
Dual Reciprocity Method for studying thermal flows
related to Magma Oceans

Tyler Drombosky
Ph.D. Student, Applied Mathematics Scientific Computation

Department of Mathematics
University of Maryland, College Park, MD

drombosk@math.umd.edu

Dr. Sawata Hier-Majumder
Assistant Professor, Department of Geology
University of Maryland, College Park, MD

sawata@umd.edu

Abstract

The tools to computationally model crystals settling in a magma ocean are currently
not readily available. Being able to model such behavior may provide clues into the
history of early Earth. New numerical simulations could lead to a better understanding
of the settling. The equations that describe this settling are well understood, however,
no suitable software package is currently available to solve such problems. This project
will use the Dual Reciprocity Method, an extension of Boundary Element Method, to
generate numerical solutions to a coupled system of Stokes flow and heat equations. The
Dual Reciprocity Method allows for free boundary conditions as well as a reduction in
problem dimensionality which decreases computation. The final product will combine
algorithms from several papers to produce a robust, modular, and highly optimized
software package.

1 Introduction

Earth’s early history is marked by a giant impact with a Mars-sized object which led to
the formation of the moon [1]. This impact event led to a substantial amount of melting
of the Earth’s interior. Subsequent cooling of the Earth involved extensive crystallization
in this ‘magma ocean’ over a relatively short period of time. While the chemical evidence
from ancient sources provide some clues on the rate of cooling, computational models of such
phenomenon are sparse.

1

Constraints on the mode of crystal settling come from laboratory experiments [2], param-
eterized heat flux calculations [3][4][5][6], and chemical constraints [7]. The first two lines of
evidence suggest extremely small crystals, contrary to common belief, also settle likely en-
hancing the efficiency of cooling. Direct estimation of heat flux and crystal size, however, are
still not available. Chemical arguments suggest that the pattern of density-driven settling is
also controlled by the vast pressures associated with a plant-scale magma ocean.

Modeling this physical behavior requires solving a coupled system of partial differential
equations (PDEs), specifically the Stokes flow and heat equation. As closed form solutions
rarely exist for problems of interest, numerical solutions are an attractive option. Methods
for solving various types of PDEs, while being robust, require PDEs to conform to certain
forms and restrictions.

When solving PDEs involving coupled Stokes flow and heat transfer, it is standard prac-
tice to use a finite element method (FEM) solver. FEM algorithms are very robust and
can generally converge with reasonable amounts of computation. Unfortunately there are
two issues with FEM that make it unpractical for the above problem. First, as the crystals
settle, the region of flow will be changing. This free boundary problem means the region
would have to be rediscretized at every time step. This becomes extremely costly, especially
in high dimensions. In addition to discretization issues, FEM is O(n3) in R3. While this
project will only focus on domains in R2, using a FEM algorithm would not scale well if
adapted to work in R3.

Boundary Element Method (BEM) is an alternative technique for solving the same prob-
lem. The goal of BEM is to write the weak form of the PDEs employing reciprocal relations,
integrating by parts, and making specific choices on test functions such that the integrals
move entirely to the boundary. This has the immediate advantage of reducing the dimen-
sionality by one. Also, BEM naturally handles free boundary problems. Unlike the domain
meshes need for FEM, BEM discretizes the boundary. For any evaluation, only three easily
computable pieces about the boundary are need. First is the position of the node. Second,
is the boundary value at the node, this can be Dirichlet or Neumann boundary condition or
a prescribed condition such as the no-slip boundary condition for Stokes flow. Third is the
vector normal to the boundary at the node. This can be quickly be approximated by using
a local interpolation of nodes.

2 Approach

Dual Reciprocity Method (DRM) is an algorithm based on BEM [8][9][10][11]. DRM, like
BEM, provides an approximation on the boundary rather than in the region. This provides
a reduction in dimensionality. This makes the problem of discretization of the region signif-
icantly easier. In the case of R2 regions, this means only having to discretize a curve. This
reduction of dimensionality also allows for adding more mesh points with less computational
penalty. DRM advantage over BEM is that it provides a way to move more complicated
PDE to the boundary.

2

DRM works on PDEs in the form

Du = b, (1)

where D is a generic non-linear operator with variable coefficients. A linear differential
operator L is chosen such that the fundamental solution to the adjoint operator L∗ is known.
Then D can be written as a sum of the linear operator L and a residual operator D′. Then
(1) can be written

Lu = b−D′u =: b′. (2)

The combination of the original source term and residual operator are now treated as a
new source term for the linear PDE. Considering the example of the non-homogeneous heat
equation

∂

∂t
u+ viu,i − u,ii = b (3)

where v is the velocity in Ω computed by solving the Stokes equation. The operator can
then be broken up into

D =
∂

∂t
+ vi(·),i − (·),ii (4)

L = −(·),ii (5)

D′ =
∂

∂t
+ vi(·),i (6)

b′ = b− ∂

∂t
u− viu,i (7)

