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ABSTRACT 
 
Deeper understanding of biological processes requires a systems perspective, integrating knowledge 
of both component elements (genes, proteins, metabolites, etc.), and their broader interactions. 
Graph theory provides a rich language for describing and analyzing these sorts of complex, 
networked systems.  But, reliable inference of biological network structure from noisy, high-
dimensional (and still fundamentally limited) data remains a challenging problem.  A promising 
avenue involves integrating nonlinear dimensionality reduction (DR) approaches with network 
analysis and reconstruction algorithms.  Beyond basic dimensionality reduction, these approaches can 
potentially accentuate latent structure and organize data in ways that allow integration of diverse 
information sources, including prior knowledge.  Software tools for performing elements of this 
analysis exist, but they are distributed over many packages, which often do not interact easily 
together. 
 
The objective of this project was to build a basic, integrated data analysis pipeline for deriving gene 
association network models from gene expression data.  Dimensionality reduction techniques were 
applied to map the input data in ways that aim to capture intrinsic structure.  After this step, standard 
network reconstruction and analysis techniques were applied.  Algorithm implementations were 
individually validated using well-characterized data sets and established software.  Following this 
foundational work, the impact of dimensionality reduction on the overall network reconstruction was 
systematically assessed using additional validation and testing data sets.  This report details work in 
the areas described above, and additionally presents results comparing the developed nonlinear 
dimensionality reduction-based approach with a leading network reconstruction algorithm.  In 
particular, recovery of the first-neighbor network of the well-studied oncogene MYC was analyzed 
and compared with results obtained over the same data set using the ARACNE algorithm [1].  The 
developed approach, based on the Laplacian Eigenmaps technique, yielded a local network around 
MYC with substantial enrichment for biochemically validated MYC direct targets (23 of 61 matches 
to a research database). This performance did lag that of the ARACNE method, which yielded 24 of 
56 matches, as well as candidate associations that were subsequently biochemically validated. Still, the 
results can be considered somewhat promising, in view of the avenues for improving the relatively 
basic approach. The report concludes with discussion of ongoing work in these areas. 
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INTRODUCTION 
 
 
 

 
 
Figure 1: The basic structure of a gene expression data set.  Each column of the data matrix is derived from 
particular biological sample (a specific experiment, patient sample, etc.).  Each row captures gene expression 
values across the samples, and can be seen as a point in D-dimensional space.  The matrix dimensions indicated 
are for the main experimental data set considered in this study. 
 
The starting point for this analysis is an N x D gene expression data matrix, which we will denote by 
X. The entry (X)ij in X records the expression (relative abundance) of the ith gene (mRNA product) in 
the jth sample. In what follows, we will focus on gene expression profiles across samples, which are 
naturally organized along the rows of X. The expression profile of the ith gene will be designated by 
xi, and will be regarded as a point in a D-dimensional input data space.  From this input data, 
network reconstruction will proceed in three broad steps: 
 

(1) Starting from the N x D gene expression data matrix X, derive an N x d matrix Y, (d < D) 
using Laplacian Eigenmaps (or another dimensionality reduction technique). 

(2) Construct an N x N matrix W* capturing pairwise Euclidean distances between row vectors 
of Y (which can be regarded as ‘reduced gene profiles’). 

(3) Apply a (smallest) distance-based threshold to the elements of W* to obtain a network 
(adjacency matrix) representation. 

 
 
Laplacian Eigenmaps Background 
 
The motivation for integrating nonlinear dimensionality reduction with network reconstruction and 
analysis derives from the thought that gene expression data sets might be relatively constrained to 
lower dimensional manifolds within the high-dimensional spaces in which they reside.  This notion is 
not implausible given the highly ordered structure of gene regulatory networks and their associated 
processes.  Laplacian Eigenmaps (LE) aims to map input space points to a lower dimensional space 
in such a way that local relationships are preserved (2).  These mapped space distances might 
approximate distances along a putative data manifold in the original space.  Some initial studies have 
suggested that their application might support more biologically specific clustering of gene 
expression profiles (3).  These results motivate the more thorough consideration of manifold 
learning-based nonlinear dimensionality reduction in support of detailed network structure recovery. 
 

X (N x D) 

N = 12,600 
D = 336  
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Operationally, Laplacian Eigenmaps transforms an input (N x D) data matrix (data element vectors 
organized along rows) to an output (N x d) matrix (d < D).  There are three steps, though the first 
two can be combined computationally.  
  

