Nonlinear Dimensionality Reduction for Hyperspectral Image Classification Final Report

Tim Doster (tdoster@umd.edu) Advisors:

Dr. John Benedetto (jjb@math.umd.edu) Dr. Wojciech Czaja (wojtek@math.umd.edu)

University of Maryland - College Park

May 10, 2011

3 ×

Table of contents

2 Nonlinear Dimensionality Reduction

3 Implementation

Outline

2 Nonlinear Dimensionality Reduction

3 Implementation

4 Hyperspectral Image Classification

- 170

→ E → < E →</p>

< ≣ >

Multidimensional data has many application fields, to a name a few:

- Image Processing
- Multivariate Analysis
- Sensor Arrays
- Data Mining

The "curse of dimensionality" however dictates as the dimensionality of a data set increases the amount of empty space in the data increases as well. This can make some problems intractable and thus a method to reduce the dimensionality but still maintain the intrinsic qualities of the data is needed.

Hyperspectral Images

- A normal digital photograph contains three spectral bands
- A hyperspectral image contains hundreds of spectral bands and thus a more extensive and continuous part of the light spectrum is represented
 - Bands include the visible, near infrared, and short-wave infrared

Why use Hyperspectral Images?

- A hyperspectral image can be rendered into a RGB image by selecting the corresponding red, blue and green spectral bands
- Hyperspectral images are favored over regular digital images as they provide more information to the analyst
 - Camouflaging material vs Vegetation
 - Target detection
 - Classifcation

白 ト イヨ ト イヨト

How are Hyperspectral Images Collected?

- Hyperspectral sensors work by collecting solar radiation that is reflected off of objects on the earth
- As the solar radiation passes through the atmosphere, strikes the object, and passes back through the atmosphere it is altered
- The sensors may be mounted on high platforms, flown in planes, or contained in satellites in earth orbit
- The data that is recorded by the sensor is known as radiance spectrum

<ロ> (四) (四) (三) (三) (三) (三)

Outline

2 Nonlinear Dimensionality Reduction

3 Implementation

4 Hyperspectral Image Classification

- 170

★ E → < E →</p>

Local Linear Embedding

Given:
$$X = \{X_1, X_2, ..., X_n\}, X_i \in \mathbb{R}^D$$

Find: $Y = \{Y_1, Y_2, ..., Y_n\}, Y_i \in \mathbb{R}^d$

• Step 1:
$$D_{ij} = ||X_i - X_j|$$

- Step 2: Find U_i, the set of k nearest neighbors for X_i. Let U = {U_i}ⁿ_{i=1}.
- Step 3: Minimize the cost function:

$$E(W) = \sum_{i=1}^{N} |X_i - \sum_{j \neq i} W_{i,j} X_j|^2.$$

Subject to W(i, l) = 0 if $X_l \notin U_i$ and $\sum_{j=1}^N W(i, j) = 1$.

• Step 4: Minimize the cost function

$$\Phi(Y) = \sum_{i=1}^{N} |Y_i - \sum_{j \neq i} W_{i,j} Y_j|^2$$

• Step 4 (alternative) Find the eigendecomposition for $(I - W)^T (I - W)$ and order eigenvalues as $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Let $Y_i = \{V_2(i), V_3(i), \dots, V_{d+1}(i)\}$ where V_i is the eigenvector associated with λ_i .

∢ ≣ ≯

æ

LLE Diagram

ISOMAP

Given:
$$X = \{X_1, X_2, \dots, X_n\}, X_i \in \mathbb{R}^D$$

Find: $Y = \{Y_1, Y_2, \dots, Y_n\}, Y_i \in \mathbb{R}^d$

• Step 1:
$$D_{ij} = ||X_i - X_j||$$

- Step 2: Find U_i, the set of k nearest neighbors for X_i. Let U = {U_i}ⁿ_{i=1}.
- Step 3: Find S, the pairwise geodesic shortest distance matrix using Floyd-Warshall or Dijkstra's Algorithm, using edges from *U* and weights from *D*.
- Step 4: Minimize the cost function

$$\Phi(Y) = \sum_{i,j}^{N} |H^{T} S_{i,j}^{2} H - H^{T} ||Y_{i} - Y_{j}||^{2} H|$$

• Step 4 (alternative) Find the eigendecomposition for $-\frac{1}{2}H^T S_{ij}^2 H$ and order eigenvalues as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Let $Y_i = \{\sqrt{\lambda_1} V_1(i), \sqrt{\lambda_2} V_2(i), \dots, \sqrt{\lambda_d} V_d(i)\}$ where V_i is the eigenvector associated with λ_i .

