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Abstract

Today with sensors becoming more complex and cost no longer a deterrent
to storing large amounts of data; analysts need methods to reduce the volume
of stored data and reveal its important facets. Dimensionality reduction, par-
ticularly non-linear dimensionality reduction, is a solution to this problem. In
this paper, we will look at two nonlinear dimensionality reduction algorithms,
Local Linear Embedding and Isomap. These algorithms both have been shown
to work well with artificial and real world data sets, but are computationally
expensive to execute. We solve this problem for both algorithms by applying
landmarks or out of sample extensions. Finally, we will apply these algorithms
first to artificial data sets for validation and then to hyperspectral images for
the application of classification.
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1 Background

Dimensionality reduction is a field of mathematics that deals with the complexities
of very large data sets and attempts to reduce the dimensionality of the data while
preserving the important characteristics of the data. These algorithms are becoming
more important today because the complexity of sensors have increased as well as the
ability to store massive amounts of data. For example, hyperspectral sensors, which
we will discuss below, record roughly a hundred times the amount of information
as a typical optical sensor. With this high number of dimensions being recorded it
becomes no longer feasible for analysts to examine the data without the assistance of
computer algorithms to reduce the number of dimensions but still keep the intrinsic
structure of the data intact.

There are two main branches of dimensionality reduction: linear and non-linear.
In this project we will focus on non-linear algorithms as they have been shown to
perform at least as well as linear algorithms but in many cases much better. We have
chosen to study two of the leading non-linear algorithms, of about fifteen, in the field
of dimensionality reduction: Local Linear Embedding and ISOMAP. The details of
these algorithms will be presented in following sections.

A hyperspectral image (HSI), in general, has hundreds of spectral bands in contrast to
a normal digital image which has three spectral bands (blue, red, and green) and thus
offer a more complete part of the light spectrum for viewing and analysis [5]. This
high dimensionality makes HSI good candidates for the methods of dimensionality
reduction. A regular digital image can be viewed as a collection of three-dimensional
spectral vectors, each representing the information for one pixel. Similarly a hyper-
spectral image can be viewed as a collection of D-dimensional spectral vectors, each
representing the information for one pixel. Hyperspectral images typically include
spectral bands representing the ultraviolet (200-400 nanometers), visible (400-700
nanometers), near infrared (700-1000 nanometers), and short-wave infrared (1000-
4000 nanometers). In Figure 1, a representation of the light spectrum is shown with
the approximate coverage of a hyperspectral image.

Thus, HSI are favored over regular images for some applications such as forestry and
crop analysis, mineralogy, and surveillance. The spectrum of vegetation, for example,
is quite different from that of man-made objects (around 1100-1600 nanometers) even
if painted to camouflage in with local vegetation. In this case, a simple photograph
would not be able to pick out the man made objects as well as a hyperspectral image.
A hyperspectral image can produce a traditional red-blue-green image by resampling
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Figure 1: Electromagnetic Spectrum showing the ultra violet, visible, near-infrared,
and shortwave infrared

the image using the human visual response or any three spectral bands desired.

HSI are collected with special detectors that can be placed on high structures, flown
in planes, or contained in satellites. As the plane traveled, it records the amount
solar radiation reflected back from the ground at specific wavelengths line by line
(like a push broom) and these are later assembled, with necessary smoothing done
to remove effects from the uneven travel of the plane, into a complete hyperspectral
image. The sensor onboard the plane works by collecting the emitted solar radiation
that is reflected off the ground or object on the ground. As the solar radiation enters
the atmosphere, it is altered by the presence of water molecules and other particulate
matter in the atmosphere as shown in Figure 2. The same effect happens once the
solar radiation is reflected off the ground or object. The data that are recorded by the
sensor are known as the radiance spectrum. The reflectance spectrum for a particular
band is the ratio of the reflected radiation at that band to the incident radiation at
that band, and can be recovered from the collected radiation spectrum by using
atmospheric correction equations. In this paper we will use the Quick Atmospheric
Correction (QUAC) algorithm found in ENVI to correct any raw images.
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Figure 2: The path of solar radiation from the sun to the hyperspectral sensor (in
this case on a satellite) [5]

One of the areas of research into HSI is image classification. The major goal of image
classification is to classify the pixels of an image into some number of classes with
the use of training data. This allows for example the creation of vegetation maps
near wetlands. Bachmann [1] proposes using non-linear dimensionality reduction
algorithms to first process the data into a lower dimension before using classification
algorithms on the data set. This allows for the similarities and dissimilarities of
the data members to become more evident as well as reducing the computation time
(though this is greatly offset by the dimensionality reduction algorithm complexities).
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2 Approach

2.1 Local Linear Embedding

Local Linear Embedding (LLE) [7, 6] developed by Saul and Roweis is a nonlinear
manifold-based approach to dimensionality reduction. LLE seeks to preserve the local
properties for each data point when the data is projected to a lower dimension.

