
AMSC 663 & 664 Final Report Minghao Wu

 1

FINDING RIGHTMOST EIGENVALUES OF LARGE

SPARSE NONSYMMETRIC PARAMETERIZED

EIGENVALUE PROBLEMS

Minghao Wu

Department of Mathematics

University of Maryland, College Park

Advisor: Dr. Howard Elman

Department of Computer Science

University of Maryland, College Park

Abstract

The goal of this report is to explore the numerical algorithm of finding rightmost

eigenvalues of large sparse nonsymmetric parameterized eigenvalue problems, and how

the rightmost eigenvalues vary as certain parameter changes. We implemented Arnoldi

algorithm (both exact and inexact) and Implicitly Restarted Arnoldi algorithm with shift-

invert transformation to reproduce computational results of several test problems in the

literature. We also applied the algorithm to the study of dynamical equilibrium.

Introduction

Consider the eigenvalue problem

 Ax = λBx (1)

where A and B are large sparse non-symmetric real N×N matrices and they usually

depend on one or several parameters in real applications. We are interested in computing

its rightmost eigenvalues (namely, eigenvalues with the largest real parts). The

motivation lies in the determination of the stability of steady state solutions of nonlinear

systems of the form

AMSC 663 & 664 Final Report Minghao Wu

 2

 NNN RuRRfuf
dt
duB ∈→= ,:)((2)

with large N and where u represents a state variable (velocity, pressure, temperature, etc).

B is often called the mass matrix. Define the Jacobian matrix for the steady state u* by A

= df/dx(u*), then u* is stable if all the eigenvalues of (1) have negative real parts.

Typically, f arises from the spatial discretization of a PDE (partial differential equation).

When finite differences are used to discretize a PDE, then often B = I and (1) is called a

standard eigenproblem. If the equations are discretized by finite elements, then the mass

matrix B ≠ I and (1) is called a generalized eigenvalue problem. For problems arising

from fluid mechanics, B is often singular[1].

Beside the numerical algorithm of computing the rightmost eigenvalues of (1), we are

also interested in exploring the effect of parameters on the stability of steady state

solutions. In particular, we are interested in finding the critical parameter value under

which the rightmost eigenvalues cross the imaginary axis thus indicates that the steady

state solution becomes unstable. This is an important part of the study of bifurcation of

dynamical equilibrium.

The plan of this report is as follows: in the first part, we will describe and explain the

algorithms we implemented; in the second part, computational results together with some

technical details for several test problems will be presented.

Methodology

Eigenvalue Solvers

Since both A and B are large and sparse, direct methods such as the QZ algorithm for the

generalized problem and the QR algorithm for the standard problem are not feasible. A

more efficient approach is to solve the standard eigenvalue problem Tx = θx, which is a

transformation of (1), by iterative methods like Arnoldi algorithm, subspace iteration and

Lanczos' method[1]. Another reason why iterative methods are more suitable for our

AMSC 663 & 664 Final Report Minghao Wu

 3

problem is that we are only interested in computing the rightmost part of the spectrum

instead of the complete spectrum. The eigenvalue solvers we implemented are Arnoldi

algorithm and its variants, such as the Implicitly Restarted Arnoldi (IRA) algorithm.

1. Basic Arnoldi Algorithm

Arnoldi algorithm is an iterative eigensolver based on Krylov subspaces. Given a matrix

A and a random normal vector u1, a k-dimensional Krylov subspace is the subspace

spanned by the columns of the following matrix:

Kk(A,u1) = [u1 Au1 A2u1 … Ak-1u1]

provided that they are linearly independent. k+1 steps of Arnoldi algorithm give us the

following decomposition:

 AUk = UkHk + βkuk+1ek
T (3)

where Uk is an orthonormal basis of the k-dimensional Krylov subspace, uk+1 is normal

and orthogonal to Uk, Hk is a k×k upper Hessenberg matrix, βk is a scalar and ek is the k×1

vector [0 0 … 0 1]. We usually choose k such that k<<N (recall that the dimension of the

matrices A and B is N×N).

Leftmultiply (3) by Uk
T:

 Uk
TAUk = Uk

TUkHk + βkUk
Tuk+1ek

T = Hk. (4)

Therefore, Hk is the projection of A onto the k-dimensional Krylov subspace. We hope

that the eigenvalues of Hk can be good approximation of those of A so that we can solve a

much smaller eigenvalue problem instead. Suppose (λ,z) is an eigenpair of Hk.

Rightmultiply (4) by z:

Uk
TA(Ukz) = Hkz = λz = λ(Uk

TUk)z = Uk
Tλ(Ukz). (5)

We can view (λ,Ukz) as an approximated eigenpair of A with residual A(Ukz) – λ(Ukz) and

obtain the following from (5):

Uk
T(A(Ukz) – λ(Ukz)) = 0.