ISOMAP Diagram

・ロン ・雪と ・雨と

Э

Complexity

Local Linear Embedding

Distance Matrix	$O(n^2)$
KNN Selection (quick sort)	$O(n^3)$
Reconstruction Weights (LU factorization)	$O(\frac{2}{3}k^3n)$
Eigendecompostion (QR algorithm)	$O(n^3)$
Total	$O(2n^3 + n^2 + \frac{2}{3}k^3n)$

ISOMAP

Euclidean Distance Matrix	$O(n^2)$
KNN Selection (quick sort)	$O(n^3)$
Geometric Distance (Dijkstra's Algorithm)	$O(n^2 \log n + n^2 k)$
Eigendecompostion (QR algorithm)	$O(n^3)$
Total	$O(2n^{3}+$
	$n^2(1+\log n+k))$

・ロト ・回ト ・ヨト ・ヨト

æ

Landmarks

Landmarks seek to lower the complexity of NLDR by only performing the computationally costly parts of LLE and ISOMAP (eigenproblem, pairwise minimum geodesic distance) on a small subset of the points in the data set.

Landmarks points can be created in 3 ways:

- Random
- Uniform Random or Grid
- Max-Min

Max-Min Landmark Selection

- Step 1: Choose 1 ≤ s < l seed points at random, adding them to S and removing them from X.
- Step 2: For $X_i \in X$ and $S_j \in S$, let $d_i = \min_{j=1:||S||} \{ \text{dist}(X_i, S_j) \}.$
- Step 3: Let d_k be the maximum of {d_i}. Add X_k to the set of landmark points S and remove it from the set of data points X. If ||S|| = I then done, otherwise go to Step 2.

This method adds additional complexity of O((1 - s) * n) but can provide the same results with a much smaller set of landmarks. In the literature it is suggested that the number of landmarks, when using max-min should be the intrinsic dimension plus some small integer.

・ロット (四) (日) (日)

L-ISOMAP

Given:
$$X = \{X_1, X_2, ..., X_n\}, X_i \in \mathbb{R}^D$$

Find: $Y = \{Y_1, Y_2, ..., Y_n\}, Y_i \in \mathbb{R}^d$

- Step 1: Choose $L \subset X$. Let $\hat{l} = |L|$ and $\hat{X} = X \setminus L$.
- Step 2: Find the pairwise minimum geodesic distance matrix *S* for the set of landmark points *L*
- Step 3: Find the eigendecoposition for $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_d$, and their corresponding eigenvectors, V_1, V_2, \ldots, V_d of $-\frac{1}{2}(H^T S_{ij}^2 H)$, where $H = I - \frac{1}{\hat{I}} I^T I$ is defined as the centering matrix where I is the identity matrix and 1 is a vector of ones.

LISOMAP continued

• Step 3 (cont): Let
$$B = \begin{bmatrix} \sqrt{\lambda_1} V_1 \\ \sqrt{\lambda_2} V_2 \\ \vdots \\ \sqrt{\lambda_d} V_d \end{bmatrix}$$

 Step 4: Let B[#] be the pseudo inverse of B. Using triagonalization: Y_i = B[#](δ_i − δ_μ), where δ_μ is the average distance squared vector between all landmarks and δ_i is the distance squared from X_i to all the landmarks.

Complexity ISOMAP and LISOMAP

Procedure	ISOMAP	LISOMAP
Euclidean Distance Matrix	$O(n^2)$	$O(n^2)$
KNN Selection (quick sort)	$O(n^3)$	$O(n^3)$
Geometric Distance (Dijkstra's Algorithm)	$O(n^2 \log n + n^2 k)$	$O(\ln\log n + n^2k)$
Eigendecompostion (QR algorithm)	$O(n^3)$	$O(l^3)$
Pseudo Inverse (SVD) and Mapping	•	$O(ld^2 + (n-l)l)$
Total	$O(2n^{3}+$	$O(n^3 + n^2k)$
	$n^2(1+\log n+k))$	$ln \log n + n + l^3$

・ロト ・回ト ・ヨト ・ヨト

æ

L-LLE

Given:
$$X = \{X_1, X_2, ..., X_n\}, X_i \in \mathbb{R}^D$$

Find: $Y = \{Y_1, Y_2, ..., Y_n\}, Y_i \in \mathbb{R}^d$

- Step 1: Choose $L \subset X$. |L| = I. Let $\hat{X} = X \setminus L$.
- Step 2: Perform LLE steps 1,2, 3, 4 on *L* to obtain an embedding *Y*.
- Step 3: For each $x \in \hat{X}$ find the *k*-nearest neighbors of *x* from *L* and denote them l_1, l_2, \ldots, l_k .
- Step 4: Now find the reconstruction weights,
 W = {w₁, w₂,..., w_k}, such that the cost function, E(W), is minimized subject to ∑^k_{i=1} w_i = 1.

$$E(W) = |x - \sum_{i=1}^k w_i I_i|^2.$$

• Step 5: Let the embedding for x be given by $w_1l_1 + w_2l_2 + \cdots + w_kl_k$.