The LLE algorithm contains three major steps (note that steps 1 and 2 are often
done in unison for efficiency) and proceeds as follows:

Step 0: LetX = {X1, X2, . . . , XN} be a set of vectors (in our case the spectrum of each
pixel) with Xi ∈ RD. To better utilize memory we will forgo the three dimensional
hyperspectral data cube and instead think of the HSI as a two dimensional matrix
where the columns represent the pixels and the rows represent the spectral channels.

Step 1: Create a directed adjacency graph, GK , for the data set X, where Xi is
connected to Xj if it is one of the K-nearest-neighbors (KNN) of Xi. Any metric
can be used for the KNN calculation but Euclidean (which we will use) and spectral
angle are the most common. We will denote the set U = {Ui}Ni=1 where Ui is the set
of pixels that are the KNN of Xi.

Step 2: Calculate the reconstruction weights, Wi, for each Xi by using the cost
function:

E(W ) =
∑N

i=1 |Xi −
∑

j 6=iWi,jXj|2.

To find W (i, j), the cost function is minimized subject to W (i, l) = 0 if Xl 6∈ Ui and∑N
j=1W (i, j) = 1. By forcing the weights to sum to 1 we are removing the effects

of translations of points. The use of the cost function ensures that points are not
dependent upon rotations and rescaling. Now the set of weights will represent the
underlying geometric properties of the data set.

Step 3: Now by use of a similar cost function we will map each Xi to a lower dimen-
sional Yi. The cost function we are minimizing is:
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Φ(Y ) =
∑N

i=1 |Yi −
∑

j 6=iWi,jYj|2,

and we minimize it by fixing W (i, j) and optimizing Yj. Saul and Roweis were able to
show that minimizing the cost function is equivalent to finding the d+1 smallest eigen-
values, λ1 ≤ λ2 ≤ · · · ≤ λL+1, and their corresponding eigenvectors, V1, V2, . . . , Vd+1

of the matrix (I −W )T (I −W ). We reject the smallest eigenvector as it is the unit
vector with eigenvalue 0. Now we use the remaining eigenvectors to project X from
N dimensions to d dimensions: Xi 7→ (V2(i), V3(i), . . . , Vd+1(i)).

2.2 ISOMAP

ISOMAP [8] developed by Tenenbaum, Silva, and Langford, is a nonlinear manifold
based approach to dimensionality reduction like LLE. ISOMAP tries to maintain the
geodesic distances between points in the data set when the data is projected down.
By focusing on geodesic distance and not the distance in the higher dimensional space
ISOMAP is less prone to short circuiting.

ISOMAP contains three major steps:

Step 0: LetX = {X1, X2, . . . , XN} be a set of vectors (in our case the spectrum of each
pixel) with Xi ∈ RD. To better utilize memory we will forgo the three dimensional
hyperspectral data cube and instead think of the HSI as a two dimensional matrix
where the columns represent the pixels and the rows represent the spectral channels.

Step 1: Create a directed adjacency graph, GK , for the data set X, where Xi is
connected to Xj if it is one of the K-nearest-neighbors (KNN) of Xi. Any metric
can be used for the KNN calculation but Euclidean (which we will use) and spectral
angle are the most common. We will denote the set U = {Ui}Ni=1 where Ui is the set
of pixels that are the KNN of Xi.

Step 2: Let G be a graph constructed from the information in GK . The edge (i, j),
the distance from Xi to Xj, will be defined as the pairwise Euclidean distance if
Xj ∈ Ui and if Xj 6∈ Ui then the distance will be ∞. Now find the shortest pairwise
path distances for the graph and update the edge information. To find the pairwise
shortest path distance we will use Dijkstra’s algorithm.