This means the residual is always orthogonal to the k-dimensional Krylov subspace. Fig.

1 illustrates their relation.

AMSC 663 & 664 Final Report Minghao Wu

 4

Fig. 1 The relation among A(Ukz), λ(Ukz) and the residual between them

As k increases, the residual will decrease and in the limit case, when k = N, A(Ukz) =

λ(Ukz), which means (λ,Ukz) is an exact eigenpair of A.

However, we should point out that it is not a good idea to apply it naively to our problem.

There are mainly two reasons: (1) since we are very often dealing with large matrices,

increasing k to improve the performance of Arnoldi algorithm is not practical; for

example, suppose A is of size 10,000×10,000 and k = 100, we need 10 megabytes to store

the Krylov basis to double precision[2]; (2) in problems arise from fluid mechanics, mass

matrix B is singular and this will give rise to spurious eigenvalues if we do not do

anything clever. A lot of variants of Arnoldi algorithm follow the line of restarting the

basic Arnoldi algorithm with a more carefully chosen vector u1. We implemented one of

them, the Implicitly Restarted Arnoldi algorithm (IRA).

2. Implicitly Restarted Arnoldi (IRA) Algorithm

The basic idea of IRA is to filter out unwanted eigendirections from the original starting

vector u1 by using the most recent spectrum information and also a clever filtering

technique[2].

Suppose we want to find k rightmost eigenvalues and we first use the basic Arnoldi

algorithm to find m (m>k, m<<N) approximated eigenpairs:

(μ1,x1), (μ2,x2), …, (μm,xm)

(Re(μi)≥Re(μj), i<j) and obtain the following Arnoldi decomposition:

AMSC 663 & 664 Final Report Minghao Wu

 5

AUm = UmHm + βmum+1em
T . (6)

We want to filter out the eigendirections xk+1, …, xm from the starting vector u1 so that the

new starting vector can be richer in the k eigendirection we are interested in. Suppose

now we want to filter out eigendirection xk+1. We first subtract μk+1Um from both sides of

(6):

(A - μk+1I)Um = Um(Hm - μk+1I) + βmum+1em
T

then compute the QR decomposition of Hm - μk+1I (Hm - μk+1I = Q1R1) and get:

(A - μk+1I)Um = UmQ1R1 + βmum+1em
T. (7)

Next, rightmultiply both sides of (7) by Q1:

(A - μk+1I)(UmQ1) = (UmQ1)(R1Q1) + βmum+1em
TQ1 (8)

and add μk+1UmQ1 to both sides of (8):

A(UmQ1) = (UmQ1)(R1Q1 + μk+1I) + βmum+1em
TQ1.

Therefore we end up with a new Arnoldi decomposition:

AUm
(1) = Um

(1)Hm
(1) + βmum+1em

TQ1

where Um
(1) = UmQ1 and Hm

(1) = R1Q1 + μk+1I. If we take a closer look at the matrix Um
(1) ,

we will see that its first column is proportional to (A – μk+1I)u1, thus the unwanted

eigendirection xk+1 has been filtered out from the starting vector. Repeat the exact same

process with μk+2, …, μm and we will end up with the Krylov basis Um
(m-k) whose first

column is proportional to (A – μk+1I)…(A – μmI)u1. Therefore, all the unwanted

eigendirections have been filtered out from the original starting vector and we obtain an

Arnoldi decomposition that is equivalent to the one starting with the new starting vector.

The filtering is basically done by a sequence of m-k QR decomposition on a small

Hessenberg matrix.

Matrix Transformation

Matrix transformation is crucial in solving problem like (1) for two reasons: a practical

reason is that iterative methods like Arnoldi algorithm cannot solve generalized (B≠I)

eigenvalue problems, which makes the transformation from generalized to standard

eigenvalue problem necessary; a second reason is of a numerical nature; it is well known

that iterative eigenvalue solvers applied to A quickly converge to the well-separated

AMSC 663 & 664 Final Report Minghao Wu

 6

extreme eigenvalues of A; however, when A arises from the spatial discretization of a

PDE, the rightmost eigenvalues are in general not well separated and this implies slow

convergence[1]. Therefore, we also need matrix transformation to map rightmost

eigenvalues to well-separated eigenvalues. We explored two well-known transformations:

shift-invert transformation and Cayley transformation.

1. Shift-Invert Transformation

The definition of shift-invert transformation of (1) is the following:

TSI(A,B;σ) = (A - σB)-1B

where σ is called the shift. The corresponding standard eigenvalue problem of (1)

therefore is:

TSIx = θx.

