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Abstract

The tools to computationally model crystals settling in a magma ocean are
currently not readily available. Being able to model such behavior may provide
clues into the history of early Earth. New numerical simulations could lead
to a better understanding of the settling. The equations that describe this
settling are well understood, however, no suitable software package is currently
available to solve such problems. This project will use the Dual Reciprocity
Method, an extension of Boundary Element Method, to generate numerical
solutions to a coupled system of Stokes flow and heat equations. The Dual
Reciprocity Method allows for free boundary conditions as well as a reduction
in problem dimensionality which decreases computation. The final product
will combine algorithms from several papers to produce a robust, modular, and
highly optimized software package.
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1 Introduction

Earth’s early history is marked by a giant impact with a Mars-sized object which led
to the formation of the moon [1]. This impact event led to a substantial amount of
melting of the Earth’s interior. Subsequent cooling of the Earth involved extensive
crystallization in this ‘magma ocean’ over a relatively short period of time. While
the chemical evidence from ancient sources provide some clues on the rate of cooling,
computational models of such phenomenon are sparse.

Constraints on the mode of crystal settling come from laboratory experiments [2],
parameterized heat flux calculations [3][4][5][6], and chemical constraints [7]. The first
two lines of evidence suggest extremely small crystals, contrary to common belief, also
settle likely enhancing the efficiency of cooling. Direct estimation of heat flux and
crystal size, however, are still not available. Chemical arguments suggest that the
pattern of density-driven settling is also controlled by the vast pressures associated
with a plant-scale magma ocean.

Modeling this physical behavior requires solving a coupled system of partial differen-
tial equations (PDEs), specifically the Stokes flow and heat equation. As closed forms
solutions rarely exists for problems of interest, numerical solutions are an attractive
option. Methods for solving various types of PDEs, while being robust, require PDEs
to conform to certain forms and restrictions.

When solving PDEs involving coupled Stokes flow and heat transfer, it is standard
practice to use a finite element method (FEM) solver. FEM algorithms are very robust
and can generally converge with reasonable amounts of computation. Unfortunately
there are two issues with FEM that make it unpractical for the above problem. First,
as the crystals settle, the region of flow will be changing. This free boundary problem
means the region would have to be rediscretized at every time step. This becomes
extremely costly, especially at high dimensions. In addition to discretization issue,
FEM is O(n3) in R3. While this project will only focus on domains in R2, using a
FEM algorithm would not scale well if adapted to work in R3.

Boundary Element Method (BEM) is an alternative technique for solving the same
problem. The goal of BEM is to write the weak form of the PDEs employing reciprocal
relations, integrating by parts, and making specific choices on test functions such that
the integrals move entirely to the boundary. This has the immediate advantage of
reducing the dimensionality by one. Also, BEM naturally handles free boundary
problems. Unlike the domain meshes need for FEM, BEM discretizes the boundary.
For any evaluation, only three easily computable pieces about the boundary are need.



First is the position of the node. Second, is the boundary value at the node, this can
be Dirichlet or Neumann boundary condition or a prescribed condition such as the no-
slip boundary condition for Stokes flow. Third is the vector normal to the boundary
at the node. This can be quickly be approximated by using a local interpolation of
nodes.

2 Approach

Dual Reciprocity Method (DRM) is an algorithm based off of BEM [8][9][10][11].
DRM, like BEM, provides an approximation on the boundary rather than in the
region. This provides a reduction in dimensionality. This makes the problem of
discretization of the region significantly easier. In the case of R2 regions, this means
only having to discretize a curve. This reduction of dimensionality also allows for
adding more mesh points with less computational penalty. DRM advantage over
BEM is that it provides a way to move more complicated PDE to the boundary.

