
	
   1	
  

Assessing a Nonlinear Dimensionality Reduction-Based Approach to Biological Network Reconstruction. 
 
Vinodh N. Rajapakse – vinodh@math.umd.edu  
PhD Advisor: Professor Wojciech Czaja – wojtek@math.umd.edu 
 
 
 
 
Project Background and Aims 
 
Deeper understanding of biological processes requires a systems perspective, integrating knowledge of both 
component elements (genes, proteins, metabolites, etc.), as well as their broader interactions. Graph theory 
provides a rich language for describing and analyzing these sorts of complex, networked systems.  But, reliable 
inference of biological network structure from noisy, high-dimensional, and still fundamentally limited data 
remains a challenging problem.  A promising avenue involves integrating nonlinear dimensionality reduction 
(DR) approaches with network analysis and reconstruction algorithms.  Beyond basic dimensionality reduction, 
these approaches can potentially accentuate latent structure and organize data in ways that allow integration of 
diverse information sources, including prior knowledge.  Software tools for performing elements of this 
analysis exist, but they are distributed over many packages, which often do not interact easily together. 
 
This project will build a basic, integrated data analysis pipeline for deriving gene association network models 
from gene expression data.  Dimensionality reduction techniques will be applied to map the input data in ways 
that aim to capture intrinsic structure.  After this step, standard network reconstruction and analysis techniques 
will be applied.  Algorithm implementations will be individually validated using well-characterized data sets and 
established software.  Following this foundational work, the impact of dimensionality reduction on the overall 
network reconstruction will be systematically assessed using additional validation and testing data sets.  In 
particular, the initial aim will be to implement, validate, and incorporate a representative nonlinear 
dimensionality reduction technique – Laplacian Eigenmaps.  Network reconstructions derived using data 
processed by this technique will be compared with ones derived using a leading method, with ones derived 
directly from the original data, as well as with ones derived from data processed using a standard linear 
dimensionality reduction approach – Principal Component Analysis. Pending successful completion of this 
work, some extensions of the basic analysis pipeline are possible.  These notably include an approach to 
enhance handling of very large data sets, as well as consideration of an additional nonlinear dimensionality 
reduction technique – Diffusion Maps.  Further details are provided in subsequent sections of this proposal. 
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Detailed Approach 
 

 
 
The starting point for this analysis is an N x D gene expression data matrix, which we will denote by X. The 
entry (X)ij in X records the expression (relative abundance) of the ith gene (mRNA product) in the jth sample. In 
what follows, we will focus on gene expression profiles across samples, which are naturally organized along the 
rows of X. The expression profile of the ith gene will be designated by xi, and will be regarded as a point in a D-
dimensional input data space.  From this input data, network reconstruction will proceed in three broad steps: 
 

(1) Starting from the N x D gene expression data matrix X, derive an N x d matrix Y, (d < D) using 
Laplacian Eigenmaps (or another dimensionality reduction technique). 

(2) Construct an N x N matrix W* capturing pairwise Euclidean distances between row vectors of Y 
(which can be regarded as ‘reduced gene profiles’). 

(3) Apply a statistical significance-based threshold to the elements of W* to obtain a network (adjacency 
matrix) representation. 

 
 
Laplacian Eigenmaps Background 
 
The motivation for integrating nonlinear dimensionality reduction with network reconstruction and analysis 
derives from the thought that gene expression data sets might be relatively constrained to lower dimensional 
manifolds within the high-dimensional spaces in which they reside.  This notion is not implausible given the 
highly ordered structure of gene regulatory networks and their associated processes.  Laplacian Eigenmaps (LE) 
aims to map input space points to a lower dimensional space in such a way that local relationships are 
preserved (2).  These mapped space distances might approximate distances along a putative data manifold in 
the original space.  Some initial studies have suggested that their application might support more biologically 
specific clustering of gene expression profiles (3).  These results motivate the more thorough consideration of 
manifold learning-based nonlinear dimensionality reduction in support of detailed network structure recovery. 
 
Operationally, Laplacian Eigenmaps transforms an input (N x D) data matrix (data element vectors organized 
along rows) to an output (N x d) matrix (d < D).  There are three steps, though the first two can be combined 
computationally.  
  

(1) Model Data Point Relationships: Build a graph G with nodes i and j connected if xi is one of the k 
nearest neighbors of xj or vice versa. (Euclidean distances will be used at least initially; alternatives are 
possible) k is a local structure resolution parameter. 

(2) Construct Weight Matrix: Form a diffusion weight matrix W, with entry (W)ij = exp{ - || xi – xj ||2 } 
if i and j are connected; 0 otherwise. 

