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Abstract

I Understanding how crystals settle in a magma ocean is
critical for answering questions about Earth’s early history

I Experiments have been performed that have given insight
into this behavior

I The ability to simulate this behavior numerically is not
available

I It is being proposed to use the Dual Reciprocity Method as
the basis for a numerical solver to address this problem.
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Physical Motivation

I Earth’s early history is marked by a giant impact with a
Mars-sized object

I This led to a substantial amount of interior melting
followed by rapid crystallization of this ‘magma ocean’

I How this crystallization took place and crystals settled
provide insight into the planet’s rate of cooling
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Giant Impact
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How to Solve

I Must solve a coupled Stokes flow and heat equation
I Settling crystals create a free boundary condition which

makes traditional methods, such as FEM, a challenge to use
I First order accurate asymptotic solutions exists for limited

parameters
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Asymptotic Solution
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Algorithm

I Boundary Element Method almost works
I Naturally handles free boundaries
I Approximation performed on only on the boundary
I Cannot handle transient heat equation with source term

I Dual Reciprocity Method fits the problem
I Naturally handles free boundaries
I Approximation performed on only on the boundary
I Can solve transient heat equation with source term
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The Set Up

Given a non-linear PDE

Du = b (1)

Rewrite it as a combination of a linear operator L and
non-linear residual operator D′

Lu = b−D′u =: b′ (2)

Define b′, the combination of original source with the non-linear
operator, to be the new source term to the linear PDE
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The Heat Equation

Consider the heat equation

∂

∂t
u+ ~v · ∇u−∆u = b (3)

Break it down into a linear operator and its residual

D =
∂

∂t
+ ~v · ∇ −∆ (4)

L = −∆ (5)

D′ =
∂

∂t
+ ~v · ∇ (6)

b′ = b− ∂

∂t
u− ~v · ∇u (7)
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Formulating Integral Equations

Form the Boundary Integral Equation using the linear PDE

−∆u = b′ x ∈ Ω (8)
−∆u · w = b′ · w (9)

−
∫

Ω
∆u · w dΩ =

∫
Ω
b′ · w dΩ (10)

Perform integration by parts twice on the left hand side∫
Ω

∆u · w dΩ =
∫

Γ
wDu · ~n dΓ−

∫
Ω
Du ·Dw dΩ

=
∫

Γ
(wDu− uDw) · ~n dΓ +

∫
Ω
u∆w dΩ
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Fundamental Solutions

Choose w = u∗ where u∗ is the fundamental solution to the
adjoint operator L∗

∆u∗ = −δ(x− ξ) (11)

then

u(ξ) =
∫

Γ
(u∗Du− uDu∗) · ~n dΓ +

∫
Ω
b′u∗ dΩ (12)

for ξ ∈ Ω
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Approximation of Source

I Converted the linear term to the boundary
I Still need to convert source term to boundary

I Given particular solution to Lu′ = b′ is know this is possible
I Particular solution is almost never known

I Dual Reciprocity approximates the source term by a linear
combination of functions for which a particular solution is
known
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Properties of Approximation

Approximate the source term b′

b′ =
N∑

q=1

f qαq (13)

Choose basis function f q such that the particular solution uq is
known

∆uq = f q, (14)

Then the original PDE becomes

−∆u =
N∑

q=1

f qαq (15)
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Substitution

Substituting for b′ the integral equation becomes

u(ξ) =
∫

Γ
(u∗Du− uDu∗) · ~n dΓ +

N∑
q=1

αq

∫
Ω
f qu∗dΩ (16)

Substituting for fp

u(ξ) =
∫

Γ
(u∗Du− uDu∗) · ~n dΓ−

N∑
q=1

αq

∫
Ω

∆uqu∗dΩ (17)
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The Second Reciprocity Equation

Using the second Gauβ theorem∫
Ω

(∆uqu∗ −∆u∗uq) dΩ =
∫

Γ
(Duqu∗ −Du∗uq) · ~n dΓ (18)

Which, after remembering the choice of u∗, becomes∫
Ω

∆uqu∗ dΩ = −uq(ξ) +
∫

Γ
(Duqu∗ −Du∗uq) · ~n dΓ (19)

Substituting into the integral equation yields...
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Dual Reciprocity

The Dual Reciprocity equation

u(ξ) =
∫

Γ
(u∗Du− uDu∗) · ~n dΓ

+
N∑

q=1

(
uq(ξ)−

∫
Γ
(Duqu∗ −Du∗uq) · ~n dΓ

)
αq

for ξ ∈ Ω
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Computation

I Equations are non-dimensionalized
I Discretized using the method of collocation (ξ → Γ)
I Yields a linear system of N equations and N unknowns

where N is the number of discretized elements
I All known and unknown values are on the boundary
I BEM formulation provides a method for approximating

values in the region once unknown values are found
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Challenges

I Linear systems involve dense and asymmetric matrices
I LU -Decomposition with pivoting for stable backward and

forward substitution
I Fast Multipole Method demands extra upfront work but

generates a sparse linear system (optional)
I Weakly and Strongly singular integrals

I Appear from collocation (ξ → Γ)
I Iterative methods
I Radial approximation techniques
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Runtime

I Dominated by calculation of matrix and solving the
associated linear system

I O(N2) with dense matrices
I O(N logN) with FMM

I O(N) - upfront work
I O(N log N) - compute entries of sparse matrix
I O(N) - solve using sparse solver such as GMRES
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Platform

I Software: Fortran 90
I Very fast execution
I Object Orientated
I Existing BEM Poisson and Stokes flow solver

I Hardware: Single core x86 architecture
I Readily available
I Local access to 32 node x86 cluster
I Scalable from netbooks to supercomputers
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Test Data

I Use initial conditions and parameters from literature
I Modify these conditions and parameters as experimentation

demands
I Parameters for asymptotic approximations for steady-state

Stokes flow and heat problems
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Validation

I Test steady-state code
I Validate new Poisson and Stokes portion

I Test Poisson code in isoviscous environment
I Test Stokes code in isothermal environment

I Use asymptotic approximations for non-isoviscous and
non-isothermal problem
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Validation

I Test Dual Reciprocity code
I Use test functions

I Create test function v
I Compute v0 = v(t = 0) and Dv =: b
I Then v is an exact solution to Du = b with u(t = 0) = v0
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Schedule

I Phase I (present - early November)
I Merge Stokes flow and Poisson solver code

I Phase II (November - December)
I Test and validate steady-state code
I Optimize code

I Phase III (December - early February)
I Add Dual Reciprocity code
I Add Fast Multipole Method code (optional)

I Phase IV (February - March)
I Test and validate Dual Reciprocity code
I Optimize code
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Deliverables

I Collection of source and compiled libraries
I Validated and optimized
I Easily modifiable and modular
I Robust and reusable
I Platform for further research and development

I Reports
I AMSC664 Report
I Geophysics paper detailing methods and results for physical

simulations
I Presentations

I AMSC664 Presentation
I Presenting paper at 12th International Workshop on

Modeling of Mantle Convection and Lithospheric Dynamics
in Berlin, Germany, Summer 2011
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Thank You

Questions?
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