DRM works on PDE in the form

Du = b, (1)

whereD is a generic non-linear operator with variable coefficients. A linear differential
operator L is chosen such that the fundamental solution to the adjoint operator L∗
is known. Then D can be written as a sum of the linear operator L and a residual
operator D′. Then (1) can be written

Lu = b−D′u =: b′. (2)

The combination of the original source term and residual operator are now treated as a
new source term for the linear PDE. Considering the example of the non-homogeneous
heat equation

∂

∂t
u+ ~v · ∇u−∆u = b (3)

where ~v(x) is the velocity in Ω computed by a stokes solver. The operator can then
be broken up into

D =
∂

∂t
+ ~v · ∇ −∆ (4)

L = −∆ (5)



D′ =
∂

∂t
+ ~v · ∇ (6)

b′ = b− ∂

∂t
u− ~v · ∇u (7)

The boundary integral equation is then formulated for (3). This is done in the same
manner as in BEM. Like traditional FEM, BEM multiplies a PDE by a test function
and converts it into an integral equation. The formulation for the (3) is given

−∆u = b′ x ∈ Ω (8)

−∆u · w = b′ · w (9)

−
∫

Ω

∆u · w dΩ =

∫
Ω

b′ · w dΩ (10)

where Ω is an open set. Then integration by parts is applied twice on the left hand
side ∫

Ω

∆u · w dΩ =

∫
Γ

wDu · ~n dΓ−
∫

Ω

Du ·Dw dΩ (11)

=

∫
Γ

wDu · ~n dΓ−
∫

Γ

uDw · ~n dΓ +

∫
Ω

u∆w dΩ (12)

where Γ = Ω̄\Ω is the boundary. BEM makes the specific choice of w = u∗ where u∗

is the fundamental solution of the dual of the Laplacian. That is u∗ satisfies

∆u∗ = −δ(x− ξ) (13)

for a choice of ξ ∈ Ω. Then plugging (12) and (13) into (10)

u(ξ) =

∫
Γ

(u∗Du− uDu∗) · ~n dΓ +

∫
Ω

b′u∗ dΩ. (14)

To this point, the method has not differed from BEM and in fact (14) could be
solved numerically if the region was discretized for integration. However, the goal
of boundary methods is to avoid discretizing the region. DRM provides a way to
approximate the integral over the region as an integral over the boundary. In DRM
the source term b′ = b−D′u is approximated by

b′ =
N∑

q=1

f qαq (15)



where f q are chosen basis functions and αq are coefficients. The basis functions f q

are chosen appropriately so uq the solution to

∆uq = f q, (16)

can easily be found. This eliminates the need for finding a particular solution for
b′. Instead it is approximated by a linear combination of particular solutions for f q

which can easily be found. Using this approximation (8) becomes

−∆u =
N∑

q=1

f qαq (17)

and (14) becomes

u(ξ) =

∫
Γ

(u∗Du− uDu∗) · ~n dΓ +
N∑

q=1

αq

∫
Ω

f qu∗dΩ (18)

=

∫
Γ

(u∗Du− uDu∗) · ~n dΓ−
N∑

q=1

αq

∫
Ω

∆uqu∗dΩ (19)

employing Green’s second identity yields∫
Ω

(∆uqu∗ −∆u∗uq) dΩ =

∫
Γ

(Duqu∗ −Du∗uq) · ~n dΓ (20)

because of (13) this relationship becomes∫
Ω

∆uqu∗ dΩ = −uq(ξ) +

∫
Γ

(Duqu∗ −Du∗uq) · ~n dΓ (21)

Substituting (21) into (14) yields the Dual Reciprocity equation

u(ξ) =

∫
Γ

(u∗Du− uDu∗) · ~n dΓ +
N∑

q=1

(
uq(ξ)−

∫
Γ

(Duqu∗ −Du∗uq) · ~n dΓ

)
αq (22)

It is given this name because two reciprocity equations are used, once to convert
the integral with the linear term to the boundary and then again to convert the
approximation of the source term to the boundary. The advantage of DRM is that
all integrals now are on the boundary.

