GPUs and Einstein's Equations

Tim Dewey
Advisor: Dr. Manuel Tiglio

AMSC Scientific Computing—University of Maryland

May 5, 2011

Outline

@ Project Summary

© Evolving Einstein’s Equations
© Implementation

@ GPU Performance Results

© Schedule Summary

Project Summary

Project Motivation

@ LIGO is depending on reliable simulations to identify black
hole detections in very noisy data

@ Black hole simulations are computationally intensive

@ GPUs are a reasonably flexible and efficient for large scale
computations

@ Using GPUs may reduce computation time and cost

@ This project will focus on building up code that will be the
groundwork for simulating black holes on GPUs

Project Summary
Project Summary

Implement a spectral method PDE solver for Einstein's equations
© Prototype solver in Matlab (Fall 2010)
© Write and verify C code (Spring 2011)
© Write and verify CUDA code (Spring 2011)
© Compare CPU and GPU perfomance (Spring 2011)

Evolving Einstein’s Equations

Einstein's Equations in 1-d

@ Spherically symmetric black hole — coordinates are 1d in space
instead of 3d in space

@ Solve 6 coupled hyperbolic equations that are 1st order in
space and time

@ There are 6 variables g, g1, Kr, KT, fr, f,7 that describe a
spherically symmetric metric on a Lorentzian manifold

Evolving Einstein’s Equations

Building Blocks of Spectral Solver

Chebyshev Collocation Points (Degree N)
xj = cos(m - i/N), i€{0,...,N}, x; € [-1,]]

Approximating the Spatial Derivative

u={u(x0),...,ulxn)}"
D is the (N 4 1) x (N + 1) differentiation matrix relevant for the
collocation points x; € [—1,1]

v ~ Du

Evolving Einstein’s Equations
Evolution in Time

Fourth-Order Runge-Kutta (RK4)
y'=rhs(t,y), y(to) =0
thy1 =th+ h
ky = rhs(tn, yn)
ky = rhs(tn + 3h, yn + 3hki)
ks = rhs(tn + 3h, yn + S hk2)
ky = rhs(t, + h,y, + hk3)
Y1 = Yo+ gh(ki + 2ko + 2ks + ks)

Evolving Einstein’s Equations

Boundary Conditions

@ Event horizon of the black hole is at a radius of 2M,
where M is the mass of the black hole

@ Set inner boundary at 1.9

@ Inner boundary is inside the black hole, so no boundary
conditions need to be imposed explicitly

@ After each step within RK4, adjust the outer boundary using
the initial conditions

Evolving Einstein’s Equations

RHS Computations

@ Compute initial values of main variables

8rry 8T, Krr, KTa frrra frT

@ Use differentiation matrix to approximate the spacial
derivatives (e.g., g/, = Dg;,)

@ For each collocation point r;,
Compute derivatives g, ..., f,'-,- at r;, which depend on
&hpr- - [l atr

@ For this special case, g, ..., f,7 should be 0

Evolving Einstein’s Equations

Validating Numerical Solution

@ Choose a series of degrees N of Chebyshev polynomials
(e.g., N € {10,20,30})

@ Choose a fixed time step size (e.g. 0.001)

© Evolve Einstien’s equations T time steps

@ At each time, determine the error of each component

(e.g., for analytic solution g, and approximation g,
error = ||grr(r) - grr(r)||2)
© Verify that the error converges rapidly to 0 as N increases

Evolving Einstein’s Equations

Error in Solution to Einstein's Equations

100

Time (step size = 0.001)

Implementation
Implementation

@ Wrote code for 1-d case in Matlab, C, and CUDA

@ Left 2-d and 3-d cases as future work

@ Replicated 1-d case in 2nd and 3rd dimension

@ Added dummy components to simulate memory accesses:
“3-d” code uses arrays that are
(N+1)x (N+1)x(N+1)x50

@ Increased computation to simulate RHS work:
for loop around RHS (computes 1-d RHS 50 times)

Implementation

Usage and Options

Make : python make.py -g -d 3 -f
Usage : gpu_solver3 [options]
@ -t tmax, tmax is final time
@ -d dt, dt is the time step size
@ -i r0, r0 is the inner boundary (default = 1.9)
@ -orl, rl is the outer boundary (default = 11.9)
@ -N deg, deg is the degree of the Chebyshev polynomial
@ -a infile, infile is a file with a saved state
°

-f filename, filename is name of the solution file to be written

Implementation

Outline of C/CUDA code

@ Initialize data structures and memory on CPU
@ Set initial conditions of PDE on CPU
© Call GPU version of Runge-Kutta from CPU