(3) Solve the Minimization Problem: 
 

min(YT DY =I )
1
2

|| yi − yj ||
2

i, j
∑ Wi, j = min(YT DY =I ) trace(Y

T LY ),  

X (N x D) 

N = ~10000 genes 
D = ~250 samples 
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In the above formulation, D is a diagonal ‘connectivity matrix’, whose entries record the sum of the edge 
weights for each data point-derived node (as recorded along the rows or columns of W). L = D – W is the 
Laplacian matrix. The key idea with the minimization is to force points that are close together in the original data space (e.g., 
that have larger associated edge weights) to lie close together in the mapped data space, while more loosely related points can be 
relatively pushed apart, drawing out (potentially complex, nonlinear) structure in the data.  The specified constraint serves to 
scale the output and eliminate trivial solutions. Some basic results from linear algebra show that the optimal 
mapping can be obtained by solving the generalized eigenvalue problem Lx = λDx under the above constraint.  
In particular, the coordinates of the mapped data point yi in the space of reduced dimension d can be extracted 
from the ith coordinates of the d eigenvectors with the smallest nonzero eigenvalues (2). 
 
The Laplacian Eigenmaps method has two major strengths.  First, the data-organizing map can be obtained by 
solving a standard and reasonably tractable computational problem.  In addition, the approach comes with 
deeper theoretical assurances of optimal manifold recovery, in the limit of sufficient data.  In particular, the 
graph-based Laplacian matrix L can be seen as a discrete analogue of the Laplacian-Beltrami operator on the 
underlying manifold. The eigenmaps of the latter operator can be shown to provide an optimal embedding of 
the manifold into a space of reduced, intrinsic dimension.  Since the graph-based Laplacian converges to the 
manifold-based Laplace-Beltrami operator, its associated data mappings progressively inherit the corresponding 
manifold recovery guarantees (2).   
 
Derivation of Network Structure 
 
Given an N x N matrix W* capturing pairwise Euclidean distances between mapped gene expression profiles in 
the reduced d-dimensional space, and a target p-value α, a distance threshold for deriving a network adjacency matrix 
from W* will be obtained by applying the following steps. 

• Run random data (scaled comparably to input data) through the described dimensionality reduction 
process. 

• Rank pairwise distances between the derived points in the mapped data space. 
• Select the distance threshold that excludes the upper (1 - α) fraction of observed distance values. 

 
Additional Details and Possible Extensions 
 
Laplacian Eigenmaps parameter selection: Two parameters must be selected in the course of constructing the data 
map using Laplacian Eigenmaps – the target reduced dimension d, and the neighborhood resolution parameter 
k.  While in some instances, it may be possible to select the target dimension based on knowledge of the 
biological process under investigation, for this project an established data-driven maximum likelihood 
technique will be used to estimate the intrinsic data dimensionality (8).  Past work with gene expression data 
sets of the size considered in this project have yielded good results with neighborhood resolution parameter 
settings in range of k = 10 to k = 20, which are along the lines of the values applied to example data sets in the 
original Laplacian Eigenmaps paper (2).  For the first phase of the project, values in this range will be used and 
assessed.  Following successful validation and testing of the core algorithm and basic framework, more refined 
approaches may be implemented and assessed (7). 
 
Computational Resource Management: While the test data sets in this project will contain data associated with 
around N = 10 to 20 thousand genes, the aim is to implement a basic library that can scale to anticipated larger 
research data sets.  As such, care will be taken to conserve memory resources, by e.g., avoiding explicit 
construction of large matrices such as W* (N x N) described above.  In the latter instance, once a suitable 
distance threshold is computed, only the distances weights for the corresponding neighbors of a node would 
need to be recorded (in a suitable sparse matrix data structure).  Relatively basic steps like these, to utilize 
memory efficiently, will be considered and implemented in the early stages of the project.  More complex areas, 
should they arise, will be pushed to the second phase of the project, after basic validation and testing.  Some 
basic test suites will be constructed in these cases, so that modifications can be efficiently made and assessed 
with care to preserve correctness. 
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Possible Numerical Challenges: At least one reference has suggested that sparse spectral dimensionality reduction 
techniques like Laplacian Eigenmaps may face eigenvalue problems that can potentially challenge even state of 
the art eigensolvers, due to the large range between the smallest and largest eigenvalues (10).  Since techniques 
like Laplacian Eigenmaps rely on selection of eigenvectors associated with the d smallest (nonzero) eigenvalues, 
instances where these cannot be accurately identified could potentially result in suboptimal data mappings.  
Initial work in this project will apply (a suitable C implementation of) the default eigensolver used in MATLAB, 
since solid results have been obtained using the latter package.  The developed Laplacian Eigenmaps 
implementation will be parameterized with respect to the eigensolver routine, so that alternative choices can be 
readily explored as appropriate, if not for this project, in later research work. 
 