This same procedure can be applied to the Stokes flow equation to obtain the bound-
ary integral equation

~v(ξ) =

∫
Γ

∆f · J dΓ +
1− λ
1 + λ

∫
Γ

~n ·K · v dΓ (23)



where f represents the surface tension and buoyancy, λ is the ration of viscosity
between the particle and fluid, and J a second order tensor and K a third order
tensor are the fundamental solutions for the adjoint operator. Since u depends on ~v
but ~v does not depend on u, a solution for ~v is approximated first using (23) then
this approximation is used in computing u using (22).

Once the boundary integral equations are derived, variables non-dimensionalized and
the integrals are discretized. The discretization will be done using the method of
collocation. In this method, the integral is broken up into N disjoint, connected
segments Γ1, . . . ,Γn such that Γi ∩ Γj = ∅ for i 6= j and ∪N

i=1Γi = Γ. Next, xi ∈ Γi

are selected and used as the ξ values. This yields a system of N equations and N
unknowns that can be solved.

Moving ξ to the boundary presents an issue. As stated earlier ξ ∈ Ω, however to
use the method of collocation, ξ must be moved to the boundary. This can be done
in a limiting process. This results in both weakly and strongly singular integrals.
When integrating on Γi with respect to the collocation point xj /∈ Γi, the integral
is non-singular and is approximated using an eight point Gauss quadrature method.
If xi ∈ Γi, the integral is singular and it can be solved using radial approximation
methods [12][13].

3 Implementation

The software package will be developed in Fortran 90 with compiler level optimizations
focused on single threaded x86 processors. Fortran 90 was chosen as the programming
language for several reasons. First, Fortran 90 is an object orientated language. Types
and modules allow for use of custom data types and methods. This feature is crucial
for constructing modular software. Second, there is a large library of Fortran 90 code
developed. These packages, both widely distributed and local, are highly modular and
will cut down considerably on development time. Finally, Fortran 90 has significant
speed advantages, even when compared to other low level languages such as C.

The target platform for the software is a single threaded x86 system. The specific test
system is a 4 node cluster. Each cluster houses two quad core processor with each
processor sharing 8 gigabytes of main memory. While an instance of this software
will not use more than one of the 32 cores, this system will be convenient if a need
arrises to run several time consuming simultaneous at once. However, as developed,
the software will be able to compile and run efficiently in any x86 environment.



The software will be created in several steps. First, existing code for solving the
poisson and Stokes equations in steady-state using BEM will be merged. The soft-
wares were written at different times for different purposes. As is expected in this
case, there are several software engineering challenges that must be solved involving
unifying data structures. In addition, both solvers use similar libraries that are not
always identical. While it would be possible to include both copies of these libraries,
this approach is sloppy and does not align with the goal of making the software highly
modular. Thus, these libraries will be standardized and merged as necessary.

After the poisson and Stokes code are merged, work will begin on developing DRM
code. The only difference between DRM and BEM is the transformation of the source
term to the boundary. The code for DRM will accordingly be highly modular. Once
written it can be added to the existing merged code with little effort.

As mentioned earlier, DRM requires computing integrals with strong and weak sin-
gularities. While these singularities can be computationally difficult, there are many
documented methods for obtaining accurate approximations to such problematic in-
tegrals. However, in practice testing is needed to determine which ones are actually
successful for approximating the specific integral.

Unlike FEM, the linear systems produced by DRM and BEM are not sparse. In fact,
the matrix generated by DRM is, in general, dense and asymmetric. Because of this,
solving the linear system will be done using a straightforward LU decomposition with
pivoting for stability through the forward and backward substitution.