6



Step 3: Let S be the matrix corresponding to the graph G and by use of the cost
function:

Φ(Y ) =
∑N

i,j |S2
i,j − ||Yi − Yj||2,

an optimal embedding can be achieved. Tenenebaum showed that minimizing the cost
function is equivalent to finding the d+ 1 smallest eigenvalues, λ1 ≤ λ2 ≤ · · · ≤ λL+1,
and their corresponding eigenvectors, V1, V2, . . . , Vd+1 of 1

2
HTSH where H is the cen-

tering matrix. We reject the smallest eigenvector as it is the unit vector with eigen-
value 0. Now we use the remaining eigenvectors to project X from N dimensions to
d dimensions: Xi 7→ (

√
λ2V2(i),

√
λ3V3(i), . . . ,

√
λd+1Vd+1(i)).

2.3 Numerical Difficulties

There are two main numerical challenges in LLE and ISOMAP: finding the KNN for
all data points and solving the eigensystem. To find the KNN for each data point a
brute search would have complexity O(N2) but this can be reduced to O(NLogN)
using several different more intelligent algorithms. Solving the eigensystem requires
complexity of O(N2). Since these steps cannot be avoided or have their complexity
reduced more than noted, we must look to landmarks or out of sample extensions
[3] for our dimensionality reduction algorithms. ISOMAP has additional complexity
over LLE in that the minimal pairwise distance from for each point must be found
which has complexity, using brute force of O(N3) and with Dijkstra’s algorithm of
O(N2LogN).

Another numerical challenge is dealing with very large data sets (as HSI are) effi-
ciently in memory. Most of this can be overcome by handling the HSI as a two
dimensional matrix instead of the more natural three dimensional matrix. We can
also overcome memory issues by respecting the way that our programming language
of choice registers memory and store pixel vectors as such.
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2.4 Landmarks

Landmarks work by doing the computationally complex work on a small subset of the
data points, which are either chosen at random or intelligently, and then apply their
mapping to the other non-landmark points in such a way as to minimize the error
between the normal embedding and the landmark embedding. By using landmarks
we reduce the complexity of finding KNN to O(δLogδ) and solving the eigensystem in
O(δ2). Applying the mappings to the other data points will have much less complexity
then finding the KNN and solving the eigensystem for all the points. The tradeoff is
of course accuracy in the final embedding.

2.5 Software

The algorithms proposed will be encoded in C++ to provide maximum flexibility and
inter computer operability. We will make use of the Basic Linear Algebra Subroutines
(BLAS) and the Linear Algebra PACK (LAPACK) for C++. These libraries will be
used for matrix decomposition and solving eigensystems and are the standard for
mathematical and engineering work in C++. We will also use the Approximation
Nearest Neighbor [2] package for C++ for finding the nearest neighbors for each pixel
in the algorithms. For any prototyping and for running the dimensionality reduction
toolbox we will use Matlab (and possibly ENVI/IDL). To read in the hyperspectral
images, display hyperspectral images, perform atmospheric calibration (if necessary),
and run image classification codes we will use IDL/ENVI..

2.6 Hardware

At this point we are only planning to run these algorithms on a modern desktop
PC or laptop so no special hardware is required. If we extend the project to make
use of parallel computing there are computers on the math network that have eight
and sixteen cores that could be used for testing. More specific information on the
hardware used will be included in the mid-year and final report.
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3 Validation and Testing

Before we can use the coded versions of our dimensionality reduction algorithms we
will need to verify that they are working as the authors of the algorithms intended.
We will use three methods to ensure proper implementation.

First, as we code the algorithms we will compare them with the results and structure
of those found in the Matlab Dimensionality Reduction Toolbox. This will allow us
to diagnose any serious errors in the coding while we are still in the development
process.

Once the code is complete and ready for testing we will use two additional validation
tests to ensure the proper working order for the algorithms. For these final validation
steps we will make use of several topological structures, seen in Figure 3, the swiss
roll, broken swiss roll, twinpeaks, and helix, who are defined in three dimensions
but are known to lie on a two dimensional manifold (these shapes are defined in the
Matlab Dimensionality Reduction Toolbox). Due to the topological nature of these
structures, they are perfect for dimensionality reduction testing since we can be sure
that the data actually lies in the plane.

