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Abstract

The tools to computationally model crystals settling in a magma ocean are currently
not readily available. Being able to model such behavior may provide clues into the
history of early Earth. New numerical simulations could lead to a better understanding
of the crystal settling behavior. The equations that describe this settling are well
understood; however, no suitable software package is currently available to solve such
problems. This project will use the Dual Reciprocity Method, an extension of Boundary
Element Method, to generate numerical solutions to a coupled system of Stokes flow
and heat equations. The Dual Reciprocity Method allows for free boundary conditions
as well as a reduction in problem dimensionality which decreases computation. The
final product combines algorithms from several papers to produce a robust, modular,
and highly optimized software package.
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1 Introduction

Earth’s early history is marked by a giant impact with a Mars-sized object which led to the
formation of the moon [1]. This impact event led to a substantial amount of melting of the
Earth’s interior. Subsequent cooling of the Earth involved extensive crystallization in this
“magma ocean” over a relatively short period of time. While the chemical evidence from
ancient sources provides some clues on the rate of cooling, computational models of such
phenomena are sparse.

Constraints on the mode of crystal settling come from laboratory experiments [2], param-
eterized heat flux calculations [3][4][5][6], and chemical constraints [7]. The first two lines
of evidence suggest extremely small crystals, contrary to common belief, also settled, likely
enhancing the efficiency of cooling. Direct estimation of heat flux and crystal size, however,
is still not available. Chemical arguments suggest that the pattern of density-driven settling
is also controlled by the vast pressures associated with a plant-scale magma ocean.

Modeling this physical behavior requires solving a coupled system of partial differen-
tial equations (PDEs), specifically the Stokes flow equation coupled with the heat equation
through an advection term. As closed form solutions rarely exist for problems of interest,
numerical solutions are an attractive option.

When solving PDEs involving coupled Stokes flow and heat transfer, it is standard prac-
tice to use a finite element method (FEM) solver. FEM algorithms are very robust and
generally converge with reasonable amounts of computation. Unfortunately, there are two
issues with FEM that make it impractical for the above problem. First, as the crystals settle,
the region of flow changes. The problem’s dynamic geometry means the region would have
to be rediscretized at every time step. Rediscretization becomes extremely computationally
costly, especially in high dimensions.
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Boundary Element Method (BEM) is an alternative technique for solving the same prob-
lem. The goal of BEM is to write the weak form of the PDE, employing reciprocal relations,
integrating by parts, and making specific choices on test functions such that the integrals
move entirely to the boundary. This method has the immediate advantage of reducing the
dimensionality of the problem by one. Also, BEM naturally handles the problems caused by
dynamic geometry. Unlike the domain meshes needed for FEM, BEM only discretizes the
boundary. For any evaluation, only three easily computable pieces of information about the
boundary are needed. First is the node’s position. Second is the boundary value at the node;
this can be Dirichlet or Neumann boundary condition or a prescribed condition such as the
no-slip boundary condition for Stokes flow. Third is the vector normal to the boundary at
the node. The normal can be quickly approximated using the local interpolation of nodes.

A critical limitation to BEM is the requirement of the fundamental solution to the adjoint
of the differential operator. Without this solution, the integral equations cannot be trans-
formed completely to the boundary. Unfortunately, fundamental solutions are only available
for a small number of differential operators. One operator for which a fundamental solution
is not known is the adjoint of the heat equation with an advection term. To approximate a
solution to the heat equation using boundary integrals, the Dual Reciprocity Method (DRM)
will be used.

The paper is organized as follows. Section 2 will cover the analytical procedures for
developing the boundary integral equations, the key for both BEM and DRM. Section 3 out-
lines the discretization of the analytical formulas and implementation of the DRM software.
Section 4 contains the validation and error analysis of the DRM based solvers for the Poisson
and heat equations. Future research is outlined in section 5, and section 6 contains closing
remarks.

2 Method

In order to solve a PDE using BEM or DRM, we must first restate the strong PDE as a
boundary integral equation. The boundary integral equation is a weak formulation of the
original problem with the additional restriction that the only integrals present are over the
boundary of the domain. In this way, discretization of the geometry and computation of the
solution need only take place on the boundary which is in a lower dimensional space than
the original problem.

Section 2.1 describes the conversion of the Stokes flow PDE to the corresponding bound-
ary integral equations detailing analytical choices made based on the physical system being
modeled. Since the Stokes flow solver is not the main focus of the project, many of the
analytical details are omitted. An interested reader may refer to [8].

Section 2.2 details the derivation of the Dual Reciprocity boundary integral equation.
There are several choices that must be made, independent of the physical system being
modeled, to fully implement DRM. The choices are outlined in the derivation. However,
the final boundary integral equation is derived without considering any choices the method
requires.
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2.1 Stokes Boundary Integral Equation

The Stokes flow equation for viscous flows is given by

−∇p+ µ∆~v = −~g ~x ∈ R2 (1)

where p is the fluid pressure, µ the viscosity, ~v the velocity, and ~g the body force. In the case
of N viscous crystals falling into a magma ocean, the viscosity term can vary between the
suspending fluid and individual particles. For this specific case, we have a system of partial
differential equations:

−∇p+ µm∆~v = −~g ~x ∈ Ωm 1 ≤ m ≤ N

−∇p+ µ0∆~v = −~g ~x ∈ Ω0 = R2\ (∪Nm=1Ωm

)
(2)

where Ωm, 1 ≤ m ≤ N , is the domain for the mth crystal. We assume the viscosity, µm,
is constant throughout the crystal. So crystals do not overlap, we require Ωm ∩ Ωl = ∅ for
1 ≤ m, l ≤ N and m 6= l. Physically, it is logical for the domain of the crystals to be
bounded. The domain of the suspension fluid, Ω0, is unbounded and has constant viscosity
µ0.

