GPUs and Einstein's Equations

Tim Dewey Advisor: Dr. Manuel Tiglio

AMSC Scientific Computing–University of Maryland

May 5, 2011

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 · のへで

Outline

2 Evolving Einstein's Equations

Implementation

- 4 GPU Performance Results
- 5 Schedule Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Project Motivation

- LIGO is depending on reliable simulations to identify black hole detections in very noisy data
- Black hole simulations are computationally intensive
- GPUs are a reasonably flexible and efficient for large scale computations
- Using GPUs may reduce computation time and cost
- This project will focus on building up code that will be the groundwork for simulating black holes on GPUs

Project Summary

Implement a spectral method PDE solver for Einstein's equations

- Prototype solver in Matlab (Fall 2010)
- Write and verify C code (Spring 2011)
- Solution Write and verify CUDA code (Spring 2011)
- Scompare CPU and GPU perfomance (Spring 2011)

Einstein's Equations in 1-d

- Spherically symmetric black hole coordinates are 1d in space instead of 3d in space
- Solve 6 coupled hyperbolic equations that are 1st order in space and time
- There are 6 variables $g_{rr}, g_T, K_{rr}, K_T, f_{rrr}, f_{rT}$ that describe a spherically symmetric metric on a Lorentzian manifold

Building Blocks of Spectral Solver

Chebyshev Collocation Points (Degree N)

 $x_i = \cos(\pi \cdot i/N), \quad i \in \{0, \dots, N\}, \ x_i \in [-1, 1]$

Approximating the Spatial Derivative

$$\begin{split} \mathbf{u} &= \{u(x_0), \dots, u(x_N)\}^T \\ \mathbf{D} \text{ is the } (N+1) \times (N+1) \text{ differentiation matrix relevant for the collocation points } x_i \in [-1,1] \end{split}$$

$$\mathbf{u}'\approx\mathbf{D}\mathbf{u}$$

GPU Performance Results

Schedule Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Evolution in Time

Fourth-Order Runge-Kutta (RK4)

$$y' = rhs(t, y), \qquad y(t_0) = y_0$$

$$t_{n+1} = t_n + h$$

$$k_1 = rhs(t_n, y_n)$$

$$k_2 = rhs(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1)$$

$$k_3 = rhs(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2)$$

$$k_4 = rhs(t_n + h, y_n + hk_3)$$

$$y_{n+1} = y_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

Boundary Conditions

- Event horizon of the black hole is at a radius of 2*M*, where *M* is the mass of the black hole
- Set inner boundary at 1.9
- Inner boundary is inside the black hole, so no boundary conditions need to be imposed explicitly
- After each step within RK4, adjust the outer boundary using the initial conditions

RHS Computations

Compute initial values of main variables

$$g_{rr}, g_T, K_{rr}, K_T, f_{rrr}, f_{rT}$$

- Use differentiation matrix to approximate the spacial derivatives (e.g., g'_{rr} ≈ Dg_{rr})
- For each collocation point r_i , Compute derivatives $\dot{g_{rr}}, \ldots, \dot{f_{rT}}$ at r_i , which depend on g'_{rr}, \ldots, f'_{rT} at r_i
- For this special case, $\dot{g_{rr}}, \ldots, \dot{f_{rT}}$ should be 0

Validating Numerical Solution

- Observe the server of the
- Ochoose a fixed time step size (e.g. 0.001)
- Solve Einstien's equations T time steps
- At each time, determine the error of each component (e.g., for analytic solution g_{rr} and approximation \hat{g}_{rr} , error = $||g_{rr}(\mathbf{r}) - \hat{g}_{rr}(\mathbf{r})||_2$)
- Solution Verify that the error converges rapidly to 0 as N increases

Error in Solution to Einstein's Equations

JOC.