The boundary integral equation is then formulated for (3). This is done in the same
manner as in BEM. Like traditional FEM, BEM multiplies a PDE by a test function and
converts it into an integral equation. The formulation for the (3) is given

−u,ii = b′ x ∈ Ω (8)

−u,iiw = b′w (9)

−
∫

Ω

u,ii · w dΩ =

∫
Ω

b′w dΩ (10)

where Ω is an open set. Then integration by parts is applied twice on the left hand side∫
Ω

u,ii · w dΩ =

∫
Γ

wu,ini dΓ−
∫

Ω

u,iw,i dΩ (11)

=

∫
Γ

wu,ini dΓ−
∫

Γ

uw,in,i dΓ +

∫
Ω

uw,ii dΩ (12)

where Γ = Ω̄\Ω is the boundary. BEM makes the specific choice of w = G∗(x − x0) where
G∗ is the fundamental solution of the dual of the Laplacian. That is G∗ satisfies

G∗,ii(x− x0) = −δ(x− x0) (13)

3

for a choice of ξ ∈ Ω. Then plugging (12) and (13) into (10)

u(ξ) =

∫
Γ

(G∗u,i − uG∗,i)ni dΓ +

∫
Ω

b′G∗ dΩ. (14)

To this point, the method has not differed from BEM and in fact (14) could be solved
numerically if the region was discretized for integration. However, the goal of boundary
methods is to avoid discretizing the region. DRM provides a way to approximate the integral
over the region as an integral over the boundary. In DRM the source term b′ = b − D′u is
approximated by

b′ =
N∑
q=1

f qαq (15)

where f q are chosen basis functions and αq are coefficients. The basis functions f q are chosen
appropriately so uq the solution to

uq,ii = f q, (16)

can easily be found. This eliminates the need for finding a particular solution for b′. Instead
it is approximated by a linear combination of particular solutions for f q which can easily be
found. Using this approximation (8) becomes

−u,ii =
N∑
q=1

f qαq (17)

and (14) becomes

u(ξ) =

∫
Γ

(G∗u,i − uG∗,i)ni dΓ +
N∑
q=1

αq

∫
Ω

f qG∗dΩ (18)

=

∫
Γ

(G∗u,i − uG∗,i)ni dΓ−
N∑
q=1

αq

∫
Ω

uq,iiG∗dΩ (19)

employing Green’s second identity yields∫
Ω

(uq,iiG∗ − G∗,iiuq) dΩ =

∫
Γ

(uq,iG∗ − G∗,iuq)ni dΓ (20)

because of (13), (20) becomes∫
Ω

uq,iiG∗ dΩ = −uq(ξ) +

∫
Γ

(uq,iG∗ − G∗,iuq)ni dΓ (21)

4

Substituting (21) into (14) yields the Dual Reciprocity equation

u(ξ) =

∫
Γ

(G∗u,i − uG∗,i)ni dΓ +
N∑
q=1

(
uq(ξ)−

∫
Γ

(uq,iG∗ − G∗,iuq)ni dΓ

)
αq (22)

It is given this name because two reciprocity equations are used, once to convert the integral
with the linear term to the boundary and then again to convert the approximation of the
source term to the boundary. The advantage of DRM is that all integrals now are on the
boundary.

This same procedure can be applied to the Stokes flow equation. The PDE in differential
form is given by

−Pj,i +
1− λ
1 + λ

vj,ii + ρbj = 0 (23)

Where P is the pressure, λ is the ratio of viscosity between the particle and fluid, ρ is
density of the fluid, and b is the body force. After converting the integral form and moving
the integration to the boundary, the boundary element formulation of Stokes flow becomes

vj(x0) =

∫
Γ

f,iJij dΓ +
1− λ
1 + λ

∫
Γ

nkKijkvi dΓ (24)

where f represents the surface tension and buoyancy, J a second order tensor, and K is a
third order tensor. The second order tensor J is a Green’s function for the singularity forced
Stokes equation and the third order tensor K is stress tensor associated with the Green’s
function.

Since u depends on v but v does not depend on u, a solution for v is approximated first
using (24) then this approximation is used in computing u using (22).

Once the boundary integral equations are derived, variables non-dimensionalized and the
integrals are discretized. The discretization will be done using the method of collocation. In
this method, the integral is broken up into N disjoint, connected segments Γ1, . . . ,Γn such
that Γi ∩ Γj = ∅ for i 6= j and ∪Ni=1Γi = Γ. Next, xi ∈ Γi are selected and used as the ξ
values. This yields a system of N equations and N unknowns that can be solved.

Moving ξ to the boundary presents an issue. As stated earlier ξ ∈ Ω, however to use the
method of collocation, ξ must be moved to the boundary. This can be done in a limiting
process. This results in both weakly and strongly singular integrals. When integrating on Γi
with respect to the collocation point xj /∈ Γi, the integral is non-singular and is approximated
using an eight point Gauss quadrature method. If xi ∈ Γj, the integral is singular and it can
be solved using radial approximation methods [12][13].