(1) Model Data Point Relationships: Build a graph G with nodes i and j connected if xi is one of 
the k nearest neighbors of xj or vice versa. (Euclidean distances are used, though alternatives 
are possible.) k is a local structure resolution parameter. 

(2) Construct Weight Matrix: Form a diffusion weight matrix W, with entry                                         
(W)ij = exp{ - || xi – xj ||2/σ } if i and j are connected; 0 otherwise. 

(3) Solve the Minimization Problem: 
 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),  

 
 
In the above formulation, D is a diagonal ‘connectivity matrix’, whose entries record the sum of the 
edge weights for each data point-derived node (as recorded along the rows or columns of W).          
L = D – W is the Laplacian matrix. The key idea with the minimization is to force points that are close together 
in the original data space (e.g., that have larger associated edge weights) to lie close together in the mapped data space, 
while more loosely related points can be relatively pushed apart, drawing out (potentially complex, nonlinear) structure 
in the data.  The specified constraint serves to scale the output and eliminate trivial solutions. Some 
basic results from linear algebra show that the optimal mapping can be obtained by solving the 
generalized eigenvalue problem Lx = λDx under the above constraint.  In particular, the coordinates 
of the mapped data point yi in the space of reduced dimension d can be extracted from the ith 
coordinates of the d eigenvectors with the smallest nonzero eigenvalues (2). 
 
The Laplacian Eigenmaps method has two major strengths.  First, the data-organizing map can be 
obtained by solving a standard and reasonably tractable computational problem.  In addition, the 
approach comes with deeper theoretical assurances of optimal manifold recovery, in the limit of 
sufficient data.  In particular, the graph-based Laplacian matrix L can be seen as a discrete analogue 
of the Laplacian-Beltrami operator on the underlying manifold. The eigenmaps of the latter operator 
can be shown to provide an optimal embedding of the manifold into a space of reduced, intrinsic 
dimension.  Since the graph-based Laplacian converges to the manifold-based Laplace-Beltrami 
operator, its associated data mappings progressively inherit the corresponding manifold recovery 
guarantees (2).   
 
 
Derivation of Network Structure 
 
Given an N x N matrix W* capturing pairwise Euclidean distances between mapped gene expression 
profiles in the reduced d-dimensional space, and a target (fractional) value α, a distance threshold for 
deriving a network adjacency matrix from W* will be obtained by applying the following steps. 

• Rank pairwise distances between the derived points in the mapped data space. 
• Select the distance threshold that excludes the upper (1 - α) fraction of observed distance 

values. 
While this basic approach is reasonably motivated, and can be used to advance development and 
testing of the larger analysis pipeline, more sophisticated approaches for network derivation are 
possible.  In particular, a more statistically motivated approach involving edge identification based on 
estimated false discovery rates and associated q-values (analogous in this context to p-values) can 
perhaps be developed and applied in future work (13).  This will require better understanding of the 
probability model underlying the gene expression data. 
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Additional Details 
 
Eigenvalue problem formulation: Note that we have: 
Lx = λDx    (D-1/2 L D-1/2 )u = λu, where u = D-1/2x, (D-1/2 L D-1/2) = Lsym 
As such, we can always obtain a solution to the described generalized eigenvalue problem by solving 
a standard eigenvalue problem.  This can be useful with numerical packages (e.g., SciPy) that only 
support the latter. 
 
Laplacian Eigenmaps parameter selection: Three parameters must be selected in the course of constructing 
the data map using Laplacian Eigenmaps – the target reduced dimension d, the neighborhood 
resolution parameter NN, and the ‘kernel width’ parameter σ.  While in some instances, it may be 
possible to select the target dimension based on knowledge of the biological process under 
investigation, for this project a more data-driven approach was applied. In particular, the maximum 
of two estimates was taken to be a coarse estimate of the intrinsic dimensionality (with the maximum 
taken to err on the side of preserving potentially valuable information).  The first was the number of 
principal components required to capture 95% of the variance in the data.  The second was an 
established maximum likelihood estimate of the intrinsic dimensionality (8).   
 