To solve (2), we need information about the interaction between particles and the sus-
pension fluid along the boundaries. We apply two natural boundary conditions on Γm,
1 ≤ m ≤ N . The first condition is the non-slip boundary which states that the tangential
velocity is continuous across the interface. That is:

~vΩ0 · ~t = ~vΩm · ~t ~x ∈ Γm (3)

where the superscript Ω0 indicates the variable as viewed from the suspension fluid and the
superscript Ωm indicates the variable as viewed from the mth crystal.

The second required piece of information is the normal component of the stress jump
across the boundary. The jump is defined as

∆f =
(
σΩ0 − σΩm

) · ~ν ~x ∈ Γm (4)

where ~ν is the normal vector along Γm pointing into Ω0 and σ is the stress tensor defined as

σ = −PI + µ
(
∇⊗ ~v + (∇⊗ ~v)T

)
. (5)

We handle the stress jump term by introducing an isotropic surface term γ. Then it can be
shown that

∆f = γ (∇ · ~ν)~ν − (I − ~ν ⊗ ~ν) · ∇γ. (6)

For simplicity, we choose γ to be constant for each particle. Therefore, the jump in stress
over the interface is completely dependent by the curvature of the crystal interface.
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Using boundary conditions (3) and (6), the boundary integral equation for (2) is given
in [9] as

c(~xi)v(~xi) =
1

1 + λq

[
~v∞ − 1

4πµ0

N∑
m=1

∫
Γm

[∆f ]T · Gi +
1

4π

N∑
m=1

(1− λm)

∫
Γm

~vT · Ti · ~ν
]

(7)

where ~xi ∈ Ωq, ~v
∞ is the imposed velocity at |~x| → ∞, λm = µm

µ0
is the ratio between

the viscosity of the mth particle and the suspension fluid, Gi is the Green’s function for the
velocity, and Ti is the Green’s function for the stress tensor with

Gi = − ln(ri)I +
x̂i ⊗ x̂i
r2
i

(8)

Ti = −4
x̂i ⊗ x̂i ⊗ x̂i

r4
i

(9)

where x̂i = ~x − ~xi, ri = |x̂i|, and c(~xi) is an indicator function resulting from a limiting
process which, in loose terms describes what fraction of the point ~xi lies in the domain Ωq.
The indicator function is defined by

c(~xi) =


1 ~xi ∈ Ωq

1− α
2π

~xi ∈ Γq
0 otherwise

(10)

where α is the magnitude of the range of angles for all possible rays starting at ~xi and
pointing out of the domain Ωq. In practice, α = π which corresponds to the boundary being
locally continuous around ~xi.

2.2 Dual Reciprocity Boundary Integral Equation

DRM [10][11][12] is an extension of BEM. With BEM, the fundamental solution to the
adjoint operator must be known. In addition, there are usually requirements on the source
term in the PDE. For instance, in the case of the Poisson equation, the source term must be
harmonic for the integral equation to be written completely in terms of boundary integrals.
These restrictions limit the applicability of BEM. DRM expands the capabilities of BEM.
For this project, we use DRM on a PDE of the form

−∆u = b̂ ~x ∈ Ω ⊆ R2 (11)

with Neumann boundary conditions. We lift all restrictions on the residual term b̂, even
allowing it to be a function of the unknown u. In this way we are able to extend (11) to
describe more general PDEs such as the heat equation with an advection term.

Like BEM, DRM requires knowledge of the fundamental solution to the adjoint of the
differential operator. In (11), the differential operator is the Laplace operator which is self
adjoint. Thus, we need to find the fundamental solution u∗i where

−∆u∗i = δ(|~x− ~xi|) ~x ∈ R2. (12)
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Following literature [13], we choose to use the whole space fundamental solution rather than
the fundamental solution derived for the specific domain Ω.

It is well known that, in R2, the fundamental solution to the Laplace operator is given
by

u∗i = − 1

2π
ln ri (13)

ri = |~x− ~xi|. (14)

For boundary methods, it is useful to define the flux density of a function on the boundary
of the domain:

q = ~ν · ∇u (15)

where ~ν is the outward facing normal on Γ, the boundary of the domain Ω. The flux density
of the solution is then given by

q∗i =
x̂i · ~ν
2πr2

i

(16)

x̂i = ~x− ~xi. (17)

In addition to the fundamental solution of the Laplace operator, DRM also requires
choosing a set of basis functions, f̂i, to approximate the residual term:

b̂ ≈
∑
i

βif̂i (18)

where βi are scalar coefficients. The only restriction on the basis functions is that they satisfy

−∆ûi = f̂i x ∈ R2. (19)

While not required, it is practical to choose f̂i such that ûi are known analytically in a closed
form. Our specific choice of basis functions is reserved for section 3.4.