3 Implementation

The software package will be developed in Fortran 90 with compiler level optimizations
focused on single threaded x86 processors. Fortran 90 was chosen as the programming

5

language for several reasons. First, Fortran 90 is an object orientated language. Types
and modules allow for use of custom data types and methods. This feature is crucial for
constructing modular software. Second, there is a large library of Fortran 90 code developed.
These packages, both widely distributed and local, are highly modular and will cut down
considerably on development time. Finally, Fortran 90 has significant speed advantages,
even when compared to other low level languages such as C.

The target platform for the software is a single threaded x86 system. The specific test
system is a 4 node cluster. Each cluster houses two quad core processor with each processor
sharing 8 gigabytes of main memory. While an instance of this software will not use more
than one of the 32 cores, this system will be convenient if a need arises to run several time
consuming simultaneous simultaneously. However, as developed, the software will be able to
compile and run efficiently in any x86 environment.

The software will be created in several steps. First, existing code for solving the Poisson
and Stokes equations in steady-state using BEM will be merged. The softwares were written
at different times for different purposes. As is expected in this case, there are several software
engineering challenges that must be solved involving unifying data structures. In addition,
both solvers use similar libraries that are not always identical. While it would be possible
to include both copies of these libraries, this approach is sloppy and does not align with the
goal of making the software highly modular. Thus, these libraries will be standardized and
merged as necessary.

After the Poisson and Stokes code are merged, work will begin on developing DRM code.
The only difference between DRM and BEM is the transformation of the source term to the
boundary. The code for DRM will accordingly be highly modular. Once written it can be
added to the existing merged code with little effort.

As mentioned earlier, DRM requires computing integrals with strong and weak singular-
ities. While these singularities can be computationally difficult, there are many documented
methods for obtaining accurate approximations to such problematic integrals. However, in
practice testing is needed to determine which ones are actually successful for approximating
the specific integral.

Unlike FEM, the linear systems produced by DRM and BEM are not sparse. In fact,
the matrix generated by DRM is, in general, dense and asymmetric. Because of this, solving
the linear system will be done using a straightforward LU decomposition with pivoting for
stability through the forward and backward substitution.

A solution to overcome the dense matrix is to employ the fast multipole method (FMM)
[14]. One of the reasons that DRM has a dense matrix is because each node requires unique
information from every other node. This is an O(N2) process which creates the dense and
asymmetric matrix. FMM creates poles throughout the region and then “connects” the
nodes to the poles and then poles to poles in a tree structure. Data is then shared between
nodes via the poles. Doing this requires O(N) to set up the tree. This creates a sparse
matrix with O(N logN) entries. With this sparsity the linear system can then be solved
with more efficient and robust methods such as GMRES. If time permits a FMM module
will be added to the software package.

6

The software will run the Stokes solver first followed by either a Poisson or heat equation
solver depending on the development stage. Each solver will run in the same order of time.
As presented the algorithm will run in O(N3) time where N is the number of discrete nodes
on the boundary. This is dominated by the LU decompositions. Evaluating each of the
O(N2) integrals takes constant time. When the integral is non-singular, eight point Gauss
quadrature is used. This quadrature has experimentally shown to provide a balance between
accuracy and speed. For the approximation of the singular integrals, a radial integration
method is used which takes constant time with respect to the number of node points. Since
the linear system depends on the position of the nodes on the boundary, the formation and
solving of the linear systems must be performed at every time step since the particles are
constantly subject to advection.

Using FMM, the runtime of the entire software runtime reduces to O(N logN) as setting
up FMM takes one time work of O(N) and O(N logN) is required for computing the entries
in the mass matrix. Solving the linear system can then be done with sparse methods that
converge in O(N) time.

3.1 Poisson Solver

Consider the Poisson equation

u,ii = b (25)

Applying BEM to the equation we obtain

u(x0) =

∫
Γ

(G∗u,i − uG∗,i)ni dΓ +

∫
Ω

bG∗ dΩ (26)

Recalling that G∗ satisfies (13), the free space Greens function for two dimensions is chosen

G∗(x− x0) = − ln r

2π
(27)

G∗,i(x− x0) = −xi − x0i

2πr
(28)

where r = |x − x0|. To move the source term integral to the boundary, b is forced to be
harmonic. A higher order function K∗ is defined such that

−K∗,ii = G∗ (29)

Then K∗ is the solution to the forced biharmonic equation. It can be shown that for 2D, K∗
is given by

K∗ =
r2

8π
(ln r − 1) (30)

which also leads to

K∗,i =
1

8π
(2 ln r − 1)(xi − x0i) (31)

7

Then

bK∗,ii = −[bK∗,i − b,iK∗],i (32)

Substituting (27), (28), (30), (31) and (32) into (26), results in

u(x0) =

∫
Γ

[
u(xi − x0i)ni

2πr
− q ln r

2π

]
dΓ

+

∫
Γ

[
b(2 ln r − 1)(xi − x0i)− b,ir2(ln r − 1)

] ni
8π

dΓ (33)

where q = u,ini is the flux across the boundary in the direction of the normal. With this
form we can begin discretization and assembly of the final linear system. Discretizing (33)
for the j-th boundary element, while the pole x0 is located at the beginning of the i-th node.