Operationally, the computing the maximum likelihood estimate (MLE) entails averaging many local 
estimates of the intrinsic dimensionality to obtain an overall estimate.  In particular, let Tk(x) denote 
the Euclidean distance from a fixed point x to its kth nearest neighbor in the data set of size N.  For a 
particular k, we construct the following local (with respect to point xi) estimate of the intrinsic 
dimensionality d: 
 

     dk(xi ) =
1

k −1
log Tk (xi )

Tj (xi )j=1
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The average of these local estimates over the N points of the data set gives a k-neighborhood overall 
estimate dk .  A final estimate d̂  is obtained by averaging the preceding k-neighborhood estimates 
over several values of k (e.g., k = 6, … 12, per example of MATLAB DR Toolbox). 
 
The motivation for this approach is presented in detail in (8).  In essence, we are assuming that our 
D-dimensional data is obtained by a smooth mapping from a space of lower dimension d (perhaps 
with modest distortion due to noise, etc.).  In this scheme, our specific data set can be seen ultimately 
as sampled from some unknown density f on d .  The idea is now to (1) fix a point x and assume 
that f(x) is approximately constant over a small sphere Sx(R) of radius R about x and (2) to regard the 
count of neighbors falling within the described neighborhood as a Poisson process. Let n(t, x) ,
(0 ≤ t ≤ R) , indicate the inhomogeneous process which counts observations falling within a distance t 
of x over N  ‘trials’ corresponding to the number of points in the data set.  Applying the Poisson 
approximation for this binomial process, we can express the rate λ(t) of the process n(t) (given x) as 
λ(t) = f (x)V (d)(d)t d−1 , where V(d) is the volume of the unit sphere in d .  Setting θ = log f (x) , 
expressing the log-likelihood L(d,θ ) , and solving in the standard way gives the following MLE for d: 
 

d̂R (x) =
1

N(R, x)
log R

Tj (x)j=1

N (R,x )
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The initially presented local estimate is then derived (with respect to point xi) from the above one by 
fixing the number of neighbors k, rather than the radius of the sphere R. 



	
   5	
  

 
 
 
 
Past work has yielded good results with neighborhood resolution parameter settings in the range of    
NN = 8 to NN = 20, which are along the lines of the values applied to example data sets in the 
original Laplacian Eigenmaps paper (2). For the simpler synthetic data sets used in algorithm 
validation, values in this range were applied, while fixing the kernel width parameter at one.  With the 
larger experimental data set used for the main integrated system testing, a more heuristic approach 
was taken. The idea was to sample a grid of reasonable settings for the neighborhood resolution and 
kernel bandwidth parameters.  It is known that gene expression data sets possess intrinsic cluster 
structure deriving from the correlated expression of co-regulated genes.  The idea was then to select 
parameters that maximized cluster structure in the mapped data spaces, which eigenmap techniques 
should potentially enhance. Clustering was done by an implementation of the k-means algorithm. 
Cluster structure was then assessed using the silhouette coefficient, a frequently applied measure of 
intra-cluster cohesion and inter-cluster separation.  Further details are provided in the results section. 
 
 
 
 
SOFTWARE IMPLEMENTATION 
 
The main software development accomplishments for this project include: 

• Implementation and focused validation of a C++ implementation of Laplacian Eigenmaps. 
• Implementation of basic (distance matrix threshold-based) network reconstruction. 
• Implementation of code to analyze network models and validated their components against 

databases of experimentally validated biological knowledge. 
 
The key challenges faced were (1) selecting and integrating appropriate public domain software to 
efficiently solve structured (sparse, symmetric) eigenvalue problems and (2) organizing data structures 
and operations to conserve memory and support scalability. 
 