To formulate the Dual Reciprocity boundary integral equation, we start by multiplying
both sides of (11) by the fundamental solution (13) and integrating over the domain Ω:

−
∫

Ω

∆uu∗i =

∫
Ω

b̂u∗i . (20)

Starting with the left hand side of (20), we apply integration by parts twice:

−
∫

Ω

∆uu∗i = −
∫

Γ

qu∗i +

∫
Ω

∇u · ∇u∗i

= −
∫

Γ

qu∗i +

∫
Γ

uq∗i −
∫

Ω

u∆u∗i . (21)
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Recalling (12), we see that the left hand side becomes

−
∫

Ω

∆uu∗i = c(~xi)u(~xi) +

∫
Γ

uq∗i − qu∗i (22)

where c(xi) is the indicator function as in (10).
For the right hand side, we first make use of (18) and (19) and approximate the domain

integral: ∫
Ω

b̂u∗i ≈
∑
j

βj

∫
Ω

f̂ju
∗
i

=
∑
j

βj

∫
Ω

−∆ûju
∗
i . (23)

As before, we apply integration by parts twice to the right hand side making use of the
fundamental solution to obtain∫

Ω

b̂u∗i ≈
∑
j

βj

(
c(~xi)ûj(~xi) +

∫
Γ

ûjq
∗
i − q̂ju∗i

)
. (24)

Substituting (22) and (24) into (20), we obtain the Dual Reciprocity boundary integral
equation:

c(~xi)u(~xi) +

∫
Γ

uq∗i − qu∗i =
∑
j

βj

(
c(~xi)ûj(~xi) +

∫
Γ

ûjq
∗
i − q̂ju∗i

)
. (25)

3 Implementation

The implementation details for DRM are broken up into five sections. The objective of each is
to help describe the process of transforming the Dual Reciprocity boundary integral equation
into a tractable computational problem. We start in section 3.1 by discretizing both the
geometry and the boundary integrals to form the general Dual Reciprocity matrix equation
for an unspecified residual term b̂. Some of the integrals required for the discretization contain
singularities. The singularities cause computational difficulties which require a specialized
method to overcome. Section 3.2 introduces the radial integration method for computing
integrals containing singularities. Section 3.3 will examine the Dual Reciprocity matrix
equation for the specific residual term used in the heat equation with an advection term.
The section ends with a linear system for stepping the solution forward in time. The last
analytical detail, the choice of basis functions for approximating the residual, is presented in
section 3.4. Finally, section 3.5 provides a detailed description of the software implementation
used for the solver. Details are included on data structures, optimization, parallelization,
and use of external libraries.
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3.1 Discretization

Discretization of the Dual Reciprocity boundary integral equation begins with the discretiza-
tion of the problem geometry. Since DRM is a boundary method, only the boundary Γ need
be discretized. In the case of our problem in R2, thus we only need to discretizing a curve.

The discretization step allows for freedom in the choices on how to divide the bound-
ary into a finite number of boundary elements and where to place the computational nodes
on which the approximate solution will be calculated. We choose to follow the method
of collocation which states that N computational nodes be placed on the boundary. The
boundary elements are defined by the boundary segments that contain exactly two compu-
tational nodes located exactly at the segment’s end points. DRM also requires an additional
L computational nodes to be placed throughout the domain. The exact placement of the
computational nodes is differed until section 4.

The locations of the N computation nodes are used to approximate the boundary ele-
ments. We use cubic spline interpolation to interpolate the boundary between the nodes.
The cubic spline coefficients can be calculated in O(N) and use O(N) storage. In addi-
tion, the cubic spline interpolant is twice continuously differentiable everywhere along the
boundary. Thus the normal vector exists along the entire boundary. Furthermore, cubic
spline interpolation allows for a direct method of exactly calculating the normal vector at
any point.

The potentials and flux densities associated with the unknown solution and the basis
functions will be saved only at the N + L computational nodes for the potentials and N
computational nodes on the boundary for the flux densities. In order to evaluate the bound-
ary integrals required for DRM, all potentials and flux densities must be known along the
entire boundary. We will approximate the potentials and flux densities over each bound-
ary element using a linear interpolation with respect to the local cubic spline interpolation
variable.

Imposing the method of collocation, cubic spline interpolation, and linear interpolation
of the potentials and flux densities, the Dual Reciprocity boundary integral equation (25)
can be written in matrix form as

Cu+ [H|0]u+Gq = (CÛ + [H|0]Û +GQ̂)β (26)

where

Cij = δijc(~xi) (27)

Hij =

∫ 1

−1

1− ξ
2

q∗i Jj dξ +

∫ 1

−1

1 + ξ

2
q∗i Jj−1 dξ (28)

Gij =

∫ 1

−1

−1− ξ
2

u∗iJj dξ +

∫ 1

−1

−1 + ξ

2
u∗iJj−1 dξ (29)

Ûij = ûj(~xi) (30)

Q̂ij = q̂j(~xi) (31)
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with C, Û ∈ R(N+L)×(N+L); H,G ∈ R(N+L)×N ; and Q̂ ∈ RN×(N+L). Additionally, u, β ∈
RN+L; and q ∈ RN where u and q are the potential and flux density of the solution, respec-
tively. In the integrals (28) and (29), ξ is the local cubic spline interpolation variable and
Jj is the Jacobian along the boundary element Γj. For simplicity, we order the nodes such
that node xi with 1 ≤ i ≤ N is on the boundary and node xi with N + 1 ≤ i ≤ N + L is in
the domain.

The vector β contains the coefficients to the basis functions that approximate the residual
term in (18). We can rewrite the approximation as a linear equation

β = F̂−1b̂ (32)

where

F̂ij = f̂j(xi) (33)

and b̂ is the residual discretized in space. Notice that F ∈ R(N+L)×(N+L) and β, b̂ ∈ RN+L.
Finally, it is convenient to define

H̃ = C + [H|0]. (34)

Using (34) and (32), the Dual Reciprocity matrix equation (26) becomes

H̃u+Gq = (H̃Û +GQ̂)F̂−1b̂. (35)

It is left to compute the integrals in (28) and (29), the residual b̂, and pick basis functions
in order to assemble F̂ , Û , and Q̂.