A solution to overcome the dense matrix is to employ the fast multipole method
(FMM) [14]. One of the reasons that DRM has a dense matrix is because each node
requires unique information from every other node. This is an O(N2) process which
creates the dense and asymmetric matrix. FMM creates poles throughout the region
and then “connects” the nodes to the poles and then poles to poles in a tree structure.
Data is then shared between nodes via the poles. Doing this requires O(N) to set up
the tree. This creates a sparse matrix with O(N logN) entries. With this sparsity
the linear system can then be solved with more efficient and robust methods such as
GMRES. If time permits a FMM module will be added to the software package.

The software will run the Stokes solver first followed by either a poisson or heat
equation solver depending on the development stage. Each solver will run in the same
order of time. As presented the algorithm will run in O(N2) time where N is the
number of discrete nodes on the boundary. This dominated by the LU decompositions
and computation of the entries in the mass matrix. Evaluating each of the O(N2)



integrals takes constant time. When the integral is non-singular, eight point Gauss
quadrature is used. For the approximation of the singular integrals, an iterative
method is used, but convergence can be expected in i ∈ o(N) iterations. This can
therefore be thought of as a constant time operation with respect to N .

Using FMM, the runtime of the entire software runtime reduces to O(N logN) as
setting up FMM takes one time work of O(N) and O(N logN) is required for com-
puting the entries in the mass matrix. Solving the linear system can then be done
with sparse methods that converge in O(N) time.

4 Validation and Testing

The software be validated and tested at two points in the development cycle. The
first time will be after the poisson and Stokes solvers have been merged to create
a steady-state Stokes flow and heat solver. As the name of the solver implies, it
will be able to solve steady state equations for temperature gradients in a flow. The
solver will first be tested against problems where there is no heat source and then in
problems where there is no flow.

For an isoviscous region, the steady state-solver degrades to a poisson solver. There
exists analytic solutions to the poisson equation on a circle which can be used to
validate this part of the code. Testing of the Stokes solver will follow a similar testing
method. With an isothermal region the solver becomes a Stokes solver. For constant
surface tension, analytical solutions to the Stokes equations can be found. With a
heat source and flow, asymptotic approximations using matching asymptotes provide
an approximation of steady state thermal flow for low Péclet numbers [15]. This
approximation can be used to gauge first order accuracy of the numerical solutions.

Once the DRM code is implemented a similar round of validation and testing will
occur. A heat equation problem and transient stokes flow problem will be approxi-
mated. In both cases, analytic solutions and numerical solutions are available from
other sources. Once these two elements of the DRM have been tested, a transient
problem with both flow and a source term will be approximated. At this point no
analytic or asymptotic solution exists. For validation a function ũ will be created ran-
domly with appropriate initial and boundary conditions. Then b̃ := Lũ is computed.
Finally, the solver is used to approximate to solution to Lu = b̃ with the chosen initial
and boundary conditions. The approximation of u can then be compared to the exact
solution ũ. In this way the convergence and compute scaling can also be tested.



5 Project Schedule

• Phase I (present - early November):

– Organize poisson and Stokes solvers

– Analyze incompatibilities in data structures and libraries

– Devise solution to incompatibilities, recoding as necessary

– Merge solvers into one software

• Phase II (November - December):

– Validate and test steady state solver

– Optimize and fix bugs as necessary

– Run simulations and archive results

• Phase III (December - early February):

– Incorporate DRM code

– Incorporate FMM (optional)

• Phase IV (February-March):

– Validated and test DRM solver

– Optimize and fix bugs as necessary

– Run simulations and archive results

– Prepare final report and presentation

6 Deliverables

This project will yield a highly modular and optimized source code and software
for solving transient thermal Stokes flow problems with source terms in R2 using
DRM. There is also the possibility of having an incorporated FMM solver in the final
code base. Great care will be made to ensure the code is well organized and easily
modifiable for future projects.

A report and presentation that cover the algorithm will be presented to the class.
Furthermore, simulations of physical phenomena will be recorded and written in a



paper to be submitted for publication. Those results will be presented in Berlin,
Germany at 12th International Workshop on Modeling of Mantle Convection and
Lithospheric Dynamics in Summer 2011.
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