 
Linear Algebra Libraries 
 
A longer-term objective is to integrate elements of code developed for this project into the National 
Cancer Institute’s Cancer Bioinformatics Grid, which aims to provide an open-source platform for 
computational cancer biology.  This motivated the selection of public domain libraries for all 
software development undertaken in this project.  The C++ standard libraries, together with widely 
used Boost C++ packages have been more than adequate for basic program development.  A 
somewhat more challenging choice came with linear algebra libraries.  There seems to be a division in 
which most higher-level numerical code development and prototyping is done using environments 
like MATLAB or Python/SciPy, while code optimized for speed and resource management utilizes 
basic Fortran libraries like BLAS and LAPACK.  As a result, there appear to be relatively fewer well-
developed, public domain C/C++ libraries with broad numerical support.  The Intel Math Kernel 
Library provides much of the latter, but remains a commercial product.  Several C++ libraries for 
linear algebra were identified and tested, but all were found to be limited in various ways.  Some, like 
TNT and LAPACK++, did not seem to be very widely used or actively maintained.  Others like 
uBLAS, Eigen and Armadillo++ were more current, and even offered convenient high-level 
programming interfaces, but lacked adequate support for sparse matrices and associated eigenvalue 
problems. 
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Emerging technology platforms are certain to generate much larger data sets than the ones under 
immediate consideration in this project.  Since scalability to accommodate these data sets is a major 
objective of this work, it seemed important to build upon tools that exploited sparsity and structure 
in basic underlying numerical problems.  To achieve this, the ARPACK (Fortran 77) package for 
large-scale sparse eigenvalue problems was ultimately applied.  ARPACK remains the leading 
software for these sorts of problems, and is often utilized at the base of commercial packages like 
MATLAB.  For symmetric matrices, ARPACK applies a variant of the Lanczos algorithm, and is 
highly stable and resource efficient.  In particular, for sufficiently sparse matrices, the applied 
algorithm is linear over each iteration and requires O(kn) memory (where k is the number of desired 
eigenvalues and n is the order of the problem matrix) (14). 
 
Interface Development and Resource Management 
 
Although ARPACK provided precisely the functionality required to implement Laplacian Eigenmaps 
efficiently, its integration with C++ code was somewhat challenging.  Some helpful guidance was 
offered by some publicly available code (15).  Still, the latter only provided a relatively thin, low-level 
wrapper to basic ARPACK routines, with a host of detailed and sometimes obscure parameters 
exposed.  To provide a more convenient programming interface, a higher-level, object-oriented 
wrapper was implemented.  As the detailed implementation requirements for Laplacian Eigenmaps 
were better understood, this grew to include basic linear algebra operations over resource-efficient, 
compressed matrix representations.  A particularly attractive feature of ARPACK made all of this 
possible.  In particular, most ARPACK eigensolver routines do not require explicit passage of 
matrices and other basic problem elements.  Instead, a so-called ‘reverse communication interface’ is 
utilized, where routines simply require a function providing the action of the matrix on an arbitrary 
vector.  Matrices can be stored in any suitable format (or not stored at all), as long as the matrix 
vector product is properly provided.   
 
For this project, two compact sparse matrix representations were developed.  For sparse matrices 
with dynamically varying content, an adjacency list-based representation was provided.  This is used 
in the early steps of the Laplacian Eigenmaps algorithm, when data point neighborhood-based 
weight matrices are constructed.   For fixed-content sparse matrices, an even more compact array-
based representation is implemented.  This utilizes a relatively standard compressed row format, 
where one array records all non-zero elements in row-wise sequence, a second array indicates their 
column indices, and finally a third array records the index (in the above arrays) of the first non-zero 
element in a given matrix row.  Matrix vector products over both representations are provided.  But, 
the array-based format is ultimately used to store the Laplacian matrix in the Laplacian Eigenmaps 
implementation.  For modest problem sizes, there is likely little difference. But the array-based 
format is a bit more compact, not requiring storage for pointers, as in the linked-list-based adjacency 
list representation.  For larger problem sizes, the repeatedly applied matrix vector product (computed 
during eigendecomposition) is likely to be (observably) faster with the array-based representation, 
since more of the contiguously stored matrix entries will fit in any given cache level, reducing 
memory traffic. 
 
In addition to the described use of resource-efficient data structures, care was also taken in the 
implementation to perform operations ‘in place’ when possible, without gratuitously allocating new 
memory for intermediate operations if this could be avoided.  Finally, to facilitate future algorithm 
implementations, some convenient refinements to the programming interface were added.  For 
example, C++’s operator overloading features were applied to allow use of natural syntax for basic 
(compressed) matrix and matrix vector operations.  Accordingly, one can naturally set elements of a 
matrix A using A(i,j), or write A*x to multiply by a vector.  C++ templates and general function 
overloading ensure that the correct operation is transparently performed over a range of suitable 
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types and data structures.  Underneath, low-level, pointer-based data structures are accessed and 
manipulated for efficiency, with destructor methods carefully implemented to de-allocate memory. 
To provide a sense for the interface, a developed wrapper method for solving a sparse, symmetric 
eigenvalue problem is contrasted below with the original C-level interface to the ARPACK (Fortran) 
routine: 
 
template<typename T>  
void sparseSymEigSolve(const CompressedMatrix<T>& M,  
    const Matrix<T>& evecs, const NumVector<T>& evals); 
 
extern "C" void dsaupd_(int *ido, char *bmat, int *n, char 
*which, int *nev, double *tol, double *resid, int *ncv, double 
*v, int *ldv, int *iparam, int *ipntr, double *workd, double 
*workl, int *lworkl, int *info); 
 