イロン イヨン イヨン イヨン

Complexity LLE and LLLE

Function	LLE	LLLE
Distance Matrix	$O(n^2)$	$O(l^2)$
KNN Selection (quick sort)	$O(n^3)$	$O(l^3)$
Reconstruction Weights (LU factorization)	$O(\frac{2}{3}k^3n)$	$O(\frac{2}{3}k^{3}l)$
Eigendecompostion (QR algorithm)	$O(n^3)$	$O(\tilde{l}^3)$
Distance Matrix		$O(ln - l^2))$
KNN Selection (Quick Sort)	•	$O((n-l)^3)$
Reconstruction Weights (LU factorization)	•	$O(\tfrac{2}{3}k^3(n-l)$
Total	$O(2n^3 + n^2 +$	$O((n-l)^3 + 2l^3 +$
	$\frac{2}{3}k^{3}n$	$l^2 + \frac{2}{3}k^3n$

イロン イヨン イヨン イヨン

Э

Outline

2 Nonlinear Dimensionality Reduction

3 Implementation

4 Hyperspectral Image Classification

- 170

★ E → < E →</p>

Implementation

- Code base was developed in C++
- Eigensolver and LU factorization algorithms come from LAPACK and use C wrappers
- OpenMP was used to parallelize most parts of the code
- Sparse data structures used when possible
- Default parameters are made available when possible
- Input and Output done with CSV files with header

白 ト く ヨ ト く ヨ ト

Delivered Code

Ile.cpp

- isomap.cpp with Floyd-Warshall and Dijkstra's Methods
- Ille.cpp and lisomap.cpp with Random, Uniform-Random, and Max-Min Landmark Selection
- corrdim.cpp An intrinsic dimension estimator
- Matlab files for classification and displaying embeddings

Example:

>> ./lisomap [k] [d] [filename] [p] [m] >> ./lle [k] [d] [filename]

Outline

2 Nonlinear Dimensionality Reduction

3 Implementation

4 Hyperspectral Image Classification

- 170

★ E → < E →</p>

Copperas Cove Image a.k.a. Urban

- Copperas Cove, Texas
- HYDICE sensor
- $\bullet~210$ spectral bands, 310×310 pixels, with 3 meter resolution
- Bad bands were removed resulting in 162 spectral bands
- Atmospheric Correction done with QUAC Algorithm
- $\bullet\,$ Image subset is full spectral bands and 75×75

<ロ> (四) (四) (三) (三) (三) (三)

Classification

- Supervised learning takes a set of data with a set of identified training pixels and classifies the rest of data
- I am using the classify()method form Matlab
- Quadratic: Uses quadratic decision surfaces to differentiate classes

æ

Introduction

Classification with Raw Data: 72%

Tim Doster

Introduction

Best Classification: ISOMAP with 5 Dimensions: 92%

æ

Confusion Matrix

	161	0	0	1	0	0	0	
Original :	0	90	0	3	0	2	0	
	0	0	74	4	19	0	0	
	0	0	0	8	0	1	0	
	1	0	18	10	22	0	27	
	2	2	4	12	0	35	0	
	0	0	11	0	1	0	37	
	164	0	3	7	0	0	0	
ISOMAP:	0	88	1	1	0	3	0	
	0	0	84	0	6	0	14	
	0	1	0	14	0	4	0	
	0	0	1	0	19	0	0	
	0	3	3	16	15	31	0	
	0	0	15	0	2	0	50	
1:Grass 2: Walmart Roof 3: Road 4-6:Roofs 7: Asphalt : , , : ,								

Why use Reduced Dimensional Data?

- Generally better results
- Can have much less training data: Most Supervised Learning algorithms require the size of the training set be greater than the dimension of the data
- Classification speed increases (though not enough to offset embedding cost)

< 注→ < 注→

Thank you for listening. Any questions?

Tim Doster NLDR for HSI Classification