The eigenvalues of the original problem can easily be recovered by

λ = σ + 1/θ.

Fig. 2 and Fig. 3 demonstrate this property of shift-invert transformation.

Fig. 2 Fig. 3

Fig. 2 Spectrum of the original problem Ax = λBx

Fig. 3 Spectrum of the new problem TSIx = θx

To guarantee fast convergence, a good choice of σ should be an approximation of our

targeted eigenvalue.

AMSC 663 & 664 Final Report Minghao Wu

 7

2. Cayley Transformation

Cayley transformation is defined by

TC(A,B;σ,τ) = 1 + (σ - τ)TSI = (A – σB)-1(A – τB)

where σ is called the shift and τ the anti-shift. Then the corresponding standard

eigenvalue problem of (1) is

TCx = θx.

To recover the eigenvalue of (1), we compute

λ = σ + (σ - τ)/(θ - 1).

Like shift-invert transformation, Cayley transformation maps λ close to σ to θ away from

the unit circle; meanwhile, it also maps λ close to τ to θ with small modulus (that is where

the name 'anti-shift' comes from). One interesting property of Cayley transformation is

that the line L(σ,τ) = (σ + τ)/2 is mapped to the unit circle; moreover, λ to the left of this

line are mapped inside the unit circle and λ to the right of this line are mapped outside of

the unit circle. Fig. 4 and Fig.5 illustrate this property.

Fig. 4 Fig. 5

Fig. 4 Spectrum of the original problem Ax = λBx

Fig. 5 Spectrum of the new problem TCx = θx

This property makes Cayley transformation specially suitable for the computation of

rightmost eigenvalues, while the shift-invert transformation is suitable for computing

eigenvalues lying close to the shift only. In practice, if we are interested in computing r

AMSC 663 & 664 Final Report Minghao Wu

 8

rightmost eigenvalues, we should choose σ and τ such that (approximated) λr+1 lines on

the line L(σ,τ).

3. Relation Between Shift-invert and Cayley transformation

Notice from its definition that Cayley transformation is just scaled and translated shift-

invert transformation. Since Arnoldi's algorithm is translation invariant[3], the two

transformation with the same starting vector will generate the same result in exact

arithmetic. Therefore, if our eigensolver is exact Arnoldi algorithm, Cayley

transformation will have no advantage over shift-invert transformation. However, when

stationary iterative linear system solvers such as Jacobi and Gauss-Seidel are used, there

are some advantages using Cayley transformation[4]. Nonetheless, we want to point out

here that the most frequently used iterative linear system solver in this business is

GMRES (Generalized Minimal Residual method) with preconditioning, which is much

more robust and also insensitive to which matrix transformation one uses, so from now

on we always consider shift-invert transformation, in either exact or inexact arithmetic.

Computation of Solution Paths

We consider the general problem

F(x, ρ) = 0

where F: nn RR →+1 , x∈Rn is the state variable, and ρ∈R is a parameter. We want to

study the behavior of x as ρ varies. In particular, we are interested in the exchange of

stability of x and the detection of Hopf bifurcation points.

1. Definitions

Definition: solution path:

The set

S = {(x, ρ)∈Rn+1: F(x, ρ) = 0 }

AMSC 663 & 664 Final Report Minghao Wu

 9

is called the solution path. Often in applications one is interested in computing the whole

set of S or a continuous portion of it. For example in fluid mechanics x may represent the

velocity and pressure of a flow, whereas ρ is some physical parameter such as the

Reynolds number.

We introduce the following notation:

F0 = F(x0, ρ0), Fx
0 = Fx(x0, ρ0), Fρ

0 = Fρ(x0, ρ0).

Definition: regular point, singular point and fold point (turning point)

(x0, ρ0)∈S is called a regular point of S if Fx
0 is nonsingular. If a point (x0, ρ0)∈S is not

regular, it is called a singular point. If (x0, ρ0)∈S is a singular point and if rank(Fx
0) = n-

1 then (x0, ρ0) is called a fold point (or turning point) if Fρ
0∉image(Fx

0). In this case, the

n×(n + 1) augmented Jacobian [Fx
0|Fρ

0] must have rank n and hence has a subset of n

linearly independent columns.

Definition: Hopf bifurcation point

(x0, ρ0)∈ S is called a Hopf bifurcation point if Fx
0 has a pair of pure imaginary

eigenvalues and no other eigenvalues on the imaginary axis. At a Hopf bifurcation point,

steady state solution loses stability and periodic solutions can be observed.

2. Keller's Pseudo-Arclength Continuation Method

When Fx
0 is nonsingular, Implicit Function Theorem implies that we can compute a

nearby point (x1, ρ0 + Δρ) of (x0, ρ0) on S by Newton's method. However, this method

will fail when a singular point is approached. This is the motivation of Keller's pseudo-

arclength continuation method[5].