Implementation Validation 
 
The developed Laplacian Eigenmaps implementation was validated by thorough comparison with 
established MATLAB methods.  First, the sparse, symmetric eigensolver method presented above 
was compared with the MATLAB method ‘eigs’, which also applies the indicated ARPACK routine.  
Over a variety of randomly generated test matrices, results aligned up to occasional (global) 
differences in sign in computed eigenvectors.  After this, the overall Laplacian Eigenmaps 
implementation was tested against an implementation provided by the MATLAB-based 
Dimensionality Reduction Toolbox, which has been extensively used by our research group and 
others (11).  The toolbox provides code for generating synthetic data sets containing points sampled 
from relatively simple nonlinear manifolds in three-dimensional space (‘Swiss Roll’, ‘Broken Swiss 
Roll’, ‘Twinpeaks’, and ‘Helix’).  These are often applied in the research literature for initial 
assessment of nonlinear dimensionality reduction techniques.  Data sets with up to 10000 points 
were generated in each case, and mappings produced by the developed Laplacian Eigenmaps 
implementation matched those produced by the MATLAB one up to 4 to 5 significant digits.  The 
relatively small variation might derive from differences between detailed eigensolver parameters 
applied by the MATLAB eigs method and the corresponding developed method. These may be 
further investigated, though the results seem to adequately validate the developed implementation.  
Conveniently, the same general approach can be used to validate future implementations of related 
dimensionality reduction techniques (e.g., Diffusion Maps), which are also provided by the MATLAB 
DR Toolbox.   
 
A note on performance – although the initial testing focused on correctness, it was noted that the 
solution of the basic eigenvalue problem was comparable with the corresponding MATLAB eigs 
method.  The overall Laplacian Eigenmaps implementation was slower – most notably with larger 
data sets (> 4000 points).  On investigation, this seems to derive largely from the MATLAB 
implementation’s use of a heuristic, approximate nearest neighbor search method (as compared to 
the brute-force direct search currently implemented).  Integration of comparable approaches in 
extensions of the project could readily close this performance gap, though a current priority remains 
understanding the nature and fidelity of network structure recovery. 
 
In addition to the Laplacian Eigenmaps implementation, several other software components were 
developed for this project.  These include elements of the parameter tuning approach, such as the 
maximum likelihood dimensionality estimator, and the k-means clustering algorithm.  In addition, 
codes for deriving the network model (by distance ranking and thresholding) were implemented in 
C++, together with a set of Python scripts for validation of gene expression network models against 
a biological (gene) database. 
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RESULTS 
 
Overview 
 
After careful validation of the Laplacian Eigenmaps (LE) implementation, the main work of the 
project involved detailed consideration of network reconstructions derived using LE-processed data.  
This integrated system testing proceeded in two stages. First, reconstruction of networks derived 
from simulation of relatively simple artificial gene networks was assessed.  The results here can be 
scored objectively according to recovery of model-prescribed edges. Second, results over a well-
studied experimental gene expression data set were analyzed.  Here, the focus was on resolution of a 
biologically plausible first-neighbor network module around the well-known oncogene MYC. Since 
many genes belonging to the latter group are known through extensive experimental work, the results 
can once again be scored with relative objectivity (for what is still a real-world experimental data set).  
For perspective, the results obtained were compared with those published for the leading ARACNE 
network reconstruction algorithm (1,9).  In addition to the main comparison with this leading 
network reconstruction technique, some additional comparisons were made with respect to more 
basic network reconstructions (derived from the same MYC-focused data set). These included one 
obtained using a ‘vanilla version’ of the reconstruction workflow (which forgoes dimensionality 
reduction), as well as one applying the standard principal component analysis (PCA) technique for 
linear dimensionality reduction.  Taken together, the results provide an initial assessment of where 
nonlinear dimensionality reduction approaches may have particular value in accurately recovering 
complex biological network structures. 
 
