Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

AMSC 663-664 Final Report

Minghao Wu
AMSC Program
mwu@math.umd.edu

Dr. Howard Elman
Department of Computer Science
elman@cs.umd.edu

Problem Statement

To find the rightmost eigenvalues of:

$A \boldsymbol{x}=\lambda \boldsymbol{B x}$.

where matrices \boldsymbol{A} and \boldsymbol{B} are

- Real \boldsymbol{N}-by- \boldsymbol{N}
- Large
- Sparse
- Nonsymmetric
- Depend on one or several parameters

Application

- To determine the stability of the linearized system of the form ${ }^{[1]}$:

$$
B \dot{x}=A x
$$

- The steady state solution \boldsymbol{x}^{*} is
- stable, if all the eigenvalues of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{x}$ have negative real parts;
- unstable, otherwise.

Basic Arnoldi Algorithm and Implicitly Restarted Arnoldi

Properties of basic Arnoldi algorithm

Matrix transformation
Implicitly restarted Arnoldi

Eigensolver

- Arnoldi algorithm ${ }^{[1]}$
- iterative method
- based on Krylov subspace
\boldsymbol{k} - dimensional Krylov subspace:

$$
\boldsymbol{K}_{\boldsymbol{k}}\left(\boldsymbol{A}, \boldsymbol{u}_{\boldsymbol{l}}\right)=\operatorname{span}\left\{\boldsymbol{u}_{\boldsymbol{I}} \boldsymbol{A} \boldsymbol{u}_{\boldsymbol{I}} \boldsymbol{A}^{2} \boldsymbol{u}_{\boldsymbol{1}} \ldots \boldsymbol{A}^{\boldsymbol{k}} \boldsymbol{u}_{\boldsymbol{I}}\right\}
$$

- residual of computed eigenpairs is orthogonal to $\boldsymbol{K}_{\boldsymbol{k}}$

- only solves standard eigenvalue problem $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$
- converges to well-separated extremal eigenvalues

Matrix Transformation

- Shift - Invert Transformation ${ }^{[1]}$

$$
T_{S I}=(A-\sigma B)^{-1} B
$$

$A x=\lambda B x$	$T_{S I} x=\theta x$
λ	$\theta=1 /(\lambda-\sigma)$

Computational Result

- Example: Olmstead model ${ }^{[2]}$

$$
\begin{gathered}
\left\{\begin{array}{l}
u_{t}=S_{x x}+c u_{x x}+R u-u^{3} \\
b S_{t}=(1-c) u-S
\end{array}\right. \\
u=S=0 \text { at } x=0, \pi .
\end{gathered}
$$

\boldsymbol{u} : velocity, \boldsymbol{S} : a quantity related to viscoelastic forces
$\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{R}$: parameters. \boldsymbol{R} : Rayleigh number

- $b=2, c=0.1, R=0.6, N=1000, k=20, \sigma=0$:
rightmost eigenvalues: $\lambda_{1,2}=0 \pm 0.4472 i$ residual: $\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{2} /\left\|x_{i}\right\|_{2}=1.5659 \times 10^{-11}, i=1,2$

Implicitly Restarted Arnoldi

- Motivation
- large Krylov subspace is not practical
- singular B gives rise to spurious eigenvalues
- Basic idea of IRA

Filter out unwanted eigendirections from the starting vector of Arnoldi algorithm by applying shifted $Q R$ algorithm to a small upper Hessenberg matrix ${ }^{[3]}$

Computational Result

- Example ${ }^{[4]}$:

- $K(200 \times 200), C(200 \times 100)$ and $M(200 \times 200)$ are of full rank
- eigenvalues lie between -3 and 50
- mimics the eigenproblem arises from Navier-Stokes equation

$k=10, \sigma=60$		
Exact Eigenvalues	Computed Eigenvalues (IRA)	Computed Eigenvalues (basic Arnoldi)
$49.9129+0 \mathrm{i}$	$49.9129+0 \mathrm{i}$	$193.8412 \pm$ 7113830.9524 i $\left(\right.$ residual $\left.\approx 10^{-4}\right)$
$2.9112 \pm 1.1256 \mathrm{i}$	$2.9112 \pm 1.1256 \mathrm{i}$	$49.9129+0 \mathrm{i}$
$2.5036 \pm 0.0624 \mathrm{i}$	$2.5036 \pm 0.0624 \mathrm{i}$	$3.0891+0 \mathrm{i}$
$2.3792+0 \mathrm{i}$	$2.3792+0 \mathrm{i}$	$2.6112+0 \mathrm{i}$
$2.1318 \pm 0.9356 \mathrm{i}$	$2.1318 \pm 0.9356 \mathrm{i}$	$-0.5752 \pm 2.7079 \mathrm{i}$
$2.1081 \pm 1.3539 \mathrm{i}$	$2.1081 \pm 1.3539 \mathrm{i}$	$-1.0901 \pm 0.7532 \mathrm{i}$