We assume the following: there is an arc of S such that at all points on the arc

rank[Fx|Fρ] = n.

Consequently, any point on the arc is either a regular point or fold point of S. The

Implicit Function Theorem thus implies that the arc is a smooth curve in Rn+1, and so

there is a unique tangent direction at each point of the arc. Keller's idea is to

reparameterize the system by a new parameter t, the projection of the arclength on to the

tangent direction.

AMSC 663 & 664 Final Report Minghao Wu

 10

Suppose now we start from a point (x0, ρ0) at which the unit tangent vector is τ0 = [s0
T,

σ0]T , and we want to compute a nearby point (x1, ρ1) on the arc. We introduce an

extended system

H(y, t) = 0

where y = (x, ρ)∈Rn+1 and H: Rn+2 Rn+1 is given by

F(x, ρ)

s0
T(x – x0) + σ0(ρ – ρ0) – (t – t0)

The last equation in the new system is the equation of the plane perpendicular to to τ0 a

distance Δt = t – t0 from t0 (see Fig. 6).

Fig. 6 Pseudo arclength continuation

Compute the Jacobian matrix of the new system:

⎥
⎦

⎤
⎢
⎣

⎡
=

00 σ
ρ

T
x

y s
FF

H .

The advantage of the extended system is that Jacobian matrix Hy is always nonsingular[5],

so Newton's method always works.

3. Detection of Exchange of Stability and Hopf Bifurcation Points

Recall that both exchange of stability and Hopf bifurcation phenomena can be

characterized by rightmost eigenvalues of the Jacobian matrix Fx. Therefore, we can

AMSC 663 & 664 Final Report Minghao Wu

 11

detect them by applying the Arnoldi algorithm described earlier to Fx along the

continuation process.

Computational Results

To test our code, we selected several test problems from the available literature and tried

to reproduce the same results. In this section, we will present our computational results to

various computation tasks we have completed for these test problems, and compare them

with results in the literature.

Test Problem 1: Olmstead Model

1. Problem statement

The problem is from a paper by Olmstead et al in 1986[6]. The model is governed by a

coupled system of PDEs:

⎩
⎨
⎧

−−=
−++=

SucbS
uRucuSu

t

xxxxt

)1(

3

with boundary condition:

u = S = 0 at x = 0, π.

This model represents the flow of a layer of viscoelastic fluid heated from below. u is the

speed of the fluid, S is a quantity related to viscoelastic forces, and b, c, R are all

parameters. In particular, R is called the Rayleigh number and is the parameter we are

interested in.

2. Discretization of The PDE

We use second centered difference method to discretize the system of PDEs (parameter

values: b = 2, c = 0.1 and R = 0.6). Grid size is h = 1/(N/2) and the unknowns are

ordered by grid points, i.e.:

y = [u1 S1 u2 S2 … uN/2 SN/2]T.

AMSC 663 & 664 Final Report Minghao Wu

 12

Then the system can be written as dy/dt = f(y). We evaluate the Jacobian matrix A at the

trivial steady state solution y* = 0. For this problem, the mass matrix B = I, it is a

standard eigenvalue problem. Let N = 1000, so the resulting matrix is a 1000×1000

sparse nonsymmetric matrix with bandwidth 6 (see Fig. 7).

Fig. 7 Matrix structure of Olmstead model

3. Algorithm 1: Arnoldi method with shift-invert transformation

(1) Normalize random starting vector v1

(2) for i = 1 to k do

 (2.1) Solve for wi: (A - σB)wi = Bvi.

 (2.2) Form hji = vj
Hwi, j = 1, …, i.

 (2.3) Compute wi wi - ∑
=

i

j
jjivh

1
. (QR - Gram - Schmidt)

 (2.4) Form hi+1,i = ||wi||2.

 (2.5) From vi+1 = wi/hi+1,i. (Normalization)

(3) Let []k
jiijk hH

1, =
= where hij = 0 for j>i+1 and Vk = [v1,…,vk].

(4) Compute the eigenpairs (λi, zi), i = 1, …, k of Hk by the QR-method.

(5) Compute the approximate eigenpairs (σ + 1/θi, Vkzi), i = 1, …, k.

4. Computational Results

AMSC 663 & 664 Final Report Minghao Wu

 13

When b = 2, c = 0.1, R = 0.3, the rightmost eigenvalues are λ1,2 = -0.549994 ±

2.01185i[1]. We can use either of them as the shift of Arnoldi algorithm for our problem

(b = 2, c = 0.1, R = 0.6). The result we obtained using exact Arnoldi algorithm (meaning

in (2.1) of Algorithm 1, we use LU decomposition to solve the linear system) is:

rightmost eigenvalues: λ1,2 = 0 ± 0.4472i

 residual: ||Axi – λixi|| = 8.4504×10-12, i = 1,2

and it agrees with the literature[1].