 
Synthetic Network Reconstruction 
 
Ordinary differential equation (ODE)-based models have been used to simulate the kinetics of 
relatively simple genetic networks structured by a specified topology, i.e. – organization of activating 
and inhibiting interactions. Synthetic data is often generated by simulating a series of ‘null-mutant’ 
experiments, where individual genes are deleted one at a time, and steady-state data is gathered.  This 
is intended to mimic a ‘gene knock-out’ experiment, in which genetic techniques are used to 
inactivate a particular gene, and its function is imputed through analysis of the resulting 
perturbations.  For this work, a set of models provided by a leading research group (16) was used as a 
starting point for generating synthetic data using the COPASI biochemical network simulator (17).  
In particular, 4 data sets were generated using the above-described null-mutant simulation approach.  
Each modeled a 100 gene by 200 interaction network.  The specific input data to the analysis 
workflow was a 100 x 101 expression data matrix.  Gene expression vectors are organized along 
rows, while columns capture simulated steady-state expression values from the original (unperturbed) 
model, as well as from successive inactivation of each of the 100 genes.  A representative network 
topology is presented on the following page. 
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Figure 2: A representative simulated network topology.  Positive or activating interactions are in blue, while 
negative or inhibitory interactions are in red.  A roughly scale-free topology is evident, with most nodes 
participating in only a few interactions, while a few hubs drive many genes. 
 
The objective with the simulated data was to recover the positive interactions.  The average accuracy 
values (true positives over all positives) over 4 data sets are indicated in the table below. 
 

 
 
While the results are far from spectacular, with some consideration, they are not surprising.  The 
network reconstruction approach applied is relatively direct, being based on a global distance 
threshold.  Such methods will invariably apply many extra edges in simple prescribed networks such 
as the ones considered. This is because associations among co-regulated genes (which are often 
activated in near lockstep) will appear stronger (e.g, more correlated) than the ones with their 
regulators.  Indeed, consideration of the Laplacian Eigenmaps-derived results, in particular, shows 
many edges added between tightly co-regulated genes.  Although this clearly diminishes the global 
accuracy, it is still a broad validation of the data-organizing feature of the eigenmap technique, as 
closely related (e.g., co-activated) gene expression profiles are ‘squeezed together’ in the mapped 
space.  More successful methods for global network reconstruction invariably apply more complex 
strategies.  One approach is to admit a relatively large pool of candidate edges, and then apply 
mathematical criteria and/or prior knowledge to prune edges less likely to derive from direct 
interactions.  Other techniques aim to fit the parameters of mechanistic (ODE) models thought to 
underlie the data, though this is currently tractable only with the simplest gene networks, typically in 
microbial organisms.  
 
Recovery of a MYC Oncogene First Neighbor Network 
 
The preceding discussion motivates consideration of a related but somewhat different problem: local 
network structure recovery.  With larger, more complex gene networks (such as those operating in 
mammalian cells), accurate recovery of global network structure is somewhat unrealistic, given the 
relatively limited data available.  In this setting, it is still quite valuable to consider recovery of 
interactions around a known network ‘hub’, or gene participating in many regulatory interactions.  
For this study, we considered the well-known oncogene MYC.  MYC is the most frequently mutated 

!  Aiming to assess recovery of positive 
interactions in 100 gene, 200 interaction 
network.  Input data is 100 x 101 expression 
data matrix derived from (ODE) simulation. 

!  Average accuracy TP/(TP+FP) over 4 data sets. 

Original Data PCA-Mapped LE-Mapped 

0.46 0.47 0.44 
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or otherwise deregulated gene in human cancers, largely due to its role as a ‘regulator of regulators’.  
Hundreds of direct MYC targets have been identified, though far less is known about the much 
smaller number of interactions present in any given cellular context.  Basic goals for computational 
techniques in this setting are to (1) suggest which targets are engaged with MYC in a given cell type 
or disease context and (2) to prioritize the most promising targets for more labor-intensive laboratory 
investigation.  Relative to the simulated or comparably simple microbial gene networks, there are 
many additional challenges, largely deriving from the far more complex interaction patterns, and 
much larger, noisier data sets.  At the same time, there is a relatively lower accuracy threshold relative 
to still limited validation data.  Three to four-fold enrichment around a known hub gene (with 
respect to experimentally validated targets) can be a solid, useful computational result – at least a 
starting point for more detailed gene selection and investigation. 
 