Possible Extensions: Pending successful implementation, validation, and testing of the basic Laplacian 
Eigenmaps-based network reconstruction approach outlined above, some extensions are possible in the second 
term phase of the project.  In particular, approximate nearest neighbor selection algorithms could be 
incorporated and assessed.  These could facilitate handling of much larger data sets by expediting the 
construction of the initial nearest neighbor-restricted weight matrix utilized by the Laplacian Eigenmaps 
method (and several related nonlinear dimensionality reduction methods).  One possible approach with an 
available library is described in the reference (4).  In addition, an additional dimensionality reduction technique 
could be implemented and assessed in context of network reconstruction.  The Diffusion Maps technique, 
which can also be reduced to an eigenvalue problem, would be a strong candidate (5). 
 
 
Implementation Notes 
 
The overall aim will be to build a basic network reconstruction tool that can run on standard desktop hardware, 
for the data set sizes described.  As noted above, care will be taken to allow scalability to larger data sets, 
through appropriate selection of data structures and algorithms.  An additional aim is to utilize free and open 
source platforms that will allow the code to run on typically encountered systems.  In particular, the Python 
language and platform will be used for its broader libraries, as well as for basic algorithm prototyping. The 
latter efforts will utilize the SciPy and matplotlib libraries, which provide MATLAB-like numerical computing 
and visualization capabilities. The Laplacian Eigenmaps technique and other computationally intensive 
elements of the project will be implemented in C/C++.  Libraries will be used for basic linear algebra (to be 
selected in the first few weeks of the project) and network analysis and visualization (iGraph). 
 
 
Validation and Testing 
 
Validation of the software will proceed in two stages.  First, the Laplacian Eigenmaps algorithm 
implementation will be tested against an established implementation provided by the MATLAB-based 
Dimensionality Reduction Toolbox (11).  The latter library has been extensively used by our group and others.  
The aim will be to replicate the published performance of the DR Toolbox Laplacian Eigenmaps 
implementation over 4 synthetic data sets representing relatively simple nonlinear manifolds in three-
dimensional space (‘Swiss Roll’, ‘Broken Swiss Roll’, ‘Twinpeaks’, and ‘Helix’).  These sorts of data sets are 
commonly used in basic assessment of nonlinear dimensionality reduction techniques.  The authors specify two 
measures – ‘trustworthiness’ and ‘continuity’ – for assessing the quality of a lower dimensional data 
representation.  For a given nearest neighbor (neighborhood resolution) parameter setting k, trustworthiness is 
defined by: 
 

 
 
where r(i,j) represents the node i neighborhood group rank of the data point j, according to the pairwise 
distances from the data point i in the high dimensional space, and Ui(k) is the set of points that are among the k 
nearest neighbors of point i in the low dimensional space but not in the high dimensional space.  The trustworthiness 
measure ranges from 0 to 1, and in essence, it aims to penalize mappings that often group points in the low dimensional space 
that were not close together in the original input space.  The continuity measure is analogously defined to penalize 

so-called Nyström approximation [99], which approximates the eigenvectors of a large n × n matrix

based on the eigendecomposition of an m ×m submatrix of the large matrix (with m < n). A similar

out-of-sample extension for Isomap, LLE, and Laplacian Eigenmaps has been presented in [17], in

which the techniques are redefined in the Kernel PCA framework and the Nyström approximation is

employed. Similar nonparametric out-of-sample extensions for Isomap are proposed in [31, 37]. For

MVU, an approximate out-of-sample extension has been proposed that is based on computing a linear

transformation from a set of landmark points to the complete dataset [136]. An alternative out-of-

sample extension for MVU finds this linear transformation by computing the eigenvectors corresponding

to the smallest eigenvalues of the graph Laplacian [139]. A third out-of-sample extension for MVU

approximates the kernel eigenfunction using Gaussian basis functions [30].

A nonparametric out-of-sample extension that can be applied to all nonlinear dimensionality reduc-

tion techniques is proposed in [85]. The technique finds the nearest neighbor of the new datapoint in the

high-dimensional representation, and computes the linear mapping from the nearest neighbor to its cor-

responding low-dimensional representation. The low-dimensional representation of the new datapoint

is found by applying the same linear mapping to this datapoint.

From the description above, we may observe that linear and nonlinear techniques for dimensionality

reduction are quite similar in that they allow the embedding of new datapoints. However, for a significant

number of nonlinear techniques, only nonparametric out-of-sample extensions are available, which leads

to estimation errors in the embedding of new datapoints.

6 Experiments

In this section, a systematic empirical comparison of the performance of the techniques for dimen-

sionality reduction is performed. We perform the comparison by measuring generalization errors in

classification tasks on two types of datasets: (1) artificial datasets and (2) natural datasets. In addi-

tion to generalization errors, we measure the ‘trustworthiness’ and ‘continuity’ of the low-dimensional

embeddings as proposed in [132].