GPU Runge-Kutta

Allocate GPU memory and copy data to GPU

for t = O:num_steps
gpurhs <<< nBlocks, nThreads >>> ()
gpu_update <<< nBlocks2, nThreads2 >>> ()
repeat 3x

©Q Copy results to CPU
© Write results to binary file

GPU Performance Results
Crash Course in GPU Computing

@ Fermi GPU has 448 cores (at 1.147 GHz) on 14
multiprocessors

@ Blocks run independently on a multiprocessor in warps of 32
threads (up to 1024 threads per block)

@ CPU provides a “grid” that defines the number of blocks
(nBlocks) and threads per block (nThreads)

@ GPU executes a kernel called by the CPU

GPU Kernel Call
gpurhs <<< nBlocks, nThreads >>> ()

@ __syncthreads(), synchronizes threads across a block in a
kernel

GPU Performance Results

Crash Course Continued

@ Contiguous memory should be accessed across threads in a
block

@ Cannot have dependency across blocks (forces multiple of
(N+1) threads per block with current kernel)

@ Need a lot of parallelism to keep the GPU busy

@ Do a lot of computation for each memory access

GPU Performance Results
CPU Info

What about the CPU?
@ Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
@ Cache size : 8192 KB
@ 8 cores, but used only 1

@ CPU code is not parallel code

GPU Performance Results

CPU vs GPU : 1-d

102
]
10t
L
(o]
E
)
c
3
o ¢
100 7
e e CPU double
e e CPU float
e === GPU double
e == GPU float
-1
10755 20 30 20 50

N+1 (# of collocation points)

GPU Performance Results

CPU vs GPU : 2-d

103 1
v
AN e
s N
~ s
- S
A ,” A A
4"" -“
e
/",‘ —v"
/Y L
- _
’/~ ’4
2 //k /‘
10 S -
iy

70,0, 0,00, 0.0 o" o O P §
OO0 \‘w«;,\—vxf—"‘ ’

I_ '_:_;_::-11 A O /:\/ H NN AN A

10! MHHH”W"{'

Run time (s)

=l === CPU double
et/ CPU float
== GPU double
== GPU float

10 20 30 40 50
N-+1 (# of collocation points/dimension)

GPU Performance Results

One interesting limitation

]
]
]
]
]

Recall Du ~ v’

Full u vector is required to compute u’

GPU block must contain full u vector to compute u’
nThreads must be a multiple of N + 1

3-d case has (N + 1)3 RHSs, so try nBlocks = (N + 1)? and
nThreads = (N + 1)

@ Need more threads per block

GPU Performance Results

CPU vs GPU : 3-d double precision

10*
103 el
o AT R,
> o
E 2 // -~ C /
S 10 7 P)
= g e el
x el
10l
—(— CPU
—o— GPU
100 O OO MO OO =)
10 20 30 40 50

N+1 (# of collocation points/dimension)

CPU vs GPU :

GPU Performance Results

104

103

102

Run time (s)
N\

10!

)\

(= CPU double
/= CPU float
——O=—GPU double
— = GPU float

40 50

N+1 (# of collocation points/dimension)

GPU Performance Results

CPU runtime/GPU runtime

200
——=—2d double
= 2d float
. ——O=——3d double
—{+— 3d float
160 o

N

- N
120 \/ et

CPU seconds/GPU seconds

80 - A 4 A PN
C e e . A o
/ ///) \ g (Ve \“"\cviiv‘v’—ﬂ'ﬂ*’v/\/
40 #\// ~/f~’\
g,ﬁ«af"‘/ V0 Vot |

10 20 30 40 50
N+1 (# of collocation points/dimension)

Schedule Summary
Schedule

@ ./ February 10, 1-d C code verified on test data

@ / March 15, 1-d CUDA code verified on test data

@ ./ April 15, Optimized CUDA code

@ In progress : May 1, Complete writeup and deliverables

@ Future work : 2-d and 3-d versions, time permiting

Schedule Summary
References

1 Lloyd N. Trefethen. “Spectral Methods in Matlab.” SIAM,
2000. http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen.

2 G. Calabrese, L. Lehner, M. Tiglio. “Constraint-preserving
boundary conditions in numerical relativity.”
arXiv:gr-qc/0111003v1. November 2001.

3 Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky.
“Black hole evolution by spectral methods.”
http://arxiv.org/abs/gr-qc/0005056v1.

4 “Runge—Kutta methods.”
http://en.wikipedia.org/wiki/Runge-Kutta_methods.”

5 “TESLA™ M2050/M2070 GPU COMPUTING MODULE."
http://www.nvidia.com /tesla.