To assess the value of the nonlinear dimensionality reduction-based approach, we applied the 
described workflow to recover a local, first-neighbor network around the MYC oncogene.  Results 
are derived from a 12,600 x 336 expression data set described in publications detailing the ARACNE 
network reconstruction method (1,9).  They are additionally checked against an established research 
database of experimentally validated MYC direct targets described in the same publications, and 
accessible at http://www.myccancergene.org/.  For a point of comparison, we begin by summarizing 
the published results derived from the ARACNE method.  The latter recovers 56 direct targets 
around MYC, 24 of which are matched in the described target database (validated fraction = 42.9%). 
 

   
 
 
Figure 3: 56 member MYC direct-target network recovered by ARACNE algorithm, reproduced from (1). 24 
matched an experimental database, and 5 others were biochemically validated. (Combined set is shown in red.) 
 
 
While the fraction of validated genes may not seem very high, it represents a substantial enrichment 
over the approximately 10% fraction expected by chance.  This is substantial in this challenging 
setting for a purely computational method.  The results inspire some confidence that a biologically 
meaningful interaction module has been recovered.  This sense was further strengthened by the 
biochemical validation of 5 novel candidates selected from the identified set of 56 direct targets (1). 
 

a

b

Figure 4 The MYC subnetwork. (a) A MYC-specific subnetwork was obtained by including all the genes that have P o 10!7 based on their pairwise mutual
information with MYC. The faster bin-counting estimator was used with an error tolerance e ¼ 0.15. The MYC subnetwork includes 56 genes directly
connected to MYC (first neighbors; represented by larger circles) and 2,007 genes connected through an intermediate (second neighbors). For representation
purposes, only the first 500 genes are shown, including all 56 first neighbors and the 444 most statistically significant second neighbors. Red or pink nodes
represent first neighbor target genes for which ChIP data is available or not available, respectively; yellow and light yellow nodes represent second neighbor
target genes for which ChIP data is available or not available, respectively; MYC is shown in green; white nodes represent genes for which no MYC-related
information is available. The complete list of genes, including gene symbol, Affymetrix ID and LocusLink ID, is given in Supplementary Table 4 online.
(b) The first neighbors of the MYC subnetwork. The size of each circle is proportional to the number of the gene interactions. For hubs with more than
100 interactions, the exact number of first neighbors is shown beside the gene symbol.
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A comparable MYC direct target network was derived using the Laplacian Eigenmaps-based 
workflow described in this report.  This network produced 61 direct MYC interactions, of which 23 
matched the experimental database, yielding a validated fraction of 37.7%.  While this is less than the 
42.9% fraction derived using the ARACNE method, it still represents a substantial enrichment 
suggestive of a biologically meaningful result.  In addition, the extracted network was obtained by a 
relatively simple thresholding to construct edges corresponding to the smallest 1% of pairwise 
distances (between gene expression vectors in the mapped data space).  The leading ARACNE 
method also applies a thresholding strategy, but it (1) uses a somewhat more sophisticated mutual 
information-based interaction measure and (2) prunes edges using the data processing inequality, an 
information theoretic criterion (1,9).  It seems plausible that integration of alternative distance 
measures and edge-filtering strategies could improve the results obtained. 
 
It is additionally noteworthy that there was relatively little overlap between the first neighbor 
networks derived using the ARACNE method and the LE-based method – just 5 genes overall, and 
3 genes among the group matching the target database.  This does not discredit the LE-based 
method, as the ARACNE developers note that their algorithm does not aim to recover all possible 
MYC interactions, but rather, a set substantially enriched for direct targets (1).  As such, the LE-
based method, with its still relatively strong enrichment for validated genes, could be drawing 
together new and relatively independent biological information.  Further work, both computational, 
and ultimately experimental, is clearly needed to confirm this. 
 
