

Discretization of PDEs

In this project, finite difference and finite element method will be used to discretize
the PDEs. They are the most commonly used methods in the discretization of
PDEs.

Complex Arithmetic

Since the rightmost eigenvalues are complex in many real-world problems,
complex arithmetic is considered in this project.

Mid-Year Progress Report

Overview

Time Schedule Progress

AMSC 663
solve the first test problem √ Before November
explore the effect of Rayleigh number in the problem √
solve the second test problem -

November explore the effect of Damköhler number in the
problem

-

modify the Implicitly Restarted Arnoldi
Algorithm

√ December

solve the third test problem √

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 8

finish midterm report √
give midterm presentation √

AMSC 664
January &
February implement iterative linear system solver ×

give mid-term presentation ×
discretize a Navier-Stokes equation × March
Solve the eigenvalue problem arises from the

discritization
×

explore the effect of the parameter in the last
problem

× April
Start writing final report ×
Finish final report × May
Give final presentation ×

√: finished -: in progess ×: not started

The First Test Problem: Olmstead Model

1. Problem Statement

The first test problem is from a paper by Olmstead et al in 1986. The model is
governed by a coupled system of PDEs:

with boundary condition:

This model represents the flow of a layer of viscoelastic fluid heated from below. u
is the speed of the fluid, S is a quantity related to viscoelatic forces, and b, c, R are
all scalars. In particular, R is called the Rayleigh number and is the parameter I
study in this problem.

2. Discretization of PDEs

I use second order centered difference method to discretize the system of PDEs.
Grid size is h = 1/(N/2). Order the unknowns by grid points, i.e:

Then the system can be written as dy/dt = f(y). Matrix B in this case is identity.
We evaluate the Jacobian matrix A at the trivial (all 0) steady state solution y*: A
= dy/dt(y*) with N = 1000, b = 2, c = 0.1 and R = 0.6. The resulting matrix is a
large (500×500) sparse nonsymmetric matrix with bandwidth 6. Fig. 6 illustrate
its structure:

()⎩
⎨
⎧

−−=
−++=

SucbS
uRucuSu

t

xxxxt

1

3

.,0,0 π=== xSu

].[2/2/2211 NN
T SuSuSuy L=

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 9

Fig. 6

The nonzero elements of the matrix all sit on the six bands in the middle. This
kind of matrix structure is good for linear system solvers. That's why I order the
unknowns by the grid points.

3. Matlab Implementation of Arnoldi Algorithm

To implement Arnoldi algorithm together with the shift-invert matrix
transformation, I write a Matlab routine:

[v,X,U,H]=SI_Arnoldi(A,B,k,sigma).
The input of the routine is:
A, B: matrix A and B in the problem Ax = λBx;
k: the number of eigenpairs wanted;
sigma: the shift σ in shift-invert transformation.
The output of the routine is:
v: a vector of k computed eigenvalues;
X: a matrix whose columns are the k eigenvectors;
U: the orthonormal basis of the k+1-dimensional Krylov subspace;
H: the k×k upper Hessenberg matrix.

4. Computational Result

Use k = 10 and sigma = -0.549994+2.01185i. As discussed in the "Matrix
Transformation" section, a good choice of σ is an approximation of the eigenvalue
of interest. When b = 2, c = 0.1 and R = 0.3, the rightmost eigenvalue is
-0.549994±2.01185i. So -0.549994+2.01185i can be viewed as an approximation
to the rightmost eigenvalue when R = 0.6.

The computational result is:

• rightmost eigenvalues: λ1,2 = 0 ± 0.4472i
• residual: ║Aλi – λixi║ = 8.4504e-012, i = 1,2

and the result agrees with the literature.

I also compute the critical Rayleigh number. Critical number Rayleigh number is
the value of R under which the rightmost eigenvalue just cross the imaginary axis

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 10

and thus makes the steady state solution change from stable to unstable. To
compute the critical Rayleigh number RC, I fix b and c, start from a large R,
compute the rightmost eigenvalue, and then decrease R, compute the rightmost
eigenvalue again using the rightmost eigenvalue of the previous step as the σ,
repeat this process until the rightmost eigenvalue become negative. Fig. 7 shows
the value of RC under different values of b and c.

