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Problem Statement

To find the rightmost eigenvalues of:
Ax =ABx

where matrices A and B are
» Real N-by-N

e Large

e Sparse

* Nonsymmetric

» Depend on one or several parameters



Application

e To determine the stability of the linearized system
of the forml1l:

Bx = Ax

 The steady state solution x* IS

- stable, 1f all the eigenvalues of Ax = 4Bx have negative

real parts;

- unstable, otherwise.



Basic Arnoldi Algorithm and
Implicitly Restarted Arnoldi

Properties of basic Arnoldi algorithm
Matrix transformation

Implicitly restarted Arnoldi



Eigensolver
e Arnoldi algorithml]

- Iterative method

- based on Krylov subspace
k - dimensional Krylov subspace:
K, (A,u,) = span{u, Au, A’u, A*u,}
- residual of computed eigenpairs is orthogonal to K

Ax/“ K
k
- only solves standard eigenvalue problem Ax = Ax

- converges to well-separated extremal eigenvalues



Matrix Transformation

e Shift — Invert Transformationlil
T, = (A-6B)'B

Ax = ABx Tox=0x
A 0 = 1/(7-0)

... A-plane
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Computational Result

e Example: Olmstead modell2!
u,=S_+cu_+Ru—u’
bS, =(l-cu—-=S
u=S8S=0atx=0, .
u: velocity, S: a quantity related to viscoelastic forces

b, ¢, R: parameters. R: Rayleigh number

e b=2,¢=01,R=0.6,N=1000,k=20,0=0:

rightmost eigenvalues: 4 ,,=0 = 0.4472i
residual: ||Ax,— A x,||,/ ||x)||, = 1.5659 X10-1,i=1,2



Implicitly Restarted Arnoldi

e Motivation

- large Krylov subspace is not practical
- singular B gives rise to spurious eigenvalues

e Basic idea of IRA

Filter out unwanted eigendirections from the starting vector
of Arnoldi algorithm by applying shifted OR algorithm to a
small upper Hessenberg matrixLs



Computational Result

Examplel4:

K C M 0

. x=A X
o o4 o
- K (200X 200), C (200X 100)

and M (200 200) are of full
rank

- eigenvalues lie between -3
and 50

- mimics the eigenproblem
arises from Navier-Stokes
equation

k=10, 0 =60
Exact C_:omputed (_:omputed
Eigenvalues Eigenvalues Eigenvalues
(IRA) (basic Arnoldi)
193.8412 +
49.9129 + 0i 49.9129 + 0i 7113830.9524i

(residual = 104)

2.9112 + 1.1256i

2.9112 + 1.1256i

49.9129 + 0i

2.5036 + 0.0624i

2.5036 + 0.0624i

3.0891 + Oi

2.3792 + Oi

2.3792 + Oi

2.6112 + 0Oi

2.1318 + 0.9356i

2.1318 =+ 0.9356i

-0.5752 + 2.7079i

2.1081 + 1.3539i

2.1081 + 1.3539i

-1.0901 + 0.7532i




Arnoldi Algorithm with lterative
Linear System Solver

How to solve (4 - oB)w = b efficiently?

(4 — oB: large, sparse, nonsymmetric)

10



GMRES Method

e GMRES stands for the Generalized Minimal

RES1dual method.

e Based on Krylov subspace

« Solves the following minimization problem

min |- Ax

XEXO +Km

where x, Is the initial guess anc

dimensional Krylov subspace

2

K, is the m —
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Preconditioning of Ax = b

e Goal
cluster the eigenvalues of the original matrix

e Basic idea
solve M-'Ax = M'b instead of Ax = b where
1) M approximates A
2) M is easy to apply

« Example: incomplete LU factorization (ILU)

- Basic idea: drop certain entries in the complete LU factors of
the matrix, eg., entries < some threshold
- ILU(0): select the allowed fill to exactly match the sparsity
pattern of the original matrix 4
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Computational Result

Example: Olmstead model, N = 5000, R = 4.7, 4, =4.5102,0 =5
solver: GMRES with ILU(0)

RELAKATION %3, NO RELAXATION
T T T T T

— ——relative error of Amaldi (no relaxation) Method No relaxation Relaxaéllc:)n with
5L relative errar of Arnoldi (relaxation) i
— — —relative error of GMRES (no relaxation) 9 11
relative error of GMRES (relaxation) 9 10
o 9 9
9 9
g sl 9 8
= 9 7
% -0+ 9 6
% Number of 9 5
o GMRES 9 4
S 5t iteration at 9 3
- every outer 9 2
ik iteration 8 2
9 2
9 2
25+ 9 2
9 2
-30 ; . ; ! ; : : : : 8 2
0 2 4 B g 10 12 14 16 18 20 8 2
NUMBER OF ITERATIONS 8 2
Bouras and Fraysse’s relaxation strategy!®!: Run time (sec.) 225 187
Relative error 1.3918e-010 1.9595e-010

tolerancegyp.g = 102/ ||1, ||,



Application in The Study of
Dynamical Equilibrium

The detection of:
multiple steady states
change of stability
Hopf bifurcation phenomena
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Tubular Reactor Model

e Tubular reactor modell’]

oy 1 8*y oy
—=—————-Dyexply—y1/6
ot Pe, 0s*> 0Os vexply =710)
00 1 829_89_
ot Pe, 0s° 0s

on SE€ (0,1)
B(0-6,)+ BDyexp(y —y10)

with boundary condition

Z—y:Pem(y—l),%ZPeh(e—l) at s =0
S Os

0_)/:%:0 at s =1

Os Os

y: velocity; 0: temperature;

Pe,, Pe,, B, D, y, . parameters. D: Damkohler number



Computation of Solution Path!lS!

Published Resultl’]
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on oS 012 INF 013 0133 014 0143 01s 0153
DAMEOHLER NUMBER

Pe, =Pe, =5 B=05y=25F=25
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Eigenvalue Problem From
Navier-Stokes equations

2D driven-cavity problem
Reynolds number and stability
Detection of eigenvalues with large imaginary part
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2D Driven-Cavity Problem

 Equationsl!:
u, —OVui+u-Vii+Vp =0
V.i=0
u =1-xtaty=1.

U = (ux,uy): velocity, p: pressure, v>0: kinematic viscosity.

e Reynolds number:

UL
U
A guantitative measure of the relative contributions of viscous

R

diffusion and convection.
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Reynolds Number And Stability

Reynolds Number  Rightmost Eigenvalues

7500 -0.0044 « Rightmost eigenvalues change

7600 -0.0043 from real to complex at R around

7700 -0.0043 8100.

7800 -0.0042 _

2900 0.0042 AN R Increases, steagly state
solution loses its stability.

8000 -0.0041

8100 -0.0038 + 1.29261 e Hopf bifurcation happens at R

8200 -0.0020 + 1.2932i around 8300.

8300 -0.0002 + 1.2937i

8400 0.0017 + 1.2932i  Imaginary parts are much larger

8500 0.0037 120471 than real parts (in modulus).

0,-Q, macroelement, 4 = 2-4, nonlinear
residual<10-10



Conclusions

What do we have

- Arnoldi and Implicitly Restarted Arnoldi code

- Arnoldi with iterative linear system solver

- Codes for discretizing several commonly used benchmark problems

- Continuation code for single-parameter nonlinear dynamical systems

- Validated results for various computational tasks performed on these
benchmark problems

What’s next
- Detection of eigenvalues with large imaginary parts
- Preconditioning of Arnoldi applied to Navier-Stokes equations
- Look at a Navier-Stokes equation with low critical Reynolds number
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