Implementation

- Wrote code for 1-d case in Matlab, C, and CUDA
- Left 2-d and 3-d cases as future work
- Replicated 1-d case in 2nd and 3rd dimension
- Added dummy components to simulate memory accesses: "3-d" code uses arrays that are $(N+1) \times (N+1) \times (N+1) \times 50$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

 Increased computation to simulate RHS work: for loop around RHS (computes 1-d RHS 50 times)

Usage and Options

Make : python make.py -g -d 3 -f Usage : gpu_solver3 [options]

- -t tmax, tmax is final time
- -d dt, dt is the time step size
- -i r0, r0 is the inner boundary (default = 1.9)
- -o r1, r1 is the outer boundary (default = 11.9)
- -N deg, deg is the degree of the Chebyshev polynomial
- -a infile, infile is a file with a saved state
- -f filename, filename is name of the solution file to be written

Outline of C/CUDA code

- Initialize data structures and memory on CPU
- Set initial conditions of PDE on CPU
- Call GPU version of Runge-Kutta from CPU

GPU Runge-Kutta

Allocate GPU memory and copy data to GPU

```
for t = 0:num_steps
  gpu_rhs <<< nBlocks, nThreads >>> ()
  gpu_update <<< nBlocks2, nThreads2 >>> ()
    ... repeat 3x
```

Copy results to CPU

Write results to binary file

Crash Course in GPU Computing

- Fermi GPU has 448 cores (at 1.147 GHz) on 14 multiprocessors
- Blocks run independently on a multiprocessor in warps of 32 threads (up to 1024 threads per block)
- CPU provides a "grid" that defines the number of blocks (nBlocks) and threads per block (nThreads)
- GPU executes a kernel called by the CPU

GPU Kernel Call

```
gpu_rhs <<< nBlocks, nThreads >>> ()
```

 _syncthreads(), synchronizes threads across a block in a kernel

Crash Course Continued

- Contiguous memory should be accessed across threads in a block
- Cannot have dependency across blocks (forces multiple of (N+1) threads per block with current kernel)
- Need a lot of parallelism to keep the GPU busy
- Do a lot of computation for each memory access

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 のへで

CPU Info

What about the CPU?

- Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
- Cache size : 8192 KB
- 8 cores, but used only 1
- CPU code is not parallel code

GPU Performance Results

Schedule Summary

CPU vs GPU : 1-d

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で

CPU vs GPU : 2-d

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ の々で

One interesting limitation

- Recall $\mathbf{D}\mathbf{u} \approx \mathbf{u}'$
- Full \mathbf{u} vector is required to compute \mathbf{u}'
- GPU block must contain full \mathbf{u} vector to compute \mathbf{u}'
- nThreads must be a multiple of N + 1
- 3-d case has $(N + 1)^3$ RHSs, so try nBlocks = $(N + 1)^2$ and nThreads = (N + 1)
- Need more threads per block

CPU vs GPU : 3-d double precision

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GPU Performance Results

Schedule Summary

CPU vs GPU : 3-d

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

CPU runtime/GPU runtime

Schedule

- $\sqrt{}$ February 10, 1-d C code verified on test data
- $\bullet~\sqrt{}$ March 15, 1-d CUDA code verified on test data
- $\sqrt{}$ April 15, Optimized CUDA code
- In progress : May 1, Complete writeup and deliverables

• Future work : 2-d and 3-d versions, time permiting

- 1 Lloyd N. Trefethen. "Spectral Methods in Matlab." SIAM, 2000. http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen.
- 2 G. Calabrese, L. Lehner, M. Tiglio. "Constraint-preserving boundary conditions in numerical relativity." arXiv:gr-qc/0111003v1. November 2001.
- 3 Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky. "Black hole evolution by spectral methods." http://arxiv.org/abs/gr-qc/0005056v1.
- 4 "Runge-Kutta methods." http://en.wikipedia.org/wiki/Runge-Kutta_methods."
- 5 "TESLA[™] M2050/M2070 GPU COMPUTING MODULE." http://www.nvidia.com/tesla.