3.2 Radial Integration Method

The assembly phase of the DRM solver is dominated by computation of integrals in (28)
and (29). Each integral takes place on a boundary element Γj and integrates either the
fundamental solution (13) or the flux density of the fundamental solution (16) centered at
the computational node ~xi. If ~xi /∈ Γj the integration can be carried out using standard
Gaussian quadrature. However, if ~xi ∈ Γj, the integrand becomes singular.

There are two types of singular integrals encountered in DRM. In (29), the integrals
contain a log(ri) term where

ri = |~x− ~xi|. (36)

An integral of this type is weakly singular. That is, the integrand is unbounded, however
any integral with finite bounds is bounded. The integrals in (28) contain a 1

ri
term which

is strongly singular. With strongly singular integrals, a definite integral containing the
singularity in its interior is only finite in the Cauchy principal value sense.
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In each case, we use the radial integration method [14]. This method considers integrals
of the form: ∫

Γe

f̄ ln(ri) (37)∫
Γe

f̄

rβ
(38)

where f̄ is a bounded function and Γe is a boundary segment containing ~xi in the interior.
The integral is separated into two segments, Γ−e and Γ+

e , where Γ−e ∪Γ+
e = Γe and Γ−e ∩Γ+

e = ~xi.
The finite part of each integral is then calculated. Note that for weakly singular integrals,
the values obtained through radial integration on Γ

+/−
e is the finite value of the integral on

the boundary segment. However, in the case of strongly singular integrals, the finite values
only make sense as a Cauchy principal value on the entire boundary segment Γe.

To perform the integration on the boundary, the global coordinate ~x = (x, y) is trans-
formed to a local coordinate ξ where the Jacobian is given by

|JΓ| =
√(

∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

. (39)

We then transform from the local variable ξ to the global distance variable r where the
Jacobian for this transformation is given by

|Jr| =
(
∂r

∂x

dx

dξ
+
∂r

∂y

dy

dξ

)
. (40)

The transformation from global coordinate ~x to global distance coordinate r is given by

dΓ =
dr

x̂i · ~t
(41)

where

x̂ = ~x− ~xi (42)

and ~t is the unit tangent vector along the boundary segment.
The key to the radial integration method is to approximate the Jacobian and bounded

function, f̄ , in terms of radial functions:

f̄

x̂ · ~t ≈
N∑
i=0

Ciri. (43)

The approximation (43) can be substituted into (37) and (38). With this approximation,
the integrals can be solved analytically and the finite contribution is found to be∫

Γ
+/−
e

f̄

rβ
≈

N∑
i=0

CiFi (44)
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for strongly singular integrals and∫
Γ

+/−
e

f̄ ln(ri) ≈
N∑
i=0

CiHi (45)

for weakly singular integrals where

Fi =

{
ri−β+1

i−β+1
i− β + 1 6= 0

ln(r) i− β + 1 = 0
(46)

and

Hi =
(i+ 1) ln(r)− 1

(i+ 1)2
ri. (47)

In this way, we can quickly and accurately compute the finite values of weakly singular
integrals and Cauchy principal values of strongly singular integrals that arise during assembly
of Dual Reciprocity matrices.

3.3 The Heat Equation

As mentioned in the introduction, one of the main goals is to solve the heat equation with
an advection term:

∂

∂t
u+ ~v · ∇u−∆u = b ~x ∈ Ω (48)

where ~v is a known velocity vector and b a known scalar body force. Until this point, we
have only addressed how to solve PDEs in the form

−∆u = b̂ ~x ∈ Ω (49)

using DRM. It was mentioned in section 2.2 that there are no restrictions on the residual term
b̂ and that it can be a function of the unknown solution. Therefore, (48) can be manipulated
to fit the form of (49) by defining the residual term for the heat equation as

b̂ = b− ∂

∂t
u+ ~v · ∇u. (50)

We plug (50) into (35), the Dual Reciprocity matrix equation, to obtain

H̃u+Gq = (H̃Û +GQ̂)F̂−1

[
b− ∂

∂t
u+ ~v · ∇u

]
. (51)

Notice in (51), the residual contains the gradient term ∇u. Since no knowledge of the
gradient of the solution is assumed, it must be approximated.
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There are several ways to approximate the gradient of a discretized function by applying
a linear transformation to the discretized function. An exceptionally clever technique for
approximating the gradient in the context of DRM was introduced by Partidgo and Brebbia
[15]. It was shown that DRM could produce accurate solutions to the Helmholtz equation:

∆u = u ~x ∈ Ω (52)

with

β = F̂−1u. (53)

Furthermore, the spacial derivatives of u could be written as

∂

∂x
u ≈ ∂F̂

∂x
=
∂F̂

∂x
F̂−1u (54)

∂

∂y
u ≈ ∂F̂

∂y
=
∂F̂

∂y
F̂−1u (55)

and used successfully in the residual term b̂. We use (54) and (55) to rewrite (51) as

H̃u+Gq = (H̃Û +GQ̂)F̂−1

[
b− ∂

∂t
u−

(
Vx
∂F̂

∂x
+ Vy

∂F̂

∂y

)
F̂−1u

]
(56)

with

(Vx)ij = δijvx(~xi) (57)

(Vy)ij = δijvy(~xi) (58)

where ~v = (vx, vy). Observe that the Dual Reciprocity matrix equation for (48) is now
completely discretized in space.