We also implemented inexact Arnoldi algorithm, which means in line (2.1) of Algorithm

1, linear systems of the form (A - σB)w = Bv are solved by GMRES with ILU(0)

preconditioning. Using relaxation strategy to choose an appropriate error tolerance for

GMRES can save us a lot of computational cost without decreasing the accuracy of the

eigencomputation[7]. The relaxation strategy we implemented is

21

1010

−

−

=
k

k r
τ

where τk is the tolerance of GMRES at the kth Arnoldi step and rk-1 is the relative error of

the rightmost eigenpair computed at the k-1th Arnoldi step.

Let N = 5000, b = 2, c = 0.1, R = 4.7, and size of Krylov subspace is 20. Fig. 8 shows

the different performance of GMRES with relaxation and without relaxation (τk = 10-10).

AMSC 663 & 664 Final Report Minghao Wu

 14

Fig. 8 Comparison of GMRES with relaxation and without relaxation

Observe that although our linear systems are solved less and less accurate, in the end we

are able to gain the same order of accuracy in the rightmost eigenpair we computed.

Again our computational result agrees with the literature[4].

The second computational task we conducted is to compute critical Rayleigh number RC

under different values of b and c:

AMSC 663 & 664 Final Report Minghao Wu

 15

Fig. 9 Critical Rayleigh number

The theoretical result in the literature[6] is:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
>+

−
≤

=

c
bc

b

c
b

RC

1
1,1

1
1,1

to which our computational result also agrees (see Fig. 8).

Test Problem 2: Tubular Reactor Model

1. Problem Statement

The equations describing the conservation of reactant A and energy for the nonadiabatic

tubular reactor with axial mixing appear below in dimensionless form[8]:

()⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−−
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

−
∂
∂

=
∂
∂

−

−

θγγ

θγγ

θθβθθ /
02

2

/
2

2

1

1

BDye
ssPet

y

Dye
s
y

s
y

Pet
y

h

m

with boundary condition:

AMSC 663 & 664 Final Report Minghao Wu

 16

()1−=
∂
∂ yPe

s
y

m at s = 0

()1−=
∂
∂ θθ

hPe
s

 at s = 0

0=
∂
∂

=
∂
∂

ss
y θ at s = 1.

y is the velocity, θ is the temperature, and Pem, Peh, B, D, β, γ are all parameters. D is

called the Damkohler number and is the parameter we are interested in.

2. Discretization of The PDE

The discretization of this problem is basically the same with the last problem, except that

one needs to compute the steady state solution by Newton's method first. We will skip the

details here.

3. Algorithm 2: Keller's pseudo-arclength continuation

(1) Compute x0, Fx
0 and Fρ0 at initial parameter value ρ0.

(2) While ρ0 ≤ ρend, do

 (2.1) Compute the steady state solution x0 using Newton's method

 (2.2) Compute Fx
0 and Fρ0.

 (2.3) Compute the rightmost eigenvalues of Fx
0 using Arnoldi method .

 (2.4) Solve for z0: Fx
0z0 = -Fρ0,

 and then compute unit tangent vector: () .
11

1 0
2/12

0
0

0
⎥
⎦

⎤
⎢
⎣

⎡

+
=⎥

⎦

⎤
⎢
⎣

⎡ z

z

s
σ

 (2.5) (Euler predictor) Choose a step length Δt and set

.
0

0
0

0

1

1

⎥
⎦

⎤
⎢
⎣

⎡
Δ+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
σρρ
s

t
xx

 (2.6) (Newton's method) For k = 1, …, kmax, iterate

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+

+

k

k

k

k

k

k dxx
δρρ 1

1

AMSC 663 & 664 Final Report Minghao Wu

 17

 with

() () .
000000

⎥
⎦

⎤
⎢
⎣

⎡

Δ−−+−
−=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

txxs
Fd

s
FF

kkT

k

k

k

T

kk
x

ρρσδσ
ρ

 (2.7) Update x0 = x*, ρ0 = ρ*, Fx
0 = Fx

, Fρ0 = Fρ where x*, ρ*, Fx
* and Fρ* are

 computed in (2.3).

 (2.8) Go back to (2).

(3) Plot the solution path and bifurcation points computed.

Note that the Jacobian matrix in (2.3) is Hy where y = [xT, ρ]T. Hy is always nonsingular

under the assumption that all the points on the solution path are either regular or fold

points. In line (2.3) we compute the rightmost eigenvalues of the Jacobian matrix to

detect changes of stability and Hopf bifurcation phenomena.