Fig. 7

The graph shows that RC follows the rule:

which also agrees with the literature.

The Third Test Problem

1. Problem Statement

This test problem is from a Paper by Meergergen and Spence (1995). Consider the
following eigenvalue problem:

where K is a 200×200 matrix, C is a 200×100 matrix, and M is a 200×200 matrix.
They are all of full rank. K, C and M are generated by using Matlab function
"rand".

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
>+

−
≤

=

c
bc

b

c
b

1
11

1
11

CR

x
M

x
C

CK
T ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00
0

0
λ

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 11

Although this problem is generated artificially, eigenvalue problem with this kind
of block structure appears in the stability analysis of steady state solution of
Navier – Stokes equations for incompressible flow. Eventually, I want to solve the
eigenvalue problem arises from the discretization of Navier – Stokes equations.

2. Matlab Implementation

I use two algorithms to solve this problem and compare their performance. The
first one is the basic Arnoldi algorithm and the second one is the Implicitly
Restarted Arnoldi (IRA) algorithm. To implement the first algorithm, I again use
the Matlab code in the first problem. For the IRA, I use a code written by Fei Xue.
The IRA code has the following important functions:

Name of the
function

Description

IRADirectMain Main function

ArnoldiExpd
Given a k – step Arnoldi decomposition,expands it to an
m – step Arnoldi decomposition (m≥k)

sglshiftQR,
dblshiftQR

Implements the shifted QR algorithm (sglshiftQR if the
shift is real, dblshiftQR if the shift is complex)

contractionIRA
Given an m – step Arnoldi decomposition, contracts it to
a k –step Arnoldi decomposition(k≤m)

extractEigenPairs Outputs the eigenpairs of interest and also the error

Fig. 8 illustrates the basic structure of the IRA code.

Fig. 8

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 12

3. Computational Result

I first use Matlab function "eig" to compute the exact eigenvalues of the system,
and then use Arnoldi algorithm and IRA to compute 10 rightmost eigenvalues.
The shift σ for both Arnoldi and IRA is 60. Fig. 9 shows their results:

Fig. 9

The IRA gives very accurate result. But Arnoldi gives rise to spurious eigenvalues,
which are highlighted by red color. The computed eigenvalues highlighted by blue
color are approximation of the true eigenvalues, but unfortunately, they are not
the 10 rightmost eigenvalues. Not only does the Arnoldi give rise to spurious
eigenvalues, it also computes the wrong eigenvalues. It is obvious that IRA
outperforms Arnoldi.

Future Work (AMSC 664)

1. Finish test problem 2: tubular reactor model
2. Implement iterative linear system solvers and compare with direct solver
3. Implement Cayley matrix transformation and compare with Shift - invert
4. Apply the algorithm to Navier – Stokes equations

Refernce

1. Meerbergen, K & Roose, D 1996 Matrix transformation for computing

Mid – Year Report for AMSC 663, fall 2008 Minghao Wu

 13

rightmost eigenvalues of large sparse non-symmetric eigenvalue problems.
SIAM J. Numer. Anal. 16, 297-346

2. Meergergen, K & Spence, A 1997 Implicitly restarted Arnoldi with
purification for the shift-invert transformation. Math. Comput. 66,
667-698.

3. Olmstead, W. E., Davis, W. E., Rosenblat, S. H., & Kath, W. L. 1986
Bifurcation with memory. SIAM J. Appl. Math. 40, 171-188.

4. Stewart, G. W. 2001 Matrix algorithms, volume II: eigensystems. SIAM
5. Sorensen, D. C. 1992 Implicitly application of polynomial filters in a k –

step Arnoldi Method. SIAM J. Matrix Annal. Appl. 13, 357-385
6. Meerbergen, K & Roose, D 1997 The restarted Arnoldi method applied to

iterative linear system solvers for the computation of rightmost eigenvalues.
SIAM J. Matrix Anal. Appl. 18, 1-20

