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Physical Motivation

I Earth’s early history is marked by a giant impact with a
Mars-sized object

I This led to a substantial amount of interior melting
followed by rapid crystallization of this ‘magma ocean’

I How this crystallization took place and crystals settled
provide insight into the planet’s rate of cooling
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Abstract

I Understanding how crystals settle in a magma ocean is
critical for answering questions about Earth’s early history

I Experiments have been performed that have given insight
into this behavior

I The ability to simulate this behavior numerically is not
available

I Over the course of AMSC663 and AMSC664, a numerical
solver based on the Dual Reciprocity Method has been
built to address this problem
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Dual Reciprocity Method

I The Dual Reciprocity Method solves partial differential
equations in the form:

−∆u = b̂ in Ω (1)

with Dirichlet, Neumann, or mixed boundary conditions
I The source term, b̂ is potentially non-linear in u
I In DRM, b̂ is referred to as the residual term
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Approximation of the Residual Term

I Approximate the residual term, by a linear combination of
basis functions f̂k

b̂ =
∑

k

βkf̂k (2)

where

f̂k = 1 + rk rk = |x− xk| (3)

I With this basis function we can find ûk such that

−∆ûk = f̂k thus ûk = −r
2

4
− r3

9
(4)
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Some Notation

I Denote the flux density as:

q = ν · ∇u (5)

where ν is the outward facing normal vector
I Define the fundamental solution u∗i to the Poisson in R2:

∆u∗i = −δ(x− xi) so u∗i = − 1
2π

ln(ri) (6)
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Integration by Parts: LHS

I After multiplying the general DRM PDE by the
fundamental solution and integrating over the domain, use
integration by parts twice:∫

Ω
−∆uu∗i =

∫
Γ
−qu∗i +

∫
Γ
∇u · ∇u∗i (7)

=
∫

Γ
−qu∗i + uq∗i −

∫
Ω

∆u∗iu (8)

=
∫

Γ
uq∗i − qu∗i + c(xi)u(xi) (9)

I c(xi) is an function that indicates what “fraction” of the
singularity is in the domain
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Integration by Parts: RHS

I Recalling the approximation of the residual term, apply a
similar procedure to the RHS:∫

Ω
b̂u∗i =

∑
k

βk

∫
Ω
f̂ku
∗
i (10)

=
∑

k

βk

∫
Ω
−∆ûku

∗
i (11)

=
∑

k

βk

[∫
Γ
ûkq
∗
i − q̂ku∗i + c(xi)ûk(xi)

]
(12)
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Dual Reciprocity Integral Equation

Combining the LHS and RHS:∫
Γ

uq∗i − qu∗i + c(xi)u(xi) =
∑

k

βk

[∫
Γ

ûkq
∗
i − q̂ku∗i + c(xi)ûk(xi)

]
(13)

I Using the method of collocation to distribute nodes on the
boundary and cubic spline interpolation to interpolate
between boundary nodes, the discretized equation becomes:

Hu+Gq = (HÛ +GQ̂)β (14)
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Goals of Project

1. Integrate existing code used to solve the Stokes equation
and Poisson equation:

−∇P + µ∆~v + ρ~b = 0 and −∆u = b (15)

where b is harmonic
2. Use DRM to solve the Poisson equation for general b̂ = b

3. Use DRM to solve the heat equation

∂

∂t
+ ~v · ∇u−∆u = b where b̂ = b− ∂

∂t
− ~v · ∇u(16)
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Goal 1: Integrate Solvers with Data Structures

I Used to transfer information between solvers
I Very lean, contains only essential data
I Built to inspire code structure
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Goal 1: Integrate Solvers with Subroutines

I Each code had different subroutines for the same task
I Some functions appear hard coded multiple times
I Required different inputs
I Returned incompatible outputs

I Unified assembly routines
I Matrices for the Stokes and heat equations are built in a

similar manner
I Learn one code, learn them both

I Replaced custom and Numerical Recipes methods with
those found in LAPack and BLAS
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Goal 2: Use DRM to Solve Poisson Equation

I Used to validate assembly of DRM matrices
I Spacial error was measured and analyzed
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Goal 2: Use DRM to Solve Poisson Equation

I Noticed Error “bounce back"
I Error decreases quadratically as number of nodes increased
I Error then increases once a certain number of nodes is used

I Investigated potential causes
I Recall β = F̂−1b
I As N increases, κ(F̂ ) increases leading to inaccurate β

I Solutions
I Switch to double precision
I Use different basis functions
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Goal 2: Use DRM to Solve Poisson Equation
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Goal 3: Use DRM to Solve Heat Equation

I Recall the DRM matrix equation

Hu+Gq = (HÛ +GQ̂)F̂−1b̂ (17)

where b̂ = b− ∂
∂tu− ~v · ∇u

I We want to discretize ~v · ∇u
I Davis et al. showed the approximation

∂

∂x
U =

∂F̂

∂x
F̂−1U and

∂

∂y
U =

∂F̂

∂y
F̂−1U (18)

are valid
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Goal 3: Use DRM to Solve Heat Equation

The DRM matrix equation for the heat equation becomes

Hu + Gq = (HÛ + GQ̂)F̂−1

 
b − ∂

∂t
U − Vx · ∂F̂

∂x
F̂−1U − Vy ·

∂F̂

∂y
F̂−1U

!
(19)

I Notice that the linear system is a first order ordinary
differential equation with variable t and unknown U

I Use Crank-Nicolson method to time step
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Goal 3: Use DRM to Solve Heat Equation

I Used to validate time stepping method
I Time stepping error was measured and analyzed

Error Plot coming soon

† Department of Geology
Dual Reciprocity Boundary Element Method for Geophysical Simulations



Introduction Dual Reciprocity Method Integration Poisson Heat Summary

Goal 3: Use DRM to Solve Heat Equation

Single particle movie: Still trying to figure out the technicalities
of getting this in the slides
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Goal 3: Use DRM to Solve Heat Equation

Multiparticle movie
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Implementation Details

I Rewrote code to handle singular integrals
I Generalized for use in Stokes and heat solvers
I Optimized and debugged

I Implemented OpenMP
I Matrix Assembly explicitly parallelized
I Used the Intel Math Kernel Library for LAPack and BLAS

which is parallelized with -openmp compile time flag
I Wrote domain back solver

I Once boundary values are computed, domain values can be
quickly back calculated

I Separate program that shares many of the same libraries
I Provided detailed comments on code using Doxygen
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Future Work

I Stokes solver currently not running
I Separate modifications being one on the solver
I Waiting until all modification to be complete before adding

it solver
I No Fast Multipole Method

I Makes the DRM linear systems sparse
I Greatly increases code performance if systems are large
I Current matrices from two dimensional problems are small

I Basis functions
I Investigate using other basis functions
I Functions with compact support
I For whole space problems, basis functions should match

asymptotically match the solution
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Schedule

I Phase I (present - early November)
I Merge Stokes flow and Poisson solver code "

I Phase II (November - December)
I Test and validate steady-state code "
I Optimize code "

I Phase III (December - early February)
I Add Dual Reciprocity code "
I Add Fast Multipole Method code (optional)

I Phase IV (February - March)
I Test and validate Dual Reciprocity code "
I Optimize code

I Interface with Intel Math Kernel Library "
I Parallel implementation with OpenMP "
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Questions?

Multiparticle movie here
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