ǔi =
∑
j

∫
Γj

[
u(xk − x̌ik)nk

2πr
− q ln r

2π

]
dΓj

+
∑
j

∫
Γj

[
b(2 ln r − 1)(xk − x̌ik)

nk
8π
− b,knk

r2

8π
(ln r − 1)

]
dΓj (34)

Where ǔi indicates the nodal value at the i-th node and r = |x − xi|. For integration, the
boundary is approximated using cubic spline interpolates. Using cubic interpolation (34)
can be written as integrals over the local coordinate ξ ∈ [−1, 1].

ǔi = ǔjMij + ǔj+1Nij + ǦjPij + Ǧj+1Qij +
∑
j

Rij (35)

where

Mij =

∫ 1

−1

(1− ξ)(xk − xik)nk
4πr

Jjdξ (36)

Nij =

∫ 1

−1

(1 + ξ)
(xk − xik)nk

4πr
Jjdξ (37)

Pij =

∫ 1

−1

(
−1

2

)
(1− ξ) ln r

2π
Jjdξ (38)

Qij =

∫ 1

−1

(
−1

2

)
(1 + ξ)

ln r

2π
Jjdξ (39)

Rij = R1
ij +R2

ij (40)

R1
ij =

∫ 1

−1

[
2b(xk − x̌ik)nk

8π
− b,knkr

2

8π

]
ln rJjdξ (41)

R2
ij =

∫ 1

−1

[
−b(xk − x̌ik)nk + b,knkr

2
] Jj

8π
dξ (42)

8

where Jj is the Jacobian for the transformation between the global coordinate x and local
coordinate ξ. The integrals can now be evaluated numerically. The majority of the integrals
are regular and thus can be evaluated using Gaussian quadrature. However, when i = j or
i+ 1 = j, r = 0 on Γj causing Mij, Nij to become strongly singular and Pij, Qij and Rij to
become weakly singular. It can be shown analytically that the integrals are finite, however,
the singularity prevents the use of Gaussian quadrature. For singular integrals, the radial
integration method described in section 3.3 will be used.

Once the integrals are computed, the final linear system can be assembled with (35)
becoming

GǓ = Hq̌ +R (43)

where

Gij = δij −Mij −Nij−1 (44)

Hij = Pij +Qij−1 (45)

The indices are periodic since the boundary is closed. This system can be solved numerically
using LU decomposition as long as either the potential or flux is known at each node.

3.2 Stokes Solver

This project will use an existing solver to compute the velocities from the Stokes equation.
Since this code will not be modified, the discretization and specifics of integration have been
omitted. However, they are covered in [12]. In general discretization is performed in a
similar manner to the Poisson equation. The Green’s function and associated stress tensor
for Stokes equation are

Jij(x̂) =
δij

r
+
x̂ix̂j
r3

(46)

Tijk(x̂) = −6
x̂ix̂jx̂k
r5

(47)

where x̂ = x−x0. The no-slip boundary condition will be used. This states that the relative
velocity between a point on the boundary of a particle and the fluid is zero. In the case when
the particle is ridged, numerical errors may occur, producing velocities along the boundary
of the particle that suggest the particle is deforming. We regulate this behavior by averaging
the velocity over all boundary points on the boundary and using the average velocity to step
the particle forward in time.

3.3 Radial Integration Method

To handle the singular integrals encountered in both the Poisson and Stokes solve, the Radial
Integration Method [13] will be used. Consider the singular integral

Ij =

∫
Γj

f̄j(x, x0)

rβ(x, x0)
dΓj (48)

9

Within the element, x and y are functions of the arc length s. The local coordinate is
also a linear function of s. For the j-th element,

s =
1

2
(1− ξ)sj +

1

2
(1 + ξ)sj+1 (49)

s =
1

2
(sj + sj+1) +

1

2
(sj+1 − sj)ξ (50)

Also define

∆sj = sj+1 − sj (51)

A =
sj+1 − s

∆sj
=

1− ξ
2

(52)

B =
s− sj
∆sj

=
1 + ξ

2
(53)

C =
1

6
(A3 − A)∆s2

j (54)

D =
1

6
(B3 −B)∆s2

j (55)

The second derivatives at the nodes need to be determined such that d2x
ds2
|x=xj

and d2y
ds2
|y=yj

are known.
Interpolate x and y in the following way

x = Ax̌j +Bx̌j+1 + Cx̌′′j +Dx̌′′j+1 (56)

y = Ay̌j +By̌j+1 + Cy̌′′j +Dy̌′′j+1 (57)

Combining (51− 55), (56) and (57) the first and second derivatives of x and y with respect
to s can be calculated. The Jacobian for the j-th element is given by