4. Computational Results

We computed the solution paths and detected fold points and Hopf bifurcation points of

this problem under several different sets of parameters (Pem, Peh, B, β, γ). All our results

agree with the results in the literature[8]. In Fig. 10, we compare the two.

Pem = Peh = 5, B = 0.5, β = 3.5, γ = 25:

Pem = Peh = 5, B = 0.5, β = 2.5, γ = 25:

AMSC 663 & 664 Final Report Minghao Wu

 18

Pem = Peh = 5, B = 0.5, β = 2.35, γ = 25:

Pem = Peh = 1, B = 0.5, β = 4, γ = 75:

Fig. 10 Comparison of computational result and result in the literature

(note the different scaling of the two)

(left column: computational result ×: exchange of stabiltiy, o: Hopf bifurcation points;

AMSC 663 & 664 Final Report Minghao Wu

 19

right column: result in the literature ---: unstable, —: stable, •••: periodic solution, which

appears at Hopf bifurcation points)

Test Problem 3

1. Problem Statement

This test problem comes from a paper by Meerbergen and Roose[9]. Consider the

following eigenvalue problem:

x
M

x
C

CK
T ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00
0

0
λ

where K is a 200×200 matrix, C is a 200×100 matrix, and M is a 200×200 matrix. They

are all of full rank. K, C and M are generated artificially and all the eigenvalues of the

problem lie between -3 and 50. Eigenvalue problem with this kind of block structure

appears in the stability analysis of steady state solution of Navier-Stokes equations for

incompressible flow.

2. Algorithm 3: implicitly restarted Arnoldi method

Suppose we are interested in finding the k rightmost eigenpairs of Ax = λBx.

(1) Compute m (m>k) rightmost eigenpairs (λi,xi) i = 1,…,m and Re(xi)≥Re(xj) for i<j

 using Algorithm 1.

(2) Filter out the unwanted eigendirections by applying shifted QR algorithm with

 shifts λk+1,…, λm.

(3) Contract the m-dimensional Arnoldi decomposition to a k-dimensional one.

(4) While ||Axi – λiBxi||2 ≥ tolerance, i = 1,…,k:

 (4.1) Expand the k-dimensional Arnoldi decomposition back to an m-dimensional one.

 (4.2) – (4.4) Repeat (1) to (3).

 (4.5) Go back to (4).

(5) Output (λi,xi) i = 1,…,k and their residual ||Axi – λiBxi||2.

AMSC 663 & 664 Final Report Minghao Wu

 20

3. Computational Result

We solved this problem with both the basic Arnoldi algorithm and Implicit Restarted

Arnoldi (IRA) algorithm and compared their performance in the table below.

Table 1. Comparison of Arnoldi and IRA (k = 10, σ = 60)

Exact Eigenvalues
Computed Eigenvalues

(IRA)

Computed Eigenvalues

(basic Arnoldi)

49.9129 + 0i 49.9129 + 0i 193.8412 + 7113830.9524i

2.9112 + 1.1256i 2.9112 + 1.1256i 193.8412 - 7113830.9524i

2.9112 – 1.1256i 2.9112 – 1.1256i 49.9129 + 0i

2.5036 + 0.0624i 2.5036 + 0.0624i 3.0891 + 0i

2.5036 – 0.0624i 2.5036 – 0.0624i 2.6112 + 0i

2.3792 + 0i 2.3792 + 0i -0.5752 + 2.7079i

2.1318 + 0.9356i 2.1318 + 0.9356i -0.5752 - 2.7079i

2.1318 – 0.9356i 2.1318 – 0.9356i -1.0901 + 0.7532i

2.1081 + 1.3539i 2.1081 + 1.3539i -1.0901 - 0.7532i

2.1081 – 1.3539i 2.1081 – 1.3539i -47.3106 + 0i

Notice that the basic Arnoldi algorithm produces spurious eigenvalues (in bold print),

while the IRA gives the correct result. The reason for this is that matrix B is singular[1].

Test Problem 4: 2D Driven-Cavity Problem

1. Problem Statement

This is a classic test problem used in fluid dynamics, known as driven-cavity flow. It is a

model of the flow in a square cavity ([-1,1]×[0,1]) with the lid moving from left to right.

Different choices of the nonzero horizontal velocity on the lid give rise to different

computational models[10]. We studied the regularized cavity model, which is governed by

the following Navier-Stokes equation:

AMSC 663 & 664 Final Report Minghao Wu

 21

0
02

=⋅∇
=∇+∇⋅+∇−

u
puuuut
r

rrrυ

with boundary condition

ux = 1 – x4 at y = 1.

