Dual Reciprocity Boundary Element Method for Magma Ocean Simulations

Tyler W. Drombosky drombosky@math.umd.edu Saswata Hier-Majumder saswata@umd.edu †

[†] Department of Geology

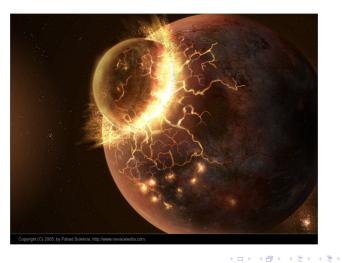
30 November 2010

Department of Geology

Introduction		
Abstract		

- ▶ Understanding how crystals settle in a magma ocean is critical for answering questions about Earth's early history
- Experiments have been performed that have given insight into this behavior
- ▶ The ability to simulate this behavior numerically is not available
- ▶ It has been proposed to use Dual Reciprocity Method as the basis for a numerical solver to address this problem.

Physical Motivation



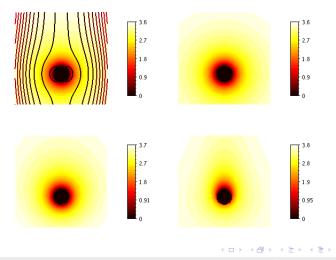
Department of Geology

-

How to Solve

- ▶ Must solve a coupled Stokes flow and heat equation
- Settling crystals create a free boundary condition which makes traditional methods, such as FEM, a challenge to use
- First order accurate asymptotic solutions exists for limited parameters

Asymptotic Solution



Department of Geology

Ti

Dual Reciprocity

Boundary Element Stokes equation

$$\vec{v}(\xi) = \int_{\Gamma} \Delta f \cdot \underline{J} \, \mathrm{d}\Gamma + \frac{1-\lambda}{1+\lambda} \int_{\Gamma} \vec{n} \cdot \mathbf{K} \cdot v \, \mathrm{d}\Gamma$$

The Dual Reciprocity equation

$$u(\xi) = \int_{\Gamma} (u^* Du - u Du^*) \cdot \vec{n} \, \mathrm{d}\Gamma$$
$$+ \sum_{q=1}^{\mathcal{N}} \left(u^q(\xi) - \int_{\Gamma} (Du^q u^* - Du^* u^q) \cdot \vec{n} \, \mathrm{d}\Gamma \right) \alpha^q$$

Department of Geology

Where we started

▶ Two separate codes

- BEM code for solving Poisson equation with harmonic source term
- ▶ BEM code for solving Stokes' flow equation
- Incompatibilities
 - Different data structures
 - Different subroutines with same purpose
 - ▶ Stokes: Many particle; Poisson: One particle
- Inefficiencies
 - ▶ Recalculation of geometry information
 - High memory usage

Work to do

- ▶ Stokes solver is generally better that Poisson
 - Robust
 - Efficient
 - Modular
- Rebuild Poisson to incorporate good traits
 - Advanced problem data structure
 - Unified subroutines
 - Remove large inefficiencies

э

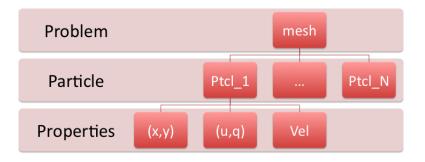
イロト 不得下 イヨト イヨト

Data Structures

- ▶ Wanted to take advantage of OO in Fortran 90
- ▶ One "problem" variable to share between the solvers
- ▶ Include all important information while being minimal
- ► Flexible to allow for large variety of simulations

・ロト ・御 ト ・ ヨ ト ・ ヨ ト … ヨ

Data Structures



▶ Each particle has independent parameters

Department of Geology

э

イロト 不得下 イヨト イヨト

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Merging Subroutines

Many subroutines for

- Cubic spline interpolation
- ▶ Tangent and normal vector computation
- Gaussian integration
- ▶ Radial integration (for singular integrals)
- ▶ Unified across two solvers
 - Minimal changes to routine interfaces
 - Overloading of routines in limited cases
 - Removed hard coded duplication of routines

An Example - Radial Integration Method

Originally:

► Stokes:

rim2d(xpole,ypole,xi,x,y,tx,ty,fx,fy,kern,plfrst)

Poisson:

rim2d(xj,yj,xpole,ypole,d2x,sj,spole,kj,kpole,I,n,b,counter)
rontly;

- ► Currently:
 - Stokes:

rim2d(xa,ya,fx,x2a,y2a,arca,xb,yb,fy,x2b,y2b,arcb,plfirst,kern)

▶ Poisson:

rim2d(xa,ya,x2a,y2a,arca,xb,yb,x2b,y2b,arcb,plfirst,kern)

▶ Both functions behave exactly the same internally

An Example - Radial Integration Method

- Originally:
 - ► Stokes:

rim2d(xpole,ypole,xi,x,y,tx,ty,fx,fy,kern,plfrst)

Poisson:

rim2d(xj,yj,xpole,ypole,d2x,sj,spole,kj,kpole,I,n,b,counter)

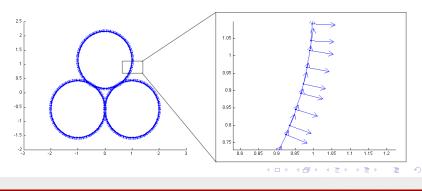
- ► Currently:
 - ► Stokes:

rim2d(xa,ya,fx,x2a,y2a,arca,xb,yb,fy,x2b,y2b,arcb,plfirst,kern)

- Poisson: rim2d(xa,ya,x2a,y2a,arca,xb,yb,x2b,y2b,arcb,plfirst,kern)
- ▶ Both functions behave exactly the same internally