Jj =

((
dx

dξ

)2

+

(
dy

dξ

)2
) 1

2

(58)

Now, dΓj = Jjdξ
Define

r =
√

(x− x0)2 + (y − y0)2 =
√

(x− xj)2 + (y − yj)2 (59)

Notice that

dr =

[
∂r

∂x

dx

dξ
+
∂r

∂y

dy

dξ

]
dξ (60)

One can easily show that

∇r = r̂ =
x− xj
r

î+
y − yj
r

ĵ (61)

10

Also, dx
dξ

and dy
dξ

are the x and y components of the tangent vector (not the unit tangent

vector which is based on the first derivatives of x and y with respect to s). Thus the tangent
is given by

t̂ =

[
dx

dξ
î+

dy

dξ
ĵ

]
∝ 1

Jj
(62)

and

dΓj =
dr

r̂ · t̂
(63)

(63) is the heart of the radial integration.
Making the substitution in the (j − 1)-st element yields

Ij−1 =

∫ rj

rj−1

f̄j−1

rβ
dr

r̂ · t̂
(64)

and similarly for the j-th element

Ij =

∫ rj+1

rj

f̄j
rβ

dr

r̂ · t̂
(65)

When added together, (64) and (65) yield a Cauchy Principal Value Integral.
The integrals still contain the r−β singularity. To smooth the singularity write

f̄j

r̂ · t̂
=

N∑
n=0

Cnr
n (66)

To determine the coefficients Cn, first create a uniform grid between the node and the pole.

1. Define a vector with N + 1 elements such that

ξi = 1− 2

(
i− 1

N

)
i = 1, 2, . . . , N + 1 (67)

2. Define vectors x and y containing global coordinates using (51− 55) to evaluate A, B,
C, D and then (56) and (57) to determine x and y.

3. Calculate ri at each xi and yi using equation (59). Calculate dx
dξ

and dy
dξ

at each point
using the relation

dx

dξ
=

(
x̌j+1 − x̌j

2

)
−
(

3A2
i − 1

12

)
∆s2x′′j +

(
3B2

i − 1

12

)
∆s2x′′j+1 (68)

dy

dξ
=

(
y̌j+1 − y̌j

2

)
−
(

3A2
i − 1

12

)
∆s2y′′j +

(
3B2

i − 1

12

)
∆s2y′′j+1 (69)

Calculate t̂i from (68) and (69).

11

4. Evaluate r̂ · t̂ and f̄ at each point xi.

5. Solve (66) to obtain Ci for i = 0, 1, . . . , N .

This yields

Ij =
N∑
n=0

Cn
rn−β+1

n− β + 1
n− β 6= 0 (70)

= ln(r) n− β + 1 = 0 (71)

If the original integral contains a logarithmic singularity, i.e. it looks like

J =

∫
Γj

f̄ ln r

rβ
dΓj (72)

Then the integral is given by

Jj =
N∑
n=0

Cn
((n+ 1− β) ln r + 1)

(n+ 1− β)2
rn−β+1 n− β + 1 6= 0 (73)

=
1

2
[ln(r)]2 n− β + 1 = 0 (74)

4 Validation and Testing

The software will be validated and tested at two points in the development cycle. The first
time will be after the Poisson and Stokes solvers have been merged to create a steady-state
Stokes flow and heat solver. As the name of the solver implies, it will be able to solve steady
state equations for temperature gradients in a flow. The solver will first be tested against
problems where there is no heat source and then in problems where there is no flow.

For an isoviscous region, the steady state-solver degrades to a Poisson solver. There
exist analytic solutions to the Poisson equation on a circle which can be used to validate
this part of the code. Testing of the Stokes solver will follow a similar testing method.
With an isothermal region the solver becomes a Stokes solver. For constant surface tension,
analytical solutions to the Stokes equations can be found. With a heat source and flow,
asymptotic approximations using matching asymptotes provide an approximation of steady
state thermal flow for low Péclet numbers [15]. This approximation can be used to gauge
first order accuracy of the numerical solutions.

Once the DRM code is implemented a similar round of validation and testing will occur.
A heat equation problem and transient stokes flow problem will be approximated. In both
cases, analytic solutions and numerical solutions are available from other sources. Once
these two elements of the DRM have been tested, a transient problem with both flow and a
source term will be approximated. At this point no analytic or asymptotic solution exists.
For validation a function ũ will be created randomly with appropriate initial and boundary

12

conditions. Then b̃ := Lũ is computed. Finally, the solver is used to approximate to solution
to Lu = b̃ with the chosen initial and boundary conditions. The approximation of u can
then be compared to the exact solution ũ. In this way the convergence and compute scaling
can also be tested.