The intrinsic dimensionality of a data structure is the approximate dimension of the
manifold that the data lies on. The Maximum Likelihood Estimator (MLE) is one
such method from the literature that can accurately measure the intrinsic dimension-
ality of a data set. By using the MLE method we can measure the intrinsic dimen-
sionality of our four artificial data sets before and after dimensionality reduction. By
showing that:

lim
n→∞

I(Xn)
I(Yn)

→ 1,

where I(Xn) and I(Yn) are the intrinsic dimensionality of the original data set and
the mapping, respectively, we can show that the algorithms performed correctly.

Lastly we will use the trustworthiness (T (k)) and continuity (C(k)) measures [4]:

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈U(k)

i

(r(i, j)− k)

C(k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈V (k)

i

(r̂(i, j)− k)
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Figure 3: Clockwise from top right: Helix, Broken Swiss Roll, Twin Peaks, Swiss
Roll[4].

where r(i, j) is rank of data point j ∈ Yn according to pairwise distances between

Yn data points, U
(k)
i is the set of points that are among the KNN but not in Xn.

Similarly, r̂(i, j) and V
(k)
i are defined as the dual of r(i, j) and U

(k)
i .

We can compare the results of our implementation to the established results found
in [4]. The trustworthiness measure ranks the mapping produced on how well it
avoids putting points close together in the low dimensional space that are not close
in the high dimensional space. The continuity measure, in much the same way as the
trustworthiness measure, ranks the mapping on how well it preserves points that are
close in the high dimensional space by checking if they are close in the low dimensional
space.

As an application of dimensionality reduction we will use the algorithms discussed
above for HSI classification. We will compare the classification results of the original
data set with those of various dimensionality reduced data sets for each method and
with and without landmarks. The results will be compared to ground truth to deter-
mine if or how well the dimension reduction algorithms improved the classification
results. One would expect from evidence presented in the literature for the dimen-
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sion reduced data sets to outperform the original data sets in the image classification
application.

4 Data

Artificial data sets for the swiss roll, twin peaks, helix, and broken swiss roll will be
used for validation. These data sets can be created to any size that is required for
testing.

HSI and ground truth images from the AVIRIS sensor will be used for the application
part of the project. The images available are on the order of hundreds of pixels by
hundreds of pixels with 150 spectral bands. At this size the images might have to
be cropped to allow the dimensionality reduction algorithms to process them before
landmarks are introduced. We also have requests in for more extensive data from two
past colleagues (this data will not be needed until April). An example of data sets
available in presented in Figure 4.

Figure 4: Left is an HSI from the PROBE1 sensor and the right is the corresponding
ground truth image showing the position of various types of vegetation.
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5 Timeline

•Septemeber and October - Read literature, prototype algorithms and prepare pro-
posal documents.
•October and November - Implement LLE and ISOMAP in C++ and validate the
algorithms. This will require learning BLAS, LAPACK and ANN packages. Addi-
tionally code for validation must be written.
•December - Prepare end of semester report and presentation.
•January - Write code to link C++ algorithms with IDL/ENVI.
•February and March - Implement landmarks and validate algorithms again with
landmarks.
•April - Use algorithms with and without landmarks on hyperspectral classification
images.
•May - Prepare final presentation.

5.1 Possible Extensions

Time permitting and after completion of the tasks defined in this proposal document
we would like to look at perhaps parallelizing these algorithms by tiling the images
among several processors using OpenMP. We may also consider using other nonlinear
dimensionality reduction techniques or implementing algorithms to figure out the
optimal number of nearest neighbors to select.

6 Milestones

• December 1 - LLE and ISOMAP code has passed the validation tests.
• February 1 - IDL/ENVI can call C++ code and C++ code can return to IDL/ENVI.
• April 1 - Landmark code has passed validation tests.
• May 1 - Results from HSI classification has been obtained.
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7 Deliverables

At the end of this year-long course, the goal is to have the ISOMAP and LLE al-
gorithms with landmark points coded up in C++ as well as the necessary code to
link the input and output of the algorithms to IDL/ENVI. We will strive to deliver
code that is optimized, fully documented, and easily extendable to new applications.
At the end of the fall and spring semester we will write a report detailing the work,
code, tests, and validation steps performed up to that point and any problems that
were encountered. We will also provide detailed steps to reproduce any of the results
presented in the reports with the test data that was used.
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