Expanded to many particles

- Data structure provided guidance for matrix assembly loop structure
- Required few high-level changes in matrix assembly code, no new subroutines required



・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

-

Inefficiencies in Poisson solver

▶ Inefficiencies for large problems

- ▶ Recalculating geometry multiple times
- Storing unused geometry data
- ▶ Recomputing many basic values unnecessarily
- ▶ Fixed by switching orders of loops
 - ▶ No global geometry data computed or stored up front
 - ▶ Minimal particle geometry data computed once
 - Detailed geometry computed on the fly for small parts of the boundary
 - ▶ On the fly computation done exactly once
- ▶ Switches assembly routine from row based to column based

Validation

- Can validate against exact solution for specific Neumann boundary conditions and boundary shape
- Let Ω be the disk of radius 1 with

$$b = a_1 x + a_2 y$$

$$a = -\frac{1}{2}(a_2 x + a_3 x)$$

•
$$q = -\frac{1}{8}(a_2x + a_1y)$$

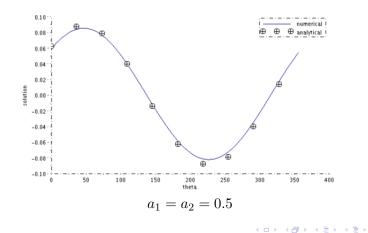
▶ Then the potential is given by

$$\bullet \ u = \frac{1}{8}(a_1x + a_2y)$$

tro		

Timelir

Validation



1 Department of Coolegue

æ

Schedule

- ▶ Phase I (present early November)
 - \blacktriangleright Merge Stokes flow and Poisson solver code \checkmark
- ▶ Phase II (November December)
 - \blacktriangleright Test and validate steady-state code \checkmark
 - Optimize code
- ▶ Phase III (December early February)
 - ▶ Add Dual Reciprocity code
 - ▶ Add Fast Multipole Method code (optional)
- ▶ Phase IV (February March)
 - ▶ Test and validate Dual Reciprocity code
 - ▶ Optimize code

Deliverables

- Collection of source and compiled libraries
 - ▶ New code base is clean and compact
 - "Build up" from existing code slowly and carefully adding functionality without repeat code
- Scientific Results
 - Multiparticle Poisson solver

Department of Geology

э

イロト 不得下 イヨト イヨト

D. Nardini and C. A. Brebbia, "A new approach to free vibration analysis using boundary elements", <i>Boundary Element Methods in Engineering</i> , Volume 7, Issue 3, 1983, Pages157-162
D. Nardini and C. A. Brebbia, "Transient dynamic analysis by the boundary element method", <i>Boundary Elements</i> , 1983, Pages 719-730
D. Nardini and C. A. Brebbia, "Boundary integral formulation of mass matrices for dunamic analysis", <i>Topics in Boundary Element Research</i> , Volume 2: Time-Dependent and Vibration Problems, 1985, Pages 191-208
D. Martin and R. Nokes. "A Fluid-Dynamical Study of Crystal Settling in Convecting Magmas", Journal of Petrology, Volume 30, Issue 6, 1989, Pages 1471-1500
C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge University Text, New York, NY, 1992
G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, 1992
M. Manga and H. A. Stone, "Buoyancy-driven interactions between two deformable viscous drops", <i>Journal of Fluid Mechanics</i> , Volume 256, 1993, Pages 647-683
V. Solomatov and D. Stevenson, "Suspension in Convective Layers and Style of Differentiation of a Terrestrial Magma Ocean", <i>Journal of Geophysical Research</i> , Volume 98, Issue E3, 1993, Pages 5375-5390
V. Solomatov and D. Stevenson, "Nonfractional Crystallization of a Terrestrial Magma Ocean", <i>Journal of Geophysical Research</i> , Volume 98, Issue E3, 1993, Pages 5391-5406
< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 < つへの

V. Solomatov and D. Stevenson, "Kinetics of Crystal Growth in Terrestrial Magma Ocean", Journal of Geophysical Research, Volume 98, Issue E3, 1993, Pages 5407-5418
J. P. Agnantiaris, D. Polyzos, D. E. Beskos, "Three-dimensional structural vibration analysis by the Bual Reciprocity BEM", <i>Computational Mechanics</i> , Volume 21, Issue 4-5, 1998, Pages 372-381
M. A. Golberg, C. S. Chen, H. Bowman and H. Power, "Some comments on the use of Radial Basis Functions in the Dual Reciprocity Method", <i>Computational Mechanics</i> , Volume 21, Issue 2, 1998, Pages 141-148
R. M. Canup and E. Asphaug, "Origin of the Moon in a giant impact near the end of the Earths formation", <i>Nature</i> , Volume 412, 2001, Pages 708-712
L. T. Elkins-Tanton, E. M. Parmentier, and P. C. Hess, "Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars", <i>Meteoritics & Planetary Science</i> , Volume 38, Issue 12, 2003, Pages 1753-1771
L. Gaul, M. Kögl, M. Wagner, Boundary Element Methods for Engineers and Scientists, Springer, Berlin, 2003
Y. J. Liu and N. Nishimura, "The fast multipole boundary element method for potential problems: A tutorial", <i>Engineering Analysis with Boundary Elements</i> , Volume 30, Issue 5, May 2006, Pages 371-381
Xiao-Wei Gao, "Numerical evaluation of two-dimensional singular boundary integrals-Theory and Fortran code", <i>Journal of Computational and Applied</i> <i>Mathematics</i> , Volume 188, Issue 1, 2006, Pages 44-64
V. Solomatov, "Magma Oceans and Primordial Mantle Differentiation", Treatise on Geophysics, Volume 9, 2007, Pages 91-120

Thank You

Questions?

< 日 > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Department of Geology