4.1 Analytical Solutions to Poisson Equation

The following solution can be used to validate the numerical solution to the Poisson equation
obtained by BEM. Consider the Poisson equation

u,ii = b (75)

where b itself is a harmonic function such that

b,ii = 0 (76)

First, start by constructing a variable separable b,

b = ρ(r)Θ(θ) (77)

Then

∆b =
1

r

∂

∂r

(
r
∂b

∂r

)
+

1

r2

∂2b

∂θ
(78)

becomes

∆b =
Θ

r

d

dr

(
r
dρ

r

)
+
ρ

r2

d2Θ

dθ2
(79)

Now demand Θ to be such that

d2Θ

dθ2
= −Θ (80)

Then (76) and (77) yield,

1

r

d

dr

(
r
dρ

dr

)
− ρ

r2
= 0 (81)

Force ρ to look like

ρ = rn (82)

Then (81) yields

(n2 − 1)rn−2 = 0 (83)

13

which has two solutions

n = ±1 (84)

First take n = 1. Also pick

Θ = a1 sin θ + a2 cos θ (85)

Thus

b =
1

r
(a1 sin θ + a2 cos θ) (86)

Next proceed to find a solution for u, which is also required to be separable. Write this as

u = R(r)T (θ) (87)

Requiring as before

d2T

dθ2
= −T (88)

resulting in

∆u = T

[
1

r

d

dr

(
r
dR

dr

)
− R

r2

]
(89)

putting back into (75) it is shown that

T

[
1

r

d

dr

(
r
dR

dr

)
− R

r2

]
=

1

r
(a1 sin θ + a2 cos θ) (90)

Assume

T = λ(a1 sin θ + a2 cos θ) (91)

and

R = rm (92)

Then (90) leads to

λ(m2 − 1)rm−2 = r−1 (93)

since λ and m are constants, m = 1 and λ → ∞. Thus, this value of b wont work. Select
n = 1 and recreate

b = r(a1 sin θ + a2 cos θ) (94)

14

Still requiring

T = λ(a1 sin θ + a2 cos θ) (95)

and

R = rm (96)

it is found that

λ(m2 − 1)rm−2 = r (97)

Which yields

m = 3 λ =
1

8
(98)

Thus the solution to the biharmonic equation is given by

u =
r3

8
(a1 sin θ + a2 cos θ) (99)

The flux, q is given by

q = ∇u · n̂ (100)

If the boundary is a circle of radius a, then on the boundary

x = a cos θ y = a sin θ (101)

The normals are given by

n̂ =

[
d2x

ds2
î+

d2y

ds2
ĵ

]/[(
d2x

ds2

)2

+

(
d2y

ds2

)2
] 1

2

(102)

ds =

((
d2x

dθ2

)2

+

(
d2y

dθ2

)2
) 1

2

dθ (103)

Thus

dθ

ds
=

1

a
(104)

dx

ds
= − sin θ (105)

dy

ds
= cos θ (106)

15

and

d2x

ds2
= −1

a
cos θ (107)

d2y

ds2
= −1

a
sin θ (108)

So

n̂ = −(cos θî+ sin θĵ) (109)

On the boundary

u =
r2

8
(a1r sin θ + a2r cos θ) (110)

or

u =
a2

8
(a1y + a2x) (111)

Thus

q =
∂u

∂x
nx +

∂u

∂y
ny (112)

is

q = −a
8

(a2x+ a1y) (113)

Thus the BEM calculation can be benchmarked by prescribing q on the boundary by (113)
and using (94) for b, and matching the solution with (111).

4.2 Validation of Poisson Solver

To validate the Poisson portion of the solver, the boundary conditions and source term are
given by (113) and (94) respectively. Then the analytical solution can be computed using
(111). Table 1 shows the relative error between the approximated solution and the analytical
solution using the L∞ with N = 100 boundary elements.

In all cases it is observed that the relative error is less than 2 · 10−1 indicating that each
approximation has at least one digits of accuracy. In the case where the source term is
radially symmetric there are two digits of accuracy for the approximation.

Next, convergence of the approximation is examined. For convergence, a1 = a2 = 0.5
is considered. One way to increase accuracy of the solution is to increase the number of
boundary elements and nodes used in the discretization. As these increase, the error should
approach zero. From a theoretical perspective, taking the number of boundary elements to
infinity will produce the exact solution. However, in practice, the computational time and

16

Table 1: Verification of approximation for specific solutions (N = 100)

a1 1.00 0.75 0.50 0.25 0.00
a2 0.00 0.25 0.50 0.75 1.00

Relative L∞ Error .1905 .1211 .0101 .1207 .1907
Relative L2 Error .1900 .1206 .0027 .1190 .1887

roundoff errors make the limiting process impossible. Instead convergence to the analytical
solution will be observed up until some finite number of boundary elements at which time
either the linear system will be too large to solve, or round off errors will begin quantitatively
detracting for the approximation. In this experiment, the number of boundary elements is
ranged from N = 4 to N = 200 with the relative L∞ and relative L2 error computed for
each N .