With this summary of the results, we now present some additional details relating to the derivation of 
the described LE-based network model.  The first step in the process was estimating the intrinsic 
dimensionality of the explicitly 336-dimensional data set.  While 14 principal components were 
sufficient to capture 95% of the data variance, a maximum likelihood estimate (8) suggested a target 
dimensionality of 28.  To err on the side of preserving potentially essential information, this larger 
value was selected and fixed.  The next step was to select the neighborhood resolution (NN) and 
kernel bandwidth (σ) parameters.  Based on past experience with comparable expression data sets, a 
small candidate parameter grid was constructed, with NN = 8, 12, 16, 20 and σ = ½, 1.  Laplacian 
Eigenmaps was run with each of the 8 parameter combinations.  K-means clustering was then run 
with the mapped data, with the aim of selecting parameters yielding the best cluster structure.  In 
each case, the cluster number was set to 15 and 30, reflecting approximate upper and lower bounds 
for the expected number of clusters (once again, reflecting past experience with gene expression data 
sets).  Cluster structure was assessed using the maximum value of the average silhouette coefficient 
measure over 10 runs of the k-means algorithm.  The latter metric ranges between -1 and 1, with 
values closer to 1 indicating more cohesive and well-separated clusters.  The associated cluster quality 
measures varied over a relatively small range (0.37 to 0.44).  The maximum value was obtained with 
the parameter selection NN = 16, σ = ½, and this value was selected to generate the presented 
results.  In particular, a pairwise distance matrix was constructed using the eigenmap data associated 
with the above parameter selection.  A network adjacency matrix was then derived by selecting the 
smallest 1% of observed pairwise distances.  From this larger network, the described 61-member 
direct target network for MYC was extracted. 
 
The 1% pairwise-distance threshold was selected to approximate a relatively stringent p-value of 0.01, 
and also to obtain a first neighbor network around MYC of approximately the same size the one 
derived using the ARACNE method. An exact p-value was not determined, due to the absence of a 
reasonable model for the process generating the expression data.  For comparison, it is worth 
considering the size and quality (database validated fraction) of MYC first neighbor networks derived 
from alternative (reasonably stringent) distance thresholds.  This information is presented in the 
figure below. As can be noted, the quality of the first neighbor network gradually declines as the 
distance threshold is increased. 
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Figure 4: Size and direct target database-validated fractions for MYC first neighbor networks as a function of 
distance threshold. 
 
Beyond these main results, a few additional comparisons were made.  In particular, distance 
thresholded networks were derived using the original expression data and PCA-reduced data (top 14 
principal components, capturing 95% of the total data variance).  These approaches did not yield 
strong results.  In particular, the following table captures the distance thresholds required to recover 
just a few (<5) edges around the MYC gene with the original and PCA-mapped data: 
 

 
 
Unreasonably high thresholds are clearly required to recover any structure around a major network 
hub.  By comparison, the Laplacian Eigenmaps procedure appears to produce more meaningful 
distances over local network neighborhoods.  Ongoing work to further validate and perhaps improve 
these results is detailed in the final section of the report. 
 

!  Analogous network derivation strategy with 
original data and PCA-mapped data did not yield 
strong results.  Percentage thresholds required to 
recover network edges around MYC gene: 

!  Unreasonably high thresholds are required in 
original and PCA-mapped spaces. 

!  LE appears to produce meaningful distances over 
local network neighborhoods. 

LE-Mapped PCA-Mapped Original Data 

1% > 40% > 50% 
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DISCUSSION 
 
There are two ongoing avenues for improving and further validating the nonlinear dimensionality 
reduction-based network reconstruction approach presented in this report.  The first is to try and 
improve the recovery of local network structure by incorporating additional measures of gene 
association – including perhaps the mutual information measure applied by the ARACNE method.  
There is considerable flexibility in the derivation of the kernel matrix used in Laplacian Eigenmaps 
and related methods.  Kernels derived from different association measures can even be combined.  
There may be value in this sort of ‘information fusion’ approach, especially given the way that the 
ARACNE and LE-based methods seemed to recover somewhat distinct structures, each with 
biological plausibility.  Another approach for strengthening the results might involve network edge 
filtering, with edges ideally being pruned in a more adaptive manner, based on local network 
structure.  If measures like correlation are applied, partial correlation calculations can potentially be 
used to isolate more direct gene-target interactions.  
 
A second general avenue is to use additional computational techniques to prioritize genes in a 
constructed local network for further investigation.  Candidate gene sets can be ‘scored’ for biological 
coherence using statistical analysis of the functional annotations associated with most genes (18).  
This can additionally allow further validation of network models, by enabling analysis of local 
structure around other known hubs. The ultimate aim is to identify potentially novel interactions for 
experimental investigation.  In the context of cancer-related genes like MYC, these interactions could 
yield new insights into tumor progression, and in particular, its critically important variation across 
patients.  Further development is clearly required to build a computational tool capable of focusing 
experimental work in this manner.  The work undertaken in this project suggests some promising 
directions for ongoing exploration. 
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