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Problem Statement
To find the rightmost eigenvalues of:

Ax = λBx.

where matrices A and B are 

• Real N-by-N

• Large

• Sparse

• Nonsymmetric

• Depend on one or several parameters
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Application

• To determine the stability of the linearized system 
of the form[1]:

AxxB =&

• The steady state solution x* is 

- stable, if all the eigenvalues of Ax = λBx have negative

real parts;

- unstable, otherwise.
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Basic Arnoldi Algorithm and 
Implicitly Restarted Arnoldi

Properties of basic Arnoldi algorithm

Matrix transformation

Implicitly restarted Arnoldi
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Eigensolver
• Arnoldi algorithm[1]

- iterative method
- based on Krylov subspace

k - dimensional Krylov subspace: 
Kk(A,u1) = span{u1  Au1 A2u1 … Aku1}

- residual of computed eigenpairs is orthogonal to Kk

- only solves standard eigenvalue problem Ax = λx

- converges to well-separated extremal eigenvalues
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Matrix Transformation

• Shift – Invert Transformation[1]

TSI = (A-σB)-1B

θ = 1/(λ-σ)λ

TSIx = θxAx = λBx
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Computational Result

• Example: Olmstead model[2]
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u = S = 0 at x = 0, π.

u: velocity, S: a quantity related to viscoelastic forces

b, c, R: parameters. R: Rayleigh number 

• b = 2, c = 0.1, R = 0.6, N = 1000, k = 20, σ = 0:

rightmost eigenvalues:  λ1,2 = 0 ± 0.4472i
residual: ||Axi – λixi||2 / ||xi||2 = 1.5659×10-11, i = 1,2
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Implicitly Restarted Arnoldi

• Motivation
- large Krylov subspace is not practical
- singular B gives rise to spurious eigenvalues

• Basic idea of IRA
Filter out unwanted eigendirections from the starting vector
of Arnoldi algorithm by applying shifted QR algorithm to a
small upper Hessenberg matrix[3]
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Computational Result
• Example[4]:
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- K (200×200), C (200×100) 
and M (200×200) are of full 
rank

- eigenvalues lie between -3 
and 50

- mimics the eigenproblem
arises from Navier-Stokes 
equation

-1.0901 ± 0.7532i2.1081 ± 1.3539i2.1081 ± 1.3539i

-0.5752 ± 2.7079i2.1318 ± 0.9356i2.1318 ± 0.9356i

2.6112 + 0i2.3792 + 0i2.3792 + 0i

3.0891 + 0i2.5036 ± 0.0624i2.5036 ± 0.0624i

49.9129 + 0i2.9112 ± 1.1256i2.9112 ± 1.1256i

193.8412 ±
7113830.9524i

(residual ≈ 10-4)
49.9129 + 0i49.9129 + 0i

Computed 
Eigenvalues

(basic Arnoldi)

Computed 
Eigenvalues

(IRA)

Exact 
Eigenvalues

k = 10, σ = 60
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Arnoldi Algorithm with Iterative 
Linear System Solver

How to solve (A - σB)w = b efficiently? 

(A – σB: large, sparse, nonsymmetric)
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GMRES Method

• GMRES stands for the Generalized Minimal 
RESidual method.

• Based on Krylov subspace

• Solves the following minimization problem

2
0

min Axb
mKxx

−
+∈

where x0 is the initial guess and Km is the m –

dimensional Krylov subspace
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Preconditioning of Ax = b
• Goal

cluster the eigenvalues of the original matrix

• Basic idea
solve M-1Ax = M-1b instead of Ax = b where

1) M approximates A
2) M-1 is easy to apply

• Example: incomplete LU factorization (ILU)
- Basic idea: drop certain entries in the complete LU factors of

the matrix, eg., entries < some threshold
- ILU(0): select the allowed fill to exactly match the sparsity

pattern of the original matrix A
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Computational Result
Example: Olmstead model, N = 5000, R = 4.7, λ1 = 4.5102, σ = 5

solver: GMRES with ILU(0)

Bouras and Fraysse’s relaxation strategy[6]:  
toleranceGMRES = 10-2ε / ||rk-1||2

1.9595e-0101.3918e-010Relative error

1.872.25Run time (sec.)
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Application in The Study of 
Dynamical Equilibrium

The detection of: 
multiple steady states

change of stability
Hopf bifurcation phenomena
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Tubular Reactor Model
• Tubular reactor model[7]

with boundary condition

( )

( ) ( )
( )1,0

/exp1

/exp1

02

2

2

2

∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−+−−
∂
∂

−
∂
∂

=
∂
∂

−−
∂
∂

−
∂
∂

=
∂
∂

son
BDy

ssPet

Dy
s
y

s
y

Pet
y

h

m

θγγθθβθθθ

θγγ

( ) ( )

10

01,1

==
∂
∂

=
∂
∂

=−=
∂
∂

−=
∂
∂

sat
ss

y

satPe
s

yPe
s
y

hm

θ

θθ

y: velocity; θ: temperature; 

Pem, Peh, B, D, γ, β: parameters. D: Damkohler number
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Computation of Solution Path[8]

Published Result[7] Computed Result

Pem = Peh = 5, B = 0.5, γ = 25, β = 25
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Eigenvalue Problem From 
Navier-Stokes equations

2D driven-cavity problem
Reynolds number and stability

Detection of eigenvalues with large imaginary part 
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2D Driven-Cavity Problem
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ux = 1 – x4 at y = 1.
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: velocity, p: pressure, υ>0: kinematic viscosity. 

• Equations[5]:

• Reynolds number:

A quantitative measure of the relative contributions of viscous

diffusion and convection.

υ
ULR =
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Reynolds Number And Stability

0.0037 ± 1.2947i8500

0.0017 ± 1.2932i8400

-0.0002 ± 1.2937i8300

-0.0020 ± 1.2932i8200

-0.0038 ± 1.2926i8100

-0.00418000

-0.00427900

-0.00427800

-0.00437700

-0.00437600

-0.00447500

Rightmost EigenvaluesReynolds Number

Q2-Q1 macroelement, h = 2-4, nonlinear 
residual<10-10

• Rightmost eigenvalues change 
from real to complex at R around 
8100.

• As R increases, steady state 
solution loses its stability.

• Hopf bifurcation happens at R
around 8300.

• Imaginary parts are much larger 
than real parts (in modulus).



20

Conclusions
• What do we have

- Arnoldi and Implicitly Restarted Arnoldi code
- Arnoldi with iterative linear system solver
- Codes for discretizing several commonly used benchmark problems
- Continuation code for single-parameter nonlinear dynamical systems
- Validated results for various computational tasks performed on these 

benchmark problems  

• What’s next
- Detection of eigenvalues with large imaginary parts
- Preconditioning of Arnoldi applied to Navier-Stokes equations
- Look at a Navier-Stokes equation with low critical Reynolds number
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