()yx uuu ,=
r is the velocity, p is the pressure and υ>0 is a given constant called the

kinematic viscosity. The parameter we are interested in is the so called Reynolds number,

which will be defined soon.

As one can see from the above Navier-Stokes equation, there is a diffusion term ur2∇υ

and also a convection term uu rr
∇⋅ . Having a quantitative measure of the relative

contributions of viscous diffusion and convection is very useful. It turns out that the

Reynolds number

υ
ULR =

is such a measure. Here, U is the maximum magnitude of velocity on the inflow, and L

denotes a characteristic length scale for the domain, for example, the constant in Poincare

inequality. In the driven-cavity problem, R = 2/υ.

2. Discretization of The PDE

We used the Mixed Finite Element Method to discretize the Navier-Stokes equation. Q2

elements are used on velocity space, and Q1 elements are used on pressure space. Q2-Q1

discretization is proved to be stable (meaning solution is unique)[10]. The eigenvalue

problem arises from the discretization has the form

x
M

x
C

CK T

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
00
0

0
λ

which has the same structure as test problem 3.

3. Computational Result

AMSC 663 & 664 Final Report Minghao Wu

 22

It is well-known that steady state solution of this problem is not stable when Reynolds

number is very large (greater than 104) and the flow pattern develops into a time-periodic

state[10]. Our goal is to find out the critical Reynolds number at which the steady state

solution loses stability. There are two major computational difficulties.

First of all, when Reynolds number becomes larger, the computation of steady state

solution becomes harder. It requires finer mesh (which implies larger linear system)

therefore much heavier work in order to solve the linear systems to the same level of

accuracy. Every time we refine the mesh, the matrices become almost 16 times bigger!

Also, it has been observed that the radius of convergence of Newton's iteration is

inversely proportional to the Reynolds number[10]. Thus, Newton's iteration will not

converge for large Reynolds number. An alternative is Picard iteration which has a huge

ball of convergence but the convergence rate is only linear. Therefore, the solution is to

use a 'hybrid' method to solve the linear system: apply a number of Picard iterations first

to get a good enough initial guess and then use Newton's iteration starting from this good

initial guess. Fig. 11 shows the performance of the hybrid method (R = 8000, mesh size h

= 2-5, tolerance = 10-10):

Fig. 11 Performance of hybrid method

We can see that Picard iteration converges slowly and the solution oscillates. Newton's
iteration following it converges rapidly.

AMSC 663 & 664 Final Report Minghao Wu

 23

Fig. 12 Exponentially spaced streamline plot (left) and pressure plot (right) of a Q2-Q1

approximation with R = 8000

Secondly, it is not clear how to choose a good shift for IRA when we are approaching the

critical Reynolds number. If the rightmost eigenvalue is real, then 0 is usually a good

choice. However, when Reynolds number is large, the rightmost eigenvalue change from

a real number to a complex conjugate pair whose imaginary part is much larger than the

real part (in modulus). In this case, 0 is no longer a good choice. Complex shift becomes

necessary. However, so far, we do not know how to choose such a shift.

In Table 2, we showed the rightmost eigenvalues we computed for Reynolds number

from 7900 to 8500.

Table 2. Rightmost eigenvalues for R = 7900 to 8500 (meshsize 2-4)

Reynolds Number Rightmost Eigenvalues

7500 -0.0044

7600 -0.0043

7700 -0.0043

7800 -0.0042

7900 -0.0042

8000 -0.0041

AMSC 663 & 664 Final Report Minghao Wu

 24

8100 -0.0038 ± 1.2926i

8200 -0.0020 ± 1.2932i

8300 -0.0002 ± 1.2937i

8400 0.0017 ± 1.2942i

8500 0.0037 ± 1.2947i

It can be observed that at a Reynolds number between 8000 and 8100, the rightmost

eigenvalue change from real to a complex conjugate pair; also there is a Hopf bifurcation

point when Reynolds number is around 8300, where rightmost eigenvalues cross the

imaginary axis. This agrees with the literature[11]. When Reynolds number is 8300, the

imaginary part of the rightmost eigenvalues is more than 6000 times greater than the real

part (in modulus). Next, we will show a heuristic of detecting this kind of eigenvalues.

We first use 0 as our shift and compute 50 eigenvalues closest to this shift using IRA.

The rightmost eigenvalues computed this way are shown in table 3:

Table 3. Rightmost eigenvalues computed by IRA with σ = 0, k = 50

Reynolds Number Rightmost Eigenvalues

7500 -0.0044

7600 -0.0043

7700 -0.0043

7800 -0.0042

7900 -0.0042

8000 -0.0041

8100 -0.0041

8200 -0.0040

8300 -0.0040

8400 -0.0040

8500 -0.0039

AMSC 663 & 664 Final Report Minghao Wu

 25

We then draw the largest circle that exclude eigenvalue(s) with the largest modulus but

include all the other eigenvalues (see Fig. 13).