Notice that for the Neumann problem, the only remaining unknowns in (56) are u and
∂
∂t
u. In fact, upon examination, (56) is a first order linear ordinary differential equation with

unknown u in the variable t. We use the Crank-Nicolson method to set up a time marching
scheme. The exact algebraic manipulation required to do this is straightforward yet can
become unwieldy and thus is omitted. The resulting linear system for time marching is(

2

∆t
M +N

)
uT+1 =

(
2

∆t
M −N

)
uT −GqT+1/2 +MbT+1/2 (59)

with

M = (H̃Û +GQ̂)F̂−1 (60)

N = H̃ +M

(
Vx
∂F̂

∂x
+ Vy

∂F̂

∂y

)
F̂−1 (61)

and

qT+1/2 = qT+1 + qT bT+1/2 = bT+1 + bT (62)

where the superscript T indicates the value at the current time step, the superscript T + 1
indicates the values at the next time step, and ∆t is the size of the time step. In this way,
we can march forward in time until the desired length of simulation is reached.
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3.4 Basis Functions

There are many choices for basis function to use for approximating the residual term in
DRM. Many of the basis functions are radial, that is they are of the form

f̂i = f̂(ri) (63)

where

ri = |~x− ~xi|. (64)

Generally, it is preferable to choose basis functions that behave similarly to the residual term.
In the case of radial basis functions, it is assumed the residual has some radial behavior.
If this is not the case, radial basis functions can still be used, however more computational
nodes should be added to assure the approximation is accurate.

Specifically, we choose to use the radial basis function

f̂i = 1 + ri. (65)

Some papers use higher order radial approximations. However, they have not been shown
to be effective. With the choice of (65) we must find ûi such that

−∆ûi = f̂i ~x ∈ R2. (66)

We see that

ûi = −r
2
i

4
− r3

i

9
(67)

satisfies (66). Furthermore, the flux density of ûi can be found:

q̂i = (x̂i · ~ν)

(
1

2
+
ri
3

)
(68)

where

x̂i = ~x− ~xi (69)

and ~ν is again the outward facing normal vector along the boundary.

3.5 Software Implementation

The solver was implemented in Fortran 95. This programming language was chosen for
several reasons. First, we had available two codes at the start of the project. One solved the
Stokes flow equation and the other solves the Poisson equation with a harmonic source term.
Both codes were written in Fortran 95. Using the same language as the existing code had
the immediate benefit of being able to reuse existing code. Second, there are a great number
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of highly optimized computational libraries that interface directly with Fortran. Specifically,
we made use of OpenMP, BLAS, and LAPack which are all native to Fortran. The specific
choice of Fortran 95 over other versions dealt with support and features. The Fortran 95
standard is well established enough to have optimized implementations in several compilers.
There is also wide range of documentation, both online and through literature, that is not
available with newer versions. Fortran 95 also includes several features not present in its
predecessors such as custom data types and method overloading. These two features allowed
for more object-orientated software design.

Data structures in particular were central to the design of the solver. Positions of com-
putational nodes, heat potentials, heat flux densities, and velocities are constantly accessed
throughout the solver. Furthermore, in the case of the multiparticle problem there may be
physical parameters that may be unique for each particle. In addition to the raw size of the
different data that must be stored, the data must also be organized in such a manner that
it can be easily accessed in a way that makes sense with respect to the problem’s geometry.
The result was to create one problem data type that could robustly handle any geometry
from a simple disk to a collection of tens of thousands of particles.

The main data structure contains all of the global problem parameters, as well as an
allocatable array of a particle data type. Some global parameters include the viscosity of the
suspension fluid and its heat conductivity. The main data structure also stores information
about the discretized geometry such as how many particles there are and how many boundary
and interior computational nodes there are for each.

The particle data structure contains information about each individual particle in the
simulation. In addition to physical parameters such as the specific particle’s viscosity or
heat conductivity and book keeping information like the number of boundary and interior
computational nodes in the particle, the data structure contains the actual information about
the problem geometry and solutions. Each particle has an allocatable array for the position
of boundary computational nodes, interior computational nodes, heat potentials, heat flux
densities, and velocities on the particle’s nodes. By distributing the problem geometry
throughout the data structure, the data is naturally organized in a way that makes geometric
sense.

The full data structure (figure 1) is fully allocatable which allows it to efficiently handle
problems with a varied number of particles, each containing a various number of computa-
tional nodes. Most importantly, from a software design perspective, all of the problem data
can now be passed by reference with exactly one variable.

The original Stokes and Poisson solvers used a variety of custom hand-built solvers and
some provided by Numerical Recipes [16] for implementing basic linear algebra methods.
These implementations were replaced by calls to the standard BLAS and LAPack computa-
tional libraries. Specifically, the Intel Math Kernel Library implementations of the libraries
were used. The clear advantage of using a production caliber library is the speed, robustness,
and stability that custom solvers and educational codes, such as Numerical Recipes, are just
not able to match.

In addition to the linear algebra routines used to solve the Dual Reciprocity matrix
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Figure 1: The full data structure. The main data type called mesh contains all of the global
variables associated with the global properities of the problem. Mesh also has an allocatable
number of particle data structure types, each containing geometry and solution information
for a particular particle.

equation, the other computationally-intense part of the solve is the assembly of the matrices.
In the current implementation, of the matrices in (56) and (59), only H̃, G, F̂ , Û and Q̂ are
assembled entry-wise. Linear algebra methods are used to construct M and N . Of the five
matrices to be assembled, H̃ and G are the most time-consuming as their entries are the
result of integration while the others only contain explicit function evaluations.