Arnoldi Algorithm with Iterative Linear System Solver

How to solve $(A-\sigma B) w=b$ efficiently?
($A-\sigma B$: large, sparse, nonsymmetric)

GMRES Method

- GMRES stands for the Generalized Minimal RESidual method.
- Based on Krylov subspace
- Solves the following minimization problem

$$
\min _{x \in x_{0}+K_{m}}\|b-A x\|_{2}
$$

where $\boldsymbol{x}_{\boldsymbol{0}}$ is the initial guess and $\boldsymbol{K}_{\boldsymbol{m}}$ is the $\boldsymbol{m}-$ dimensional Krylov subspace

Preconditioning of $A x=b$

- Goal
cluster the eigenvalues of the original matrix
- Basic idea
solve $M^{-1} A x=M^{-1} b$ instead of $A x=b$ where

1) M approximates A
2) M^{-1} is easy to apply

- Example: incomplete LU factorization (ILU)
- Basic idea: drop certain entries in the complete LU factors of the matrix, eg., entries < some threshold
- ILU(0): select the allowed fill to exactly match the sparsity pattern of the original matrix \boldsymbol{A}

Computational Result

Example: Olmstead model, $N=5000, R=4.7, \lambda_{1}=4.5102, \sigma=5$
solver: GMRES with ILU(0)

Bouras and Fraysse's relaxation strategy ${ }^{[6]}$:
tolerance $_{\text {GMRES }}=10^{-2} \varepsilon /\left\|r_{k-1}\right\|_{2}$

Method	No relaxation	Relaxation with BF
	9	11
	9	10
	9	9
	9	9
Number of	9	8
GMRES	9	7
iteration at	9	6
every outer	9	5
iteration	9	4
	9	3
	8	2
	9	2
	9	2
	9	2
	9	2
	8	2
	8	2
	8	2
Run time (sec.)	2.25	2
Relative error	$1.3918 \mathrm{e}-010$	$1.9595 \mathrm{e}-010$

Application in The Study of Dynamical Equilibrium

The detection of:
multiple steady states
change of stability
Hopf bifurcation phenomena

Tubular Reactor Model

- Tubular reactor model ${ }^{[7]}$

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=\frac{1}{P e_{m}} \frac{\partial^{2} y}{\partial s^{2}}-\frac{\partial y}{\partial s}-D y \exp (\gamma-\gamma / \theta) \\
\frac{\partial \theta}{\partial t}=\frac{1}{P e_{h}} \frac{\partial^{2} \theta}{\partial s^{2}}-\frac{\partial \theta}{\partial s}-\beta\left(\theta-\theta_{0}\right)+B D y \exp (\gamma-\gamma / \theta)
\end{array} \quad \text { on } \quad s \in(0,1)\right.
$$

with boundary condition

$$
\begin{aligned}
& \frac{\partial y}{\partial s}=P e_{m}(y-1), \frac{\partial \theta}{\partial s}=P e_{h}(\theta-1) \quad \text { at } s=0 \\
& \frac{\partial y}{\partial s}=\frac{\partial \theta}{\partial s}=0 \quad \text { at } s=1
\end{aligned}
$$

\boldsymbol{y} : velocity; $\boldsymbol{\theta}$: temperature;
$\boldsymbol{P e}_{\boldsymbol{m}}, \boldsymbol{P e}_{\boldsymbol{h}}, \boldsymbol{B}, \boldsymbol{D}, \boldsymbol{\gamma}, \boldsymbol{\beta}$: parameters. $\boldsymbol{D}:$ Damkohler number