Fig. 13

Therefore every eigenvalue that lies in that circle must have been computed by IRA

(otherwise, the eigenvalue(s) with the largest modulus won't be computed at all). Assume

that the rightmost eigenvalue is not computed and has large imaginary part. Then it must

sit very close to the imaginary axis and outside of the circle. Therefore, we use the point

where the circle intersects with imaginary axis (±ri, r is the radius of the circle) as the

new shift. We compute another 20 eigenvalues using the new shift (ri) and draw the

circle again (see Fig. 14). Repeat this process unless we reach a certain number of times

or a new rightmost eigenvalue with larger real part than the previous one is found. The

results in table 2 are obtained after this validation process.

AMSC 663 & 664 Final Report Minghao Wu

 26

Fig. 14 (due to scaling, circles become ellipses)

Validation Test

Codes for algorithm 1: Arnoldi method with shift-invert matrix transformation and

algorithm 3: implicitly restarted Arnoldi method are both tested on several benchmark

problems in the existing literature[1,3,4,8,9,11] and they produced the same results as the

literature. Another kind of validation test we have done is to generate random matrices

using Matlab function 'rand', solve the eigenvalue problem and compare the results with

those produced by Matlab function 'eig' or 'eigs'. A large amount of the second kind tests

have been done and our codes always give the expected results.

Code for algorithm 2: Keller's pseudo-arclength continuation method is tested by test

problem 2: tubular reactor model[8]. We compute the solution paths and bifurcation

points under 4 different sets of parameters and our results also agree with the literature.

Comparing to algorithm 1 and 3, however, we have not done a large number of validation

tests for algorithm 2. The main reason is that it is much harder to find or construct

appropriate test problems. We will look into that in the future.

AMSC 663 & 664 Final Report Minghao Wu

 27

Future Work

There are still a lot of open questions that we need to answer. One of them is how to

precondition IRA and implement iterative linear system solver inside IRA. Another one

is how to detect rightmost eigenvalues whose imaginary part is much larger than their

real part in modulus.

Acknowledgement

The IRA code we used is written by Fei Xue, a PhD student of Department of

Mathematics, University of Maryland.

The software we used to discretize Navier-Stokes equations and find its steady state

solution is IFISS, Incompressible Flow Iterative Solution Software, developed by

Howard Elman (Department of Computer Science, University of Maryland), David

Silvester (Department of Mathematics, University of Manchester) and Andy Wathern

(Oxford University, Computing Laboratory).

Reference

[1] Meerbergen, K & Roose, D 1996 Matrix transformation for computing rightmost

eigenvalues of large sparse non-symmetric eigenvalue problems. SIAM J. Numer. Anal.

16, 297-346.

[2] Stewart, G. W. 2001 Matrix algorithms, volume II: eigensystems. SIAM.

[3] Meerbergen, K & Spence, A & Roose, D 1994 Shift-invert and Cayley

transformations for detection of rightmost eigenvalues of nonsymmetric matrices. BIT 34,

409-423.

[4] Meerbergen, K & Roose, D 1997 The restarted Arnoldi method applied to iterative

linear system solvers for the computation of rightmost eigenvalues. SIAM J. Matrix Anal.

Appl. 18, 1-20.

AMSC 663 & 664 Final Report Minghao Wu

 28

[5] Spence, A & Graham, Ivan G., Numerical Methods for Bifurcation Problems.

[6] Olmstead, W. E., Davis, W. E., Rosenblat, S. H., & Kath, W. L. 1986 Bifurcation

with memory. SIAM J. Appl. Math. 40, 171-188.

[7] Simoncini, V 2005 Variable accuracy of matrix-vector products in projection methods

for eigencomputation. SIAM J. Numer. Anal. 43, 1155-1174.

[8] Heinemann, R & Poore, A 1981 Multiplicity, stability, and oscilatory dynamics of the

tubular reactor. Chemical Engineering Science, 36 1411-1419.

[9] Meergergen, K & Spence, A 1997 Implicitly restarted Arnoldi with purification for

the shift-invert transformation. Math. Comput. 66, 667-698.

[10] Elman, H & Silvester, D & Wathen, A 2005 Finite elements and fast iterative solvers

with applications in incompressible fluid dynamics. Oxford University Press

[11] Bruneau, C-H & Saad, M 2006 The 2D lid-driven cavity problem revisited.

Computers & fluids 35, 326-348.