The setup of our experiments is described in subsection 6.1. In subsection 6.2, the results of our ex-

periments on five artificial datasets are presented. Subsection 6.3 presents the results of the experiments

on five natural datasets.

6.1 Experimental Setup

In our experiments on both the artificial and the natural datasets, we apply the thirteen techniques for

dimensionality reduction on the high-dimensional representation of the data. Subsequently, we assess

the quality of the resulting low-dimensional data representations by evaluating to what extent the lo-

cal structure of the data is retained. The evaluation is performed in two ways: (1) by measuring the

generalization errors of 1-nearest neighbor classifiers that are trained on the low-dimensional data rep-

resentation (as is done, e.g., in [109]) and (2) by measuring the ‘trustworthiness’ and the ‘continuity’ of

the low-dimensional embeddings [132]. The trustworthiness measures the proportion of points that are

too close together in the low-dimensional space. The trustworthiness measure is defined as

T (k) = 1− 2
nk(2n− 3k − 1)

n�

i=1

�

j∈U(k)
i

(r(i, j)− k) , (28)

where r(i, j) represents the rank of the low-dimensional datapoint j according to the pairwise distances

between the low-dimensional datapoints. The variable U (k)
i indicates the set of points that are among the

k nearest neighbors in the low-dimensional space but not in the high-dimensional space. The continuity

measure is defined as

C(k) = 1− 2
nk(2n− 3k − 1)

n�

i=1

�

j∈V (k)
i

(r̂(i, j)− k) , (29)
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instances in which points that were close neighbors in the original input space are placed far apart in the 
mapped space (6, 10).  The basic validation of the C/C++ Laplacian Eigenmaps algorithm implementation will aim to 
replicate the published continuity and trustworthiness measures for the described artificial data sets (10).  The latter are publicly 
available, together with applied algorithm parameter settings.  Since the MATLAB-based DR Toolbox has been 
successfully used in several published studies by our group and others, basic alignment of results with these 
benchmark data sets will give confidence in the new implementation.  Analogous results are published for 
Diffusion Maps and several other dimensionality reduction routines, allowing their implementations to be 
similarly validated (10). 
 
After basic validation of the Laplacian Eigenmaps algorithm implementation as described, derived network 
reconstructions will be validated by comparison with published results using the leading ARACNE algorithm, 
which has been featured in several strong publications (1, 9).  In particular, two levels of integrated system 
testing will be performed.  First, the reconstruction results obtained using data derived from simulation of a 
realistic artificial gene network will be assessed (9).  The results here can be precisely and objectively scored 
according to recovery of known edges.  Second, results over a well-studied biological data set focusing on the 
cancer gene myc will be considered.  Here, proper resolution of a coherent network module around myc will be 
assessed, along with its elements.  Since many genes belonging to the latter group are known through extensive 
past experimental work, the results can be once again scored with relative objectivity (for what is still a real-
world experimental data set).  In particular, results can be compared with those published for the leading 
ARACNE network reconstruction algorithm (1, 9). 
 
In addition to comparisons with the above leading network reconstruction technique, we will build and 
compare networks derived using a ‘vanilla version’ of the reconstruction workflow (which forgoes 
dimensionality reduction), as well as one which incorporates dimensionality reduction based on the more basic, 
linear Principal Components Analysis technique.  The overall results should provide an initial assessment of 
whether nonlinear dimensionality reduction approaches have particular value in accurately recovering complex 
biological network structures. 
 
 
Project Schedule and Milestones 
 

• Phase I: Laplacian Eigenmaps + Basic Network Reconstruction 
o Target Date: early December 2010 
o Milestones: 

 Implementation and focused validation of Laplacian Eigenmaps. 
 Implementation of statistical significance-based distance matrix thresholding for 

network reconstruction 
• Phase II: Integrated Testing of Network Reconstruction + Possible Extensions 

o Target Date: end of March 2011 
o Milestones: 

 Integrated testing of network reconstruction, method comparisons 
 Possible: Approximate Nearest Neighbor Selection Algorithms 
 Possible: Enhanced tuning of Laplacian Eigenmaps algorithm parameters 
 Possible: Implementation and integrated testing of alternative dimensionality 

reduction techniques (Diffusion Maps) 
 
Deliverables 
 

• Technical Report outlining: 
o Problem and general approach 
o Algorithm and system implementation details of particular interest 
o Validation and testing results, including detailed comparative assessment of nonlinear 

dimensionality reduction in gene network reconstruction 
• Source Code – together with data sets and scripts for reproducing results presented in technical 

report. 
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