To optimize the assembly of H̃ and G, the integrals over a particle are performed together.
Furthermore, the integrals over a single boundary element are calculated sequentially. This
ordering allows the cubic spline coefficients and boundary element interpolation to be cal-
culated exactly once and then discarded before the next set of data is computed. Thus, we
evaluate the integrals in an order that requires the minimum amount of geometry computa-
tion and storage.

Eventually, the code will run simulations containing tens of thousands of particles. Tack-
ling this problem with a single processor is not feasible. To prepare for larger problems, the
current solver uses the OpenMP parallelization library. The assembly routine was paral-
lelized by having each thread handle all of the integrations for a specific boundary element.
Parallelization of the linear algebra routines was trivial as Intel’s BLAS and LAPack libraries
are natively parallelized using OpenMP with a compile time flag.

4 Validation

Validation of the code was split into two phases corresponding to the development of the
DRM solver. In the first phase, the solver was built to approximate solutions to the Poisson
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problem. This solver made use of the general Dual Reciprocity matrices H̃, G, F̂ , Û and
Q̂ in (35). These are the same matrices that are later used in the Dual Reciprocity heat
solver. For this reason, we validate the Poisson solver to confirm the DRM matrices are
being properly assembled.

After the Poisson solver was validated, the residual term for the Poisson problem was
replaced by the residual term for the heat equation, and Crank-Nicolson was applied to gain
a time marching scheme. Here, the second stage of validation took place. This validation
ensured the matrices M and N from (59) were assembling correctly and the time marching
scheme was implemented correctly.

4.1 Poisson Solver Validation

Error analysis was performed on the Poisson problem

∆u = b ~x ∈ Ω (70)

u = g ~x ∈ Γ (71)

where Ω was chosen to be the disk of radius one centered at the origin. For validation of the
algorithm, we choose a set of particular solutions to the Poisson problem. It can be shown
that

u =
r2

8
(a1x+ a2y) (x, y) ∈ Ω ∪ Γ (72)

q = −1

8
(a1x+ a2y) (x, y) ∈ Γ (73)

b = a1x+ a2y (x, y) ∈ Ω ∪ Γ (74)

solves (70) and (71) where a1 and a2 are arbitrary scalar constants, and, as before, q = ∇u ·~ν
where ~ν is the outward facing unit normal vector along Γ. Recall that since we are solving the
problem on the boundary only, DRM will produce an approximation of q on the boundary.

First we validate the solver against various particular solutions by choosing an assorted
set of values for a1 and a2. Table 4.1 shows the L2(Γ) relative error of the solution on the
boundary for the choice of parameters. Notice that the solution on the disk centered at the
origin is symmetric with respect to a1 and a2. However, the error is not symmetric due to
the lack of symmetry in the discretization of the geometry. The lack of symmetry results in
small differences in the solution which produce the sightly different errors.

DRM makes use of interior nodes to approximate the residual term. In the case of the
Poisson problem, the residual is a known function. The distribution of the interior nodes
has the ability to contribute or detract greatly to the accuracy of the approximation of
the residual term and thus the solution. For the first step in error analysis, we test the
convergence of the approximation for two distributions of interior nodes.

First, we examine the case where the interior nodes are randomly distributed. We place
N nodes evenly spaced on the boundary and randomly distribute L ≈ N/2 interior nodes
using a uniform distribution (figure 2). Second, we distribute the nodes in a structured
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(a1, a2) 0.00 0.25 0.50 0.75 1.00
0.00 4.087E-03 4.087E-03 4.087E-03 4.087E-03
0.25 4.045E-03 3.313E-03 3.729E-03 3.903E-03 3.975E-03
0.50 4.045E-03 3.797E-03 3.313E-03 3.517E-03 3.729E-03
0.75 4.045E-03 3.961E-03 3.590E-03 3.313E-03 3.417E-03
1.00 4.045E-03 4.023E-03 3.797E-03 3.482E-03 3.313E-03

Table 1: The relative L∞ for exact solutions with different parameters (a1, a2) with N = 50,
L = 32, and interior latice nodes.
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Figure 2: Interior nodes distributed randomly.

manner. The interior nodes are laid out in a rectangular lattice inside the disk (figure 3).
Once again, there are N evenly distributed nodes on the boundary with L ≈ N/2 interior
nodes. Notice in each case, the number of interior nodes is approximately half of the number
of nodes on the boundary. Due to the methods used to distribute the interior nodes, an
equality relationship between L and N cannot be defined. Figure 4 shows the result from
the randomly distribution of interior nodes, and figure 5 shows the error results from the
lattice distribution.

For each distribution, the error decreases as the number of nodes is increased. Notice
at N increases, the accuracy of the random distribution begins to match that of the lattice
distribution, suggesting that for a large enough number of nodes, distribution may not
contribute much to the over all accuracy of the solution. Also, notice that as the number of
nodes increases, the accuracy gains diminish.
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Figure 3: Interior nodes distributed on a lattice.
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Figure 4: Error with an increasing number of nodes. The interior nodes are randomly
distributed.

Finally for error analysis, we wish to test how accuracy depended on the ratio of interior
nodes to boundary nodes. Figure 6 shows the error for discretizations with a fixed number
of interior nodes and a varying number of boundary nodes. Figure 7 fixes the number of
boundary nodes and shows the error with respect to the number of interior nodes. In each
case, the interior nodes are distributed over a lattice.

Both figures show that the error decreases with the addition of either boundary nodes
or interior nodes. However, adding boundary nodes has seems to have the larger impact.
Intuitively this makes sense since, in the Poisson problem, the interior nodes only contribute
to the approximation of the residual term in the domain. Alternatively, the addition of
boundary nodes contributes to a better approximation of the residual on the boundary, a
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Figure 5: Error with an increasing number of nodes. The interior nodes are distributed over
a lattice.
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Figure 6: Error with an increasing number of boundary nodes for a fixed number of interior
nodes distributed on a lattice. Note: We only show errors for even N for this plot. There
was trouble generating this plot for odd N . It is assumed that there is a simple programming
error which has yet to be found.

better approximation of the boundary conditions, and a more refined discretization of the
unknown solution.

4.2 Heat Solver Validation

Error analysis for the heat equation was performed by examining the problem

∂

∂t
u−∆u = b (~x, t) ∈ Ω× (0, T ] (75)
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Figure 7: Error with an increasing number of interior nodes distributed on a lattice for a
fixed number of boundary nodes . The error is step-like since we cannot specify the exact
number of boundary nodes. The plateaus correspond to a set of desired values of L that
generate the same number of interior nodes.

u(~x, 0) = u0 ~x ∈ Ω (76)

q = g (~x, t) ∈ Γ× (0, T ] (77)

where Ω is chosen to be the disk of radius one centered on the origin. For validation of the
algorithm we approximated a particular solution. We used the function

u(x, y, t) =
e−x

2−y2

1 + t
(sin(x) + cos(y)) (78)

with appropriate source term, initial condition, and Neumann boundary condition to satisfy
(75)− (77).

Unlike the Poisson equation, the heat equation posed is a Neumann problem so DRM
will be used to approximate the potential. Furthermore, since the residual is now a function
of the unknown potential, we must solve for the unknown not just at the boundary nodes,
but also on the interior nodes.

For validation of the DRM heat equation solver, we first examine the error of the ap-
proximation on the domain Ω̄× (0, T ] using a various number of time steps. As the number
of time steps, Nt, increases, the size of each time step, ∆t, decreases. The more time steps
used, the more accurate the solution is expected to become. The penalty for the additional
accuracy is the requirement of additional computational work. Since the spatial domain is
discretized as well, for a fixed discrete geometry we expect a minimum error in the solution
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no matter how fine the time step size. To measure the error of an approximation, we employ
the relative L2(Ω̄× (0, T ]) norm which is defined as

‖u‖L2(Ω̄×(0,T ]) =

∫ T

0

∫
Ω

u2 dΩ dt. (79)
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Figure 8: Total error for different numbers of time steps on the interval [0, 1]. Notice that
the error does not tend to zero. Increasing the number of time steps only causes convergence
to an approximation. To converge to the solution, the spacial discretization must be refined
as well.

Figure 8 shows the relative L2(Ω̄ × (0, T ]) error for various numbers of time steps. The
geometry is discretized using a lattice distribution for the interior nodes with N = 50 and
L ≈ N/2 as seen in section 4.1. The error can be seen to decrease as more time steps are used.
Furthermore, it can be seen that the error does not converge to zero. This intrinsic error
is an artifact from the discretization of the geometry. The important information to take
away from the figure is the convergence to a single approximation as the time discretization
is refined.

With any time marching algorithm, it is of interest to see how error increases at each time
step. To examine the local time stepping error, we fix the number of time steps and measure
the relative L2(Ω̄) error at each time step. The result can be seen in figure 9. As we can
see, the error between the exact solution and the approximation increases with time. This is
expected as the approximation at time step nt + 1 is computed based on the approximation
at time step nt. Thus the approximation at time step nt + 1 inherits all of the error in time
step nt in addition to any error the algorithm contributes while taking a step forward in
time. We measure and plot the percent error increase at each time in figure 10 and we see
that while the over all error increase, the jump in error at each time step is bounded.

In addition to analyzing how error changes compared to the number of time steps, it is
also interesting to see how the error behaves based on the discretization of the geometry. We
measured the L2(Ω̄× (0, T ]) error for various numbers of nodes on both the interior and the
boundary. In testing we found that the error behaved sporadically for N > 40. The exact
reason for the behavior is still being investigated. First we examine the error convergence
for an increasing number of N with L ≈ N/2. As before, we examine the interior nodes both
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Figure 9: Error at each time step between the exact solution and approximation.
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Figure 10: Percent error increase in the approximation at each time step.

distributed randomly and on a lattice. Figure 11 shows the change in error as the number
of nodes is increased for each distribution. When using the lattice distribution, the error
appears stagnant despite the increasing number of nodes used in the approximation. On the
other hand, the error associated with the randomly distributed interior nodes decreases as
the tot number of nodes increases. The drop is significant. When 30 ≤ N ≤ 40, the error
for the two distributions is comparable.

As in section 4.1, it is also interesting to see how error decreases with the addition
of boundary or interior nodes. Figure 12 shows the L2(Ω̄ × (0, T ]) error for various fixed
numbers of interior nodes as the number of boundary nodes is increased. We see that the
error steadily decreases as the number of boundary nodes approached N = 40.

Figure 13 shows the error of the approximation for fixed values of boundary nodes as
the number of interior nodes is increased. Once again, we see that the error decreases as
the number of interior nodes are increased. Notice, unlike the with the boundary nodes, the
number of interior nodes can be continually increased and the error decay remains steady.