Computation of Solution Path ${ }^{[8]}$

Published Result ${ }^{[7]}$

Computed Result

$$
P e_{m}=P e_{h}=5, B=0.5, \gamma=25, \beta=25
$$

Eigenvalue Problem From Navier-Stokes equations

2D driven-cavity problem
Reynolds number and stability
Detection of eigenvalues with large imaginary part

2D Driven-Cavity Problem

- Equations ${ }^{[5]}$:

$$
\begin{aligned}
& \begin{array}{l}
u_{t}-v \nabla^{2} \vec{u}+\vec{u} \cdot \nabla \vec{u}+\nabla p=0 \\
\nabla \cdot \vec{u}=0
\end{array} \\
& u_{x}=1-x^{4} \text { at } y=1
\end{aligned}
$$

$\vec{u}=\left(u_{x}, u_{y}\right):$ velocity, p : pressure, $v>0$: kinematic viscosity.

- Reynolds number:

$$
R=\frac{U L}{v}
$$

A quantitative measure of the relative contributions of viscous diffusion and convection.

Reynolds Number And Stability

Reynolds Number	Rightmost Eigenvalues
7500	-0.0044
7600	-0.0043
7700	-0.0043
7800	-0.0042
7900	-0.0042
$\mathbf{8 0 0 0}$	$\mathbf{- 0 . 0 0 4 1}$
$\mathbf{8 1 0 0}$	$\mathbf{- 0 . 0 0 3 8} \pm \mathbf{1 . 2 9 2 6 i}$
8200	$-0.0020 \pm 1.2932 \mathrm{i}$
$\mathbf{8 3 0 0}$	$\mathbf{- 0 . 0 0 0 2} \pm \mathbf{1 . 2 9 3 7 i}$
$\mathbf{8 4 0 0}$	$\mathbf{0 . 0 0 1 7} \pm \mathbf{1 . 2 9 3 2 i}$
8500	$0.0037 \pm 1.2947 \mathrm{i}$

- Rightmost eigenvalues change from real to complex at R around 8100.
- As R increases, steady state solution loses its stability.
- Hopf bifurcation happens at R around 8300.
- Imaginary parts are much larger than real parts (in modulus).
$Q_{2}-Q_{1}$ macroelement, $h=2^{-4}$, nonlinear residual $<10^{-10}$

Conclusions

- What do we have
- Arnoldi and Implicitly Restarted Arnoldi code
- Arnoldi with iterative linear system solver
- Codes for discretizing several commonly used benchmark problems
- Continuation code for single-parameter nonlinear dynamical systems
- Validated results for various computational tasks performed on these benchmark problems
- What's next
- Detection of eigenvalues with large imaginary parts
- Preconditioning of Arnoldi applied to Navier-Stokes equations
- Look at a Navier-Stokes equation with low critical Reynolds number

Acknowledgement

- The Implicitly Restarted Arnoldi code is written by Fei Xue, a PhD student of Department of Mathematics, University of Maryland.
- The software we used to discretize the Navier-Stokes equation and compute its steady state solution is IFISS, Incompressible Flow Iterative Solution Software, developed by:

Howard Elman
Department of Computer Science, University of Maryland David Silvester
Department of Mathematics, University of Manchester

> Andy Wathern

Oxford University, Computing Laboratory

Reference

[1] Meerbergen, K \& Roose, D 1996 Matrix transformation for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems. SIAM J. Numer. Anal. 16, 297-346.
[2] Olmstead, W. E., Davis, W. E., Rosenblat, S. H., \& Kath, W. L. 1986 Bifurcation with memory. SIAM J.Appl. Math. 40, 171-188.
[3] Stewart, G. W. 2001 Matrix algorithms, volume II: eigensystems. SIAM.
[4] Meergergen, K \& Spence, A 1997 Implicitly restarted Arnoldi with purification for the shift-invert transformation. Math. Comput. 66, 667-698.
[5] Elman, H \& Silvester, D \& Wathen, A 2005 Finite elements and fast iterative solvers with applications in incompressible fluid dynamics. Oxford University Press
[6] Simoncini, V 2005 Variable accuracy of matrix-vector products in projection methods for eigencomputation. SIAM J. Numer. Anal. 43, 1155-1174.
[7] Heinemann, R \& Poore, A 1981 Multiplicity, stability, and oscilatory dynamics of the tubular reactor.Chemical Engineering Science, 36 1411-1419.
[8] Spence, A \& Graham, Ivan G., Numerical Methods for Bifurcation Problems.