Figure 1: Relative L∞ error with a1 = a2 = 0.5

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Boundary Elements

R
el

at
iv

e
L

 E
rro

r

Figures 1 and 2 show that the error quadratically decreases until N ≈ 100 at which point
there is no significant additional accuracy gained from the extra resolution. The stagnate
convergence comes from the fact that many of the entries of the linear system approach
machine epsilon as the number of boundary elements is increased. This roundoff error
prevents the additional accuracy in the linear system to contributing to the final result.

Finally, convergence can be improved by increasing the number of quadrature points
when approximating the regular, weakly singular, and strongly singular integrals. Unlike
boundary elements, taking the number of quadrature points to infinity does not provide
convergence to the analytical solution since the approximation will still only be over a finite
number of boundary elements. However, if the number of boundary elements is fixed, using
additional quadrature points may increase accuracy to the approximation.

17

Figure 2: Relative L2 error with a1 = a2 = 0.5

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Boundary Elements

R
el

at
iv

e
L 2 E

rro
r

Table 2: Error against number of quadrature points with a1 = a2 = 0.5 andN = 25

Nquad 3 4 5 6 7 8
Relative L∞ Error .09057 .09009 .08855 .08805 .08721 .08684
Relative L2 Error .08617 .08572 .08420 .08372 .08288 .08253

Since an increase number of quadrature points alone cannot lead to complete convergence
to the analytical solution, plotting error versus the number of quadrature points, Nquad for
a fix N should show the error decreasing but after a finite number of quadrature points
become stagnate. Table 2 shows the relative L∞ and L2 norms for Nquad = 3 to Nquad = 8
with N = 100 fixed. Adding more quadrature points does reduce the error, but not in any
significant way. The effect is even less so when a higher number of boundary elements is
used.

The run time of the algorithm as described is O(N3). The CPU time to approximate
solutions for different values of N were measured and plotted as a log scale graph. The data
points approximately formed a line with slope three, indicating that the algorithm is running
in the predicted amount of time.

4.3 Analytical Solutions to Stokes Equation

An analytical solution to the Stokes equation comes from the Hadamard-Rybczynski Prob-
lem [16]. This problem starts considering a spherical drop with radius a and viscosity µi,
translating in the z-direction with speed U in a fluid with viscosity µ0. The kinematic
conditions of the equation require the velocity normal to the boundary to be continuous.
Furthermore, the no-slip condition requires that the tangential component of the velocity

18

and traction match and be continuous across the boundary as well.
Requiring the above and forcing the drop to be spherical, the only degree of freedom

that remains is the normal component of the traction across the boundary. The additional
requirement that the drop not deform forces the normal of the component of traction to be
matched across the boundary as well.

With no remaining degrees of freedom, Lamb’s general solution can be used to find the
required external velocities of the drop here written in polar coordinates

vr =

(
A1

(a
r

)
− 2B1

(a
r

)3
)
U cos θ (114)

vθ = −
(
A1

2

(a
r

)
+B1

(a
r

)3
)
U sin θ (115)

4.4 Validation of Stokes Solver

Coming by the weekend

5 Project Schedule

• Phase I (present - early November):

– Organize Poisson and Stokes solvers

– Analyze incompatibilities in data structures and libraries

– Devise solution to incompatibilities, recoding as necessary

– Merge solvers into one software

• Phase II (November - December):

– Validate and test steady state solver

– Optimize and fix bugs as necessary

– Run simulations and archive results

• Phase III (December - early February):

– Incorporate DRM code

– Incorporate FMM (optional)

• Phase IV (February-March):

– Validated and test DRM solver

– Optimize and fix bugs as necessary

– Run simulations and archive results

19

– Prepare final report and presentation

Phase I required a significant of code analysis and planning. The solvers for the Stokes
and Poisson equations share the same standard structure and subroutines. However, because
they were written at different times, there were several major incompatibilities between the
two solvers. In general the Stokes solver was found to be coded in a much more robust,
efficient, and modular manner. Thus, the majority of the code for the Poisson solver was
rewritten while the code for solving Stokes equations suffered on cosmetic changes.

The most obvious difference is the use of data structures. Fortran 90 is an object orien-
tated language that allows for defined types. These types can be used to combine several
different data structures into one meaningful structure. The Stokes solver implemented some
data structures. However, for all practical purposes, the Poisson solver was devoid of any
such structures, handling all variables in isolation.

A second problem was the lack of cohesiveness between the subroutines between the two
solvers. Both solvers are based on BEM, use cubic spline interpolation, Gaussian integration,
radial integration methods, and compute geometric data such as normals and tangents to
the boundary. Each program had an independent version of these and many other routines
that differed slightly between one another in no real meaningful way.

Perhaps the largest difference between the Poisson solver and Stokes solver was the Stokes
solver’s ability so solve multiparticle problems while the Poisson solver was limited to only
one particle. Both for compatibility and scientific need, the Poisson solver had to be updated
to work on multiparticle problems.

