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Project Summary

Project Motivation

@ LIGO is depending on reliable simulations to identify black
hole detections in very noisy data

@ Black hole simulations are computationally intensive

@ GPUs are a reasonably flexible and efficient for large scale
computations

@ Using GPUs may reduce computation time and cost

@ This project will focus on building up code that will be the
groundwork for simulating black holes on GPUs



Project Summary
Project Summary

Implement a spectral method PDE solver for Einstein's equations
© Prototype solver in Matlab (Fall 2010)
© Write and verify C code (Spring 2011)
© Write and verify CUDA code (Spring 2011)
© Compare CPU and GPU perfomance (Spring 2011)



Evolving Einstein’s Equations

Einstein's Equations in 1-d

@ Spherically symmetric black hole — coordinates are 1d in space
instead of 3d in space

@ Solve 6 coupled hyperbolic equations that are 1st order in
space and time

@ There are 6 variables g, g1, Kr, KT, fr, f,7 that describe a
spherically symmetric metric on a Lorentzian manifold



Evolving Einstein’s Equations

Building Blocks of Spectral Solver

Chebyshev Collocation Points (Degree N)
xj = cos(m - i/N), i€{0,...,N}, x; € [-1,]]

Approximating the Spatial Derivative

u={u(x0),...,ulxn)}"
D is the (N 4 1) x (N + 1) differentiation matrix relevant for the
collocation points x; € [—1,1]

v ~ Du




Evolving Einstein’s Equations
Evolution in Time

Fourth-Order Runge-Kutta (RK4)
y'=rhs(t,y),  y(to) =0
thy1 =th+ h
ky = rhs(tn, yn)
ky = rhs(tn + 3h, yn + 3hki)
ks = rhs(tn + 3h, yn + S hk2)
ky = rhs(t, + h,y, + hk3)
Y1 = Yo+ gh(ki + 2ko + 2ks + ks)




Evolving Einstein’s Equations

Boundary Conditions

@ Event horizon of the black hole is at a radius of 2M,
where M is the mass of the black hole

@ Set inner boundary at 1.9

@ Inner boundary is inside the black hole, so no boundary
conditions need to be imposed explicitly

@ After each step within RK4, adjust the outer boundary using
the initial conditions



Evolving Einstein’s Equations

RHS Computations

@ Compute initial values of main variables

8rry 8T, Krr, KTa frrra frT

@ Use differentiation matrix to approximate the spacial
derivatives (e.g., g/, = Dg;,)

@ For each collocation point r;,
Compute derivatives g, ..., f,'-,- at r;, which depend on
&hpr- - [l atr

@ For this special case, g, ..., f,7 should be 0



Evolving Einstein’s Equations

Validating Numerical Solution

@ Choose a series of degrees N of Chebyshev polynomials
(e.g., N € {10,20,30})

@ Choose a fixed time step size (e.g. 0.001)

© Evolve Einstien’s equations T time steps

@ At each time, determine the error of each component

(e.g., for analytic solution g, and approximation g,
error = ||grr(r) - grr(r)||2)
© Verify that the error converges rapidly to 0 as N increases



Evolving Einstein’s Equations

Error in Solution to Einstein's Equations

100

Time (step size = 0.001)



Implementation
Implementation

@ Wrote code for 1-d case in Matlab, C, and CUDA

@ Left 2-d and 3-d cases as future work

@ Replicated 1-d case in 2nd and 3rd dimension

@ Added dummy components to simulate memory accesses:
“3-d” code uses arrays that are
(N+1)x (N+1)x(N+1)x50

@ Increased computation to simulate RHS work:
for loop around RHS (computes 1-d RHS 50 times)



Implementation

Usage and Options

Make : python make.py -g -d 3 -f
Usage : gpu_solver3 [options]
@ -t tmax, tmax is final time
@ -d dt, dt is the time step size
@ -i r0, r0 is the inner boundary (default = 1.9)
@ -orl, rl is the outer boundary (default = 11.9)
@ -N deg, deg is the degree of the Chebyshev polynomial
@ -a infile, infile is a file with a saved state
°

-f filename, filename is name of the solution file to be written



Implementation

Outline of C/CUDA code

@ Initialize data structures and memory on CPU
@ Set initial conditions of PDE on CPU
© Call GPU version of Runge-Kutta from CPU

GPU Runge-Kutta

Allocate GPU memory and copy data to GPU

for t = O:num_steps
gpurhs <<< nBlocks, nThreads >>> ()
gpu_update <<< nBlocks2, nThreads2 >>> ()
repeat 3x

©Q Copy results to CPU
© Write results to binary file



GPU Performance Results
Crash Course in GPU Computing

@ Fermi GPU has 448 cores (at 1.147 GHz) on 14
multiprocessors

@ Blocks run independently on a multiprocessor in warps of 32
threads (up to 1024 threads per block)

@ CPU provides a “grid” that defines the number of blocks
(nBlocks) and threads per block (nThreads)

@ GPU executes a kernel called by the CPU

GPU Kernel Call
gpurhs <<< nBlocks, nThreads >>> ()

@ __syncthreads(), synchronizes threads across a block in a
kernel




GPU Performance Results

Crash Course Continued

@ Contiguous memory should be accessed across threads in a
block

@ Cannot have dependency across blocks (forces multiple of
(N+1) threads per block with current kernel)

@ Need a lot of parallelism to keep the GPU busy

@ Do a lot of computation for each memory access



GPU Performance Results
CPU Info

What about the CPU?
@ Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
@ Cache size : 8192 KB
@ 8 cores, but used only 1

@ CPU code is not parallel code



GPU Performance Results

CPU vs GPU : 1-d
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GPU Performance Results

CPU vs GPU : 2-d
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GPU Performance Results

One interesting limitation

]
]
]
]
]

Recall Du ~ v’

Full u vector is required to compute u’

GPU block must contain full u vector to compute u’
nThreads must be a multiple of N + 1

3-d case has (N + 1)3 RHSs, so try nBlocks = (N + 1)? and
nThreads = (N + 1)

@ Need more threads per block



GPU Performance Results

CPU vs GPU : 3-d double precision
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CPU vs GPU :

GPU Performance Results
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GPU Performance Results

CPU runtime/GPU runtime
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Schedule Summary
Schedule

@ ./ February 10, 1-d C code verified on test data

@ / March 15, 1-d CUDA code verified on test data

@ ./ April 15, Optimized CUDA code

@ In progress : May 1, Complete writeup and deliverables

@ Future work : 2-d and 3-d versions, time permiting



Schedule Summary
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