Compared to the Poisson case, we see the opposite effect when adding interior nodes
to approximate the heat equation. The addition of interior nodes produces a much more
accurate approximation that the addition of boundary nodes. In addition, during testing, we
were able to add a significant number of interior nodes with no computational irregularities.
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Figure 11: Total Error with an increasing number of spatial nodes. The interior nodes are
distributed randomly and over a lattice grid with Nt = 100.
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Figure 12: Total error with an increasing number of boundary nodes for a fixed number of
interior nodes distributed on a lattice.

5 Future Work

The yearlong project was to create a DRM-based software package as a step toward simulat-
ing crystals falling into and cooling a magma ocean. Great progress has been made toward
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Figure 13: Total error with an increasing number of interior nodes distributed in a lattice
for a fixed number of boundary nodes.

achieving the end goal. A highly-optimized software package for solving the heat equation
using DRM has been developed and interfaced with an existing Stokes flow solver. However,
there is still additional work and research to be done outside the scope of the project. The
next few sections detail some of the paths for investigation that will soon be followed.

5.1 Integration of Stokes Solver

To model the crystal settling behavior in magma oceans, it is necessary to couple a Stokes
solver with a heat equation solver. One of the initial goals of the project was to integrate an
existing Stokes flow solver with an existing Poisson solver. The two solvers were integrated
using the data structure described in section 3.5. Also, an effort was made to unify the basic
subroutines shared between the solvers.

Despite the work done to integrate the two solvers, the Stokes flow solver was never fully
implemented along side the DRM code for solving the heat equation. There are several
reasons for the lack of implementation. First, the project’s main focus has always been to
implement the DRM heat equation solver. This led to neglect in fixing programming errors
and validating the Stokes solver. Second, when using the Stokes solver, we wish to advect
the particles over time. There are several implementation details of the advection that are
currently being researched by other students in the geology department. It was therefore
decided to postpone fully implementing the Stokes flow solver until all required research is
completed.
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5.2 Choice of Basis Functions

The corner stone to DRM is the approximation of the residual term using functions that
satisfy (19). The choice most popular in literature is the radial cone presented in section
3.4. While approximations using the radial cones worked well for the problems sampled in
section 4, they may lack the robustness needed for more complicated problems such as the
end goal of modeling the settling of tens of thousands of crystals.

The first issue with the radial cone functions is the lack of knowing if the radial cones
do indeed form a mathematical basis for continuous functions on the required domains. If
the functions do not form a basis, the approximation to the residual term may degrade as
more computation nodes are used. In dynamic domains, such as those seen when the domain
is subject to advection from a viscous Stokes flow, it may not be immediately clear what
number and placement of radial cones will provide an accurate estimation of the residual
term. If the set of functions chosen to approximate the residual term is known to form a
mathematical basis, this issue is completely avoided.

In addition to the choice of basis function, their optimal positioning is also a topic of
further investigation. Section 4.1 and 4.2 showed that the error in the approximation was
lower when the interior nodes were distributed on a lattice compared to when the nodes
were distributed randomly. It is important to recall that DRM uses the interior nodes to
incorporate information on the residual term’s behavior on the domain. Therefore we wish
to distribute the interior nodes in such a way that captures the desired information. On
a dynamic domain, it may become too computationally costly to distribute interior nodes
based on a structured scheme. Thus, it is important to continue analyzing the accuracy of
problems where interior nodes are randomly distributed to see if it is a viable distribution
scheme.

5.3 Fast Multipole Method

The linear systems used in DRM are generally dense and asymmetric. The lack of structure
limits the number of computational nodes that can be used in any simulation as general
solvers run in O(N 3) where N is the total number of computational nodes. If the lin-
ear system were sparse, the system could be solved using an iterative solver that runs in
O(kN log N ) where k is the number of iterations performed.

The Fast Multipole Method [17] takes advantage of the geometric structure of the prob-
lem along with the algebraic properties of the matrix entries to approximate matrix vector
multiplications in O(pN ) where 1 ≤ p ≤ N is a parameter related to how much error is
acceptable in the matrix vector multiplication. In the case of approximating solutions to
PDEs, exchanging a little bit of error for computational speed is generally favorable as the
approximations are expected to contain some error.

Implementing Fast Multipole Method was listed as an optional addition to the DRM
solver. However, due to time constraints, it was not added. Also, the linear systems in
the problems examined were very manageable, the largest being 450 × 450. The small size
of linear systems encountered minimized the immediate necessity to implement the Fast
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Multipole Method. As the solver is used for larger systems containing tens of thousands of
particles, it will be necessary to implement the Fast Multipole Method.

6 Conclusion

Over the course of AMSC663 and AMSC664, a successful approach for integrating an existing
Stokes flow and Poisson solver was developed. The Poisson solver was modified to use DRM.
The addition of DRM removed the restriction that required the original solver to only use
harmonic functions as source terms. Next the DRM Poisson solver code was modified to solve
the heat equation. Along the way, the existing code was cleaned and modified extensively.
Subroutines that were redundant or hard coded were removed and replaced by calls to unified
methods. In addition, all linear algebra work was implemented using calls to the BLAS and
LAPack libraries and OpenMP was used to explicitly parallelize the assembly stage of the
code.

The code was validated at several stages and a thorough error analysis was performed.
Also, to ensure the code is usable in the future by others, extensive documentation was
included. The documentation includes inline comments as well as an electronic reference
manual for the code generated by Doxygen. Finally, open issues were addressed. Along with
the possibilities of adding new methods to the code such as FMM, existing implementation
details were questioned and suggestion were made for future investigation.
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