To address the data structure issue, a new data type was created to store data that
defined the problem. The structure was designed around this type of data that was absolutely
essential to the operation of the solvers. Although the data structure is large, it was designed
to be as minimum as possible. It was also designed in such a way that would require minimum
changes to Stokes solver. The problem type data structure contains an allocatable number
of particle types. Each particle type contains and allocatable number of (x, y) coordinates
of its boundary nodes, heat potential u, heat flux q, and velocity v. Since the entire data
structure is dynamic, the data structure and software can be used simulate a variable number
of particles each with a variable resolution.

Merging subroutines was performed in one of two ways. If there were minimal differ-
ences between the subroutines, they were unified and the necessary interface changes were
made. Interface changes were kept to a minimum to avoid large changes in the higher level
routines. For those subroutines that performed the same task, but operated significantly
differently, such as the radial integration method for Poisson and Stokes, the subroutines
were kept separate but overloaded. Care was given to make sure overloaded functions still
behaved similarly internally. This was an issue with the radial integration method where,
although both the Poisson and Stokes solvers used the method, each method used a different
quadrature and number of nodes.

Finally, the high level Poisson code was rewritten to handle multiparticle problems.
Adding the multiparticle capability required additional loops. Also, the original nesting
of the loops was reversed. Switching the looping order allowed for on-the-fly computing

20

where specific geometry could be computed exactly once and discarded immediately after
use. The result is decreased memory usage with no computation penalty.

Merging of the codes was done by slowly adding components to a new code base, dead
code could easily be detected and removed. This also forced the code to be modular. When
a section code to be added was found to be a copy of a subroutine, the section was discarded
and replaced with the appropriate function call.

6 Deliverables

This project will yield a highly modular and optimized source code and software for solving
transient thermal Stokes flow problems with source terms in R2 using DRM. There is also
the possibility of having an incorporated FMM solver in the final code base. Great care will
be made to ensure the code is well organized and easily modifiable for future projects.

A report and presentation that cover the algorithm will be presented to the class. Fur-
thermore, simulations of physical phenomena will be recorded and written in a paper to
be submitted for publication. Those results will be presented in Berlin, Germany at 12th

International Workshop on Modeling of Mantle Convection and Lithospheric Dynamics in
Summer 2011.

References

[1] R. M. Canup and E. Asphaug, “Origin of the Moon in a giant impact near the end of
the Earths formation”, Nature, Volume 412, 2001, Pages 708-712

[2] D. Martin and R. Nokes. “A Fluid-Dynamical Study of Crystal Settling in Convecting
Magmas”, Journal of Petrology, Volume 30, Issue 6, 1989, Pages 1471-1500

[3] V. Solomatov and D. Stevenson, “Suspension in Convective Layers and Style of Dif-
ferentiation of a Terrestrial Magma Ocean”, Journal of Geophysical Research, Volume
98, Issue E3, 1993, Pages 5375-5390

[4] V. Solomatov and D. Stevenson, “Nonfractional Crystallization of a Terrestrial Magma
Ocean”, Journal of Geophysical Research, Volume 98, Issue E3, 1993, Pages 5391-5406

[5] V. Solomatov and D. Stevenson, “Kinetics of Crystal Growth in Terrestrial Magma
Ocean”, Journal of Geophysical Research, Volume 98, Issue E3, 1993, Pages 5407-5418

[6] V. Solomatov, “Magma Oceans and Primordial Mantle Differentiation”, Treatise on
Geophysics, Volume 9, 2007, Pages 91-120

[7] L. T. Elkins-Tanton, E. M. Parmentier, and P. C. Hess, “Magma ocean fractional
crystallization and cumulate overturn in terrestrial planets: Implications for Mars”,
Meteoritics & Planetary Science, Volume 38, Issue 12, 2003, Pages 1753-1771

21

[8] D. Nardini and C. A. Brebbia, “A new approach to free vibration analysis using bound-
ary elements”, Boundary Element Methods in Engineering, Volume 7, Issue 3, 1983,
Pages157-162

[9] D. Nardini and C. A. Brebbia, “Transient dynamic analysis by the boundary element
method”, Boundary Elements, 1983, Pages 719-730

[10] D. Nardini and C. A. Brebbia, “Boundary integral formulation of mass matrices for
dunamic analysis”, Topics in Boundary Element Research, Volume 2: Time-Dependent
and Vibration Problems, 1985, Pages 191-208

[11] L. Gaul, M. Kögl, M. Wagner, Boundary Element Methods for Engineers and Scien-
tists, Springer, Berlin, 2003

[12] C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow,
Cambridge University Text, New York, NY, 1992

[13] Xiao-Wei Gao, “Numerical evaluation of two-dimensional singular boundary integrals-
Theory and Fortran code”, Journal of Computational and Applied Mathematics, Vol-
ume 188, Issue 1, 2006, Pages 44-64

[14] Y. J. Liu and N. Nishimura, “The fast multipole boundary element method for poten-
tial problems: A tutorial”, Engineering Analysis with Boundary Elements, Volume 30,
Issue 5, May 2006, Pages 371-381

[15] G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann,
1992

[16] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications,
Dover, 2005

22

