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Project Motivation

LIGO is depending on reliable simulations to identify black
hole detections in very noisy data

Black hole simulations are computationally intensive

GPUs are a reasonably flexible and efficient for large scale
computations

Using GPUs may reduce computation time and cost

This project will focus on building up code that will be the
groundwork for simulating black holes on GPUs
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Project Summary

Implement a spectral method PDE solver for Einstein’s equations

1 Prototype solver in Matlab (Fall 2010)

2 Write and verify C code (Spring 2011)

3 Write and verify CUDA code (Spring 2011)

4 Compare CPU and GPU perfomance (Spring 2011)
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Einstein’s Equations in 1-d

Spherically symmetric black hole – coordinates are 1d in space
instead of 3d in space

Solve 6 coupled hyperbolic equations that are 1st order in
space and time

There are 6 variables grr , gT ,Krr ,KT , frrr , frT that describe a
spherically symmetric metric on a Lorentzian manifold
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Building Blocks of Spectral Solver

Chebyshev Collocation Points (Degree N)

xi = cos(π · i/N), i ∈ {0, . . . ,N}, xi ∈ [−1, 1]

Approximating the Spatial Derivative

u = {u(x0), . . . , u(xN)}T

D is the (N + 1) × (N + 1) differentiation matrix relevant for the
collocation points xi ∈ [−1, 1]

u′ ≈ Du
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Evolution in Time

Fourth-Order Runge-Kutta (RK4)

y ′ = rhs(t, y), y(t0) = y0

tn+1 = tn + h

k1 = rhs(tn, yn)

k2 = rhs(tn + 1
2h, yn + 1

2hk1)

k3 = rhs(tn + 1
2h, yn + 1

2hk2)

k4 = rhs(tn + h, yn + hk3)

yn+1 = yn + 1
6h(k1 + 2k2 + 2k3 + k4)
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Boundary Conditions

Event horizon of the black hole is at a radius of 2M,
where M is the mass of the black hole

Set inner boundary at 1.9

Inner boundary is inside the black hole, so no boundary
conditions need to be imposed explicitly

After each step within RK4, adjust the outer boundary using
the initial conditions
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RHS Computations

Compute initial values of main variables

grr , gT ,Krr ,KT , frrr , frT

Use differentiation matrix to approximate the spacial
derivatives (e.g., g ′

rr ≈ Dgrr )

For each collocation point ri ,

Compute derivatives ˙grr , . . . , ˙frT at ri , which depend on
g ′
rr , . . . , f

′
rT at ri

For this special case, ˙grr , . . . , ˙frT should be 0



Project Summary Evolving Einstein’s Equations Implementation GPU Performance Results Schedule Summary

Validating Numerical Solution

1 Choose a series of degrees N of Chebyshev polynomials
(e.g., N ∈ {10, 20, 30})

2 Choose a fixed time step size (e.g. 0.001)

3 Evolve Einstien’s equations T time steps

4 At each time, determine the error of each component

(e.g., for analytic solution grr and approximation ĝrr ,
error = ||grr (r) − ĝrr (r)||2)

5 Verify that the error converges rapidly to 0 as N increases
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Error in Solution to Einstein’s Equations
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Implementation

Wrote code for 1-d case in Matlab, C, and CUDA

Left 2-d and 3-d cases as future work

Replicated 1-d case in 2nd and 3rd dimension

Added dummy components to simulate memory accesses:

“3-d” code uses arrays that are
(N + 1) × (N + 1) × (N + 1) × 50

Increased computation to simulate RHS work:

for loop around RHS (computes 1-d RHS 50 times)
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Usage and Options

Make : python make.py -g -d 3 -f
Usage : gpu solver3 [options]

-t tmax, tmax is final time

-d dt, dt is the time step size

-i r0, r0 is the inner boundary (default = 1.9)

-o r1, r1 is the outer boundary (default = 11.9)

-N deg, deg is the degree of the Chebyshev polynomial

-a infile, infile is a file with a saved state

-f filename, filename is name of the solution file to be written
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Outline of C/CUDA code

1 Initialize data structures and memory on CPU

2 Set initial conditions of PDE on CPU

3 Call GPU version of Runge-Kutta from CPU

GPU Runge-Kutta

Allocate GPU memory and copy data to GPU

for t = 0:num steps
gpu rhs <<< nBlocks, nThreads >>> ()
gpu update <<< nBlocks2, nThreads2 >>> ()
... repeat 3x

4 Copy results to CPU

5 Write results to binary file
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Crash Course in GPU Computing

Fermi GPU has 448 cores (at 1.147 GHz) on 14
multiprocessors

Blocks run independently on a multiprocessor in warps of 32
threads (up to 1024 threads per block)

CPU provides a “grid” that defines the number of blocks
(nBlocks) and threads per block (nThreads)

GPU executes a kernel called by the CPU

GPU Kernel Call

gpu rhs <<< nBlocks, nThreads >>> ()

syncthreads(), synchronizes threads across a block in a
kernel
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Crash Course Continued

Contiguous memory should be accessed across threads in a
block

Cannot have dependency across blocks (forces multiple of
(N+1) threads per block with current kernel)

Need a lot of parallelism to keep the GPU busy

Do a lot of computation for each memory access
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CPU Info

What about the CPU?

Intel(R) Xeon(R) CPU X5550 @ 2.67GHz

Cache size : 8192 KB

8 cores, but used only 1

CPU code is not parallel code
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CPU vs GPU : 1-d
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CPU vs GPU : 2-d
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One interesting limitation

Recall Du ≈ u′

Full u vector is required to compute u′

GPU block must contain full u vector to compute u′

nThreads must be a multiple of N + 1

3-d case has (N + 1)3 RHSs, so try nBlocks = (N + 1)2 and
nThreads = (N + 1)

Need more threads per block
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CPU vs GPU : 3-d double precision
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CPU vs GPU : 3-d
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CPU runtime/GPU runtime
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Schedule

√
February 10, 1-d C code verified on test data

√
March 15, 1-d CUDA code verified on test data

√
April 15, Optimized CUDA code

In progress : May 1, Complete writeup and deliverables

Future work : 2-d and 